
An Early Idea on
Factoring



Jevons Number

In the 1870s William Stanley Jevons wrote of the difficulty of
factoring. We paraphrase Solomon Golomb’s paraphrase:

Jevons observed that there are many cases where an
operation is easy but its inverse is hard. He mentioned
encryption and decryption. He mentioned multiplication
and factoring. He anticipated RSA!

Jevons thought factoring was hard (prob correct!) and that a
certain number would never be factored (wrong!). Here is a quote:

Can the reader say what two numbers multiplied together
will produce

8, 616, 460, 799

I think it is unlikely that anyone aside from myself will ever
know.
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Jevons Number

J = 8, 616, 460, 799

We can now factor J easily. Was Jevons’ comment stupid? Discuss

1. Jevons lived 1835–1882.

2. Jevons did not predict computers. Should he have?

3. Jevons did not predict math would help. Should he have?

4. Lehmer factored J in 1903 using math and computation.

5. Golomb in 1996 showed that, given the math of his day,
Jevons’ number could be factored by hand.

6. Student: Why didn’t Jevons just Google Factoring Quickly
Bill: They didn’t have the Web back then. Or Google.
Student: How did they live?
Bill: How indeed!
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Golomb’s Method to Factor Jevons Number

J = 8, 616, 460, 799

We apply a method of Fermat (in the 1600’s) to the problem of
factoring J.

To factor J find x , y such that

J = x2 − y2 = (x − y)(x + y)

So we must narrow our search for x , y .



Use Mods. Which Mod?

J = 8, 616, 460, 799

Ends in 99. Hence

J ≡ 99 ≡ −1 (mod 100).

Ah-ha. −1 is small! Mod 100 might be useful.
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Golomb’s Works Mod 100

x2 + 1 ≡ y2 (mod 100)

All squares mod 100:

{00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41, 44, 49}∪

{56, 61, 64, 69, 76, 81, 84, 89, 96}

The only pairs which differ by 1 are
(00, 01) and (24, 25). So either:

1. x2 ≡ 0, so x mod 100 ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90}
2. x2 ≡ 24, so x mod 100 ∈ {18, 32, 68, 82}



WE SKIP NEXT FEW SLIDES

The next few slides are not hard, but they are tedious, so I keep
them in this slide packet in case you want to look at them, but in
class we’ll skip them.

This material is NOT optional. It may be on a HW or Exam.



Golomb Works Mod 1000

x2 − J ≡ y2 (mod 1000)

x2 + 201 ≡ y2 (mod 1000)

If x (mod 100) ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90} then
x = 100a + 10b
where a ∈ N and b ∈ {0, . . . , 9}.
Easy but tedious to show that b ≡ 0 (mod 2). Hence

1. x2 ≡ 0, so x mod 100 ∈ {20, 40, 60, 80}
2. x2 ≡ 24, so x mod 100 ∈ {18, 32, 68, 82}



Recap

Combine the two sets for x (mod 100) to get

x (mod 100) ∈ {18, 20, 32, 40, 60, 68, 80, 82}

Since J = x2 − y2, x2 = J + y2, so

x ≥
⌈√

J
⌉

= 92824

Since J = x2 − y2, x2 − J = y2, hence

x2 − J = y2 a square



Welcome BACK

After those tedious slides we have the next slide.



Golomb’s Method to Factor Jevons Number: x2 ≥ J
1. x (mod 100) ∈ {18, 20, 32, 40, 60, 68, 80, 82}

2. x ≥
⌈√

J
⌉

= 92824

3. x2 − J = y2, a square.

x y = (x2 − J)1/2

92832 1148.6 . . .
92840 1674.7 . . .
92860 2553.1 . . .
92868 2829.2 . . .
92880 3199

AH-HA! We take x = 92880, y = 3199.

928802 − 31992 = 8, 616, 460, 799

(92880− 3199)(92880 + 3199) = 8, 616, 460, 799

(89681)(96079) = 8, 616, 460, 799



What Math or CS Did Jevons Know or Know of?

Did Jevons ask any mathematicians about this?

1. Jevons worked in logic and knew De Morgan.

2. Jevons argued with Hermann von Helmholtz about
non-Euclidean Geometry.

3. Upshot He was in contact with math people and could have
found a number theorist to ask. But he seems not to have.

Did Jevons know about the work of Charles Babbage?

1. Charles Babbage and Ada Lovelace were early computer
scientists who worked together. (Calling them computer
scientists is whiggish history.)

2. Charles Babbage also worked in Theology and wrote The
Ninth Bridgewater Treatise. Jevons intended to write The
Tenth Bridgewater Treatise.

3. Upshot He knew who Babbage was and could have asked his
opinion. But he seems not to have.
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My Opinion and a Point

1. Jevons could have asked mathematicians about the Jevons
Number, but didn’t.

2. Jevons could have asked computer scientists (Babbage,
Lovelace) about the Jevons Number, but didn’t.

3. Jevons thought that since he couldn’t have factored the
Jevons Numbers if it was just given to him, nobody could.

Many crypto systems are easily broken. Why? If Alice invents a
crypto system that is easily broken then likely:

1. Alice could have asked mathematicians about the Alice
System, but didn’t.

2. Alice could have asked computer scientists about the Alice
System, but didn’t.

3. Alice though that since she couldn’t have broken Alice’s
system, nobody could.

A lesson for us all!
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Erik’s Opinion

Erik, one of the TA’s, when proofreading these slides, said the
following:

1. Reasonable that he didn’t realize that computers would get so
much better.

2. Foolish since J = 8, 616, 460, 799 isn’t THAT big. Someone

with enough determination could divide J by 2, 3, . . . ,
⌈√

J
⌉

.

This is only
⌈√

J
⌉

= 92825 trial divisions. Leave it to you to

see if this is reasonable to finish in (say) 1 year.
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My Opinion and a Counterpoint

Conjecture Jevons was arrogant. Likely true.

Conjecture We have the arrogance of hindsight.

I It’s easy for us to say
What a moron! He should have asked a Number Theorist
What was he going to do, Google Number Theorist ?

I It’s easy for us to say
What a moron! He should have asked a Babbage or Lovelace

We know about the role of computers to speed up
calculations, but it’s reasonable it never dawned on him.

I Conclusion
I His arrogance: assumed the world would not change much.
I Our arrogance: knowing how much the world did change.
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Factoring Algorithms



Recall Factoring Algorithm Ground Rules

I We only consider algorithms that, given N, find a non-trivial
factor of N.

I We measure the run time as a function of lgN which is the
length of the input. We may use L for this.

I We count +, −, ×, ÷ as ONE step. A more refined analysis
would count them as (lg x)2 steps where x is the largest
number you are dealing with.

I We leave out the O-of but always mean O-of

I We leave out the expected time but always mean it. Our
algorithms are randomized.



Recall Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.
How Much Better? Ignoring (1) constants, (2) the lack of proofs
of the runtimes, and (3) cheating a byte, we have:

I Easy: N1/2 = 2L/2.

I Today’s lecture: N1/4 = 2L/4.

I Tomorrow’s lecture: N1/L1/2 = 2L
1/2

.

I Best Known: N1/L2/3 = 2L
1/3

.
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⌊
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⌋
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Pollard’s ρ Algorithm for
Factoring (1975)



Thought Experiment

We want to factor N.

p is smallest factor of N (we don’t know p). Note p ≤ N1/2.

We somehow find x , y such that x ≡ y (mod p). Useful?

gcd(x − y ,N) will likely yield a nontrivial factor of N since p
divides both.

We look at several approaches to finding such an x , y that do not
work before presenting the approach that does work.
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Approach 1: Rand Seq mod p, Intuition

Generate random sequence x1, x2, . . . ∈ {0, . . . ,N − 1}.

Every time you get a new xi , test, for all 1 ≤ j ≤ i − 1,

xi ≡ xj (mod p).

Hope to get a YES.

If get YES then do

gcd(xi − xj ,N).



Approach One: Rand Seq mod p, Program

x1 ← rand(0,N − 1), i ← 2
while TRUE

xi ← rand(0,N − 1)
for j ← 1 to i − 1

if xi ≡ xj (mod p) then
d ← gcd(xi − xj ,N)
if d 6= 1 and d 6= N then break

i ← i + 1
output(d)

PRO: Bday paradox: xi ’s are balls, mod p are boxes. So likely to
find xi ≡ xj (mod p) within p1/2 ∼ N1/4 iterations.

CON: Need to already know p. Really! Darn!

ADJUST: Always do GCD.
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Approach 2: Rand Seq mod p, W/O p, Intuition

Generate random sequence x1, x2, . . . ∈ {0, . . . ,N − 1}.

Every time you get a new xi , do, for all 1 ≤ j ≤ i − 1,

gcd(xi − xj ,N).

So do not need to know p. And if xi ≡ xj (mod p), you’ll get a
factor.
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if d 6= 1 and d 6= N then break
i ← i + 1

output(d)

PRO: Bday paradox: xi ’s:balls, mod p:boxes. Prob find xi ≡ xj
(mod p) with i ≤ p1/2 ∼ N1/4. Perhaps sooner–other prime
factors. Not knowing p does not matter.

CON: Iteration i makes i2 operations. Total number of operations:

N1/4∑
i=1

i2 ∼ (N1/4)3 ∼ N3/4 BAD :-( .
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Another Issue: Space

x1 ← rand(0,N − 1) i ← 2
while true

xi ← rand(0,N − 1)
for j ← 1 to i − 1

d = gcd(xi − xj ,N)
if d 6= 1 and d 6= N then break
i ← i + 1

output(d)

CON: After Iteration i need to store x1, . . . , xi . Since ∼ N1/4

iterations this is N1/4 space. Too much space :-(



Another Issue: Space

x1 ← rand(0,N − 1) i ← 2
while true

xi ← rand(0,N − 1)
for j ← 1 to i − 1

d = gcd(xi − xj ,N)
if d 6= 1 and d 6= N then break
i ← i + 1

output(d)

CON: After Iteration i need to store x1, . . . , xi . Since ∼ N1/4

iterations this is N1/4 space. Too much space :-(



Approach 3: Rand Looking Sequence, Intuition

How to create a random looking sequence?

I Pick random x1, c ∈ {1, . . . ,N − 1}
I If know xi−1, create

xi = xi−1 ∗ xi−1 + c (mod N).

I The sequence x1, x2, x3 will hopefully be random enough that
the bday paradox applies. We use the informal term random
looking for this.
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Approach 3: Rand Looking Sequence, Program

x1 ← rand(0,N − 1), c ← rand(0,N − 1), i ← 2
while true

xi ← xi−1 ∗ xi−1 + c (mod N)
for j ← 1 to i − 1

for k ← 2 to j xk ← xk−1 ∗ xk−1 + c
d ← gcd(xi − xj ,N)
if d 6= 1 and d 6= N then break

i ← i + 1
output(d)

PRO Empirically seq x1, x2 is random enough, so N1/4 iterations.
PRO Space not a problem.
CON Time still a problem :-(
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What Do we Really Want?

Let yi ≡ xi (mod p). y1, y2, . . . is random looking.
we want to find i , j ≤ N1/4 such that yi ≡ yj (mod p).

Key yi computed via recurrence so yi = yj =⇒ yi+a = yj+a.

Lemma If exists i < j ≤ M with yi = yj then exists k ≤ 2M such
that yk = y2k .
Proof Sketch 1 ≤ i < j ≤ M and yi = yj . For all a, yi+a = yj+a.

We need an a such that j + a = 2(i + a). a = j − 2i works.
yi+(j−2i) = yj+(j−2i) hence yj−i = y2(j−i). And j − i ≤ M.
Looks good! Is this proof correct?

No What if j − 2i ≤ 0? Then does not work. Leave you to work
out the details of that case.
End of Proof



What Do we Really Want?

Let yi ≡ xi (mod p). y1, y2, . . . is random looking.
we want to find i , j ≤ N1/4 such that yi ≡ yj (mod p).
Key yi computed via recurrence so yi = yj =⇒ yi+a = yj+a.

Lemma If exists i < j ≤ M with yi = yj then exists k ≤ 2M such
that yk = y2k .
Proof Sketch 1 ≤ i < j ≤ M and yi = yj . For all a, yi+a = yj+a.

We need an a such that j + a = 2(i + a). a = j − 2i works.
yi+(j−2i) = yj+(j−2i) hence yj−i = y2(j−i). And j − i ≤ M.
Looks good! Is this proof correct?

No What if j − 2i ≤ 0? Then does not work. Leave you to work
out the details of that case.
End of Proof



What Do we Really Want?

Let yi ≡ xi (mod p). y1, y2, . . . is random looking.
we want to find i , j ≤ N1/4 such that yi ≡ yj (mod p).
Key yi computed via recurrence so yi = yj =⇒ yi+a = yj+a.

Lemma If exists i < j ≤ M with yi = yj then exists k ≤ 2M such
that yk = y2k .
Proof Sketch 1 ≤ i < j ≤ M and yi = yj . For all a, yi+a = yj+a.

We need an a such that j + a = 2(i + a). a = j − 2i works.
yi+(j−2i) = yj+(j−2i) hence yj−i = y2(j−i). And j − i ≤ M.
Looks good! Is this proof correct?

No What if j − 2i ≤ 0? Then does not work. Leave you to work
out the details of that case.
End of Proof



What Do we Really Want?

Let yi ≡ xi (mod p). y1, y2, . . . is random looking.
we want to find i , j ≤ N1/4 such that yi ≡ yj (mod p).
Key yi computed via recurrence so yi = yj =⇒ yi+a = yj+a.

Lemma If exists i < j ≤ M with yi = yj then exists k ≤ 2M such
that yk = y2k .
Proof Sketch 1 ≤ i < j ≤ M and yi = yj . For all a, yi+a = yj+a.

We need an a such that j + a = 2(i + a). a = j − 2i works.
yi+(j−2i) = yj+(j−2i) hence yj−i = y2(j−i). And j − i ≤ M.
Looks good! Is this proof correct?

No What if j − 2i ≤ 0? Then does not work. Leave you to work
out the details of that case.
End of Proof



What Do we Really Want?

Let yi ≡ xi (mod p). y1, y2, . . . is random looking.
we want to find i , j ≤ N1/4 such that yi ≡ yj (mod p).
Key yi computed via recurrence so yi = yj =⇒ yi+a = yj+a.

Lemma If exists i < j ≤ M with yi = yj then exists k ≤ 2M such
that yk = y2k .
Proof Sketch 1 ≤ i < j ≤ M and yi = yj . For all a, yi+a = yj+a.

We need an a such that j + a = 2(i + a). a = j − 2i works.
yi+(j−2i) = yj+(j−2i) hence yj−i = y2(j−i). And j − i ≤ M.
Looks good! Is this proof correct?

No What if j − 2i ≤ 0? Then does not work. Leave you to work
out the details of that case.
End of Proof



Recap

Rand Looking Sequence x1, c chosen at random in {1, . . . ,N},
then xi = xi−1 ∗ xi−1 + c (mod N).

We want to find i , j such xi ≡ xj (mod p).

Don’t know p. Really want gcd(xi − xj ,N) 6= 1.

Trying all pairs is too much time.
Important If there is a pair then there is a pair of form xi , x2i .

Idea Only try pairs of form (xi , x2i ).
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Final Algorithm

Define fc(x)← x ∗ x + c

x ← rand(0,N − 1), c ← rand(0,N − 1), y ← fc(x)
while TRUE

x ← fc(x)
y ← fc(fc(y))
d ← gcd(x − y ,N)
if d 6= 1 and d 6= N then break

output(d)

PRO By Bday Paradox will likely finish in N1/4 steps.
CON No real cons, but is N1/4 fast enough?
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while TRUE
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How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice. Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:

I Proving that a deterministic sequence is random enough is
hard to do or even define.

I Natalie, Natalie, and Maddy haven’t worked on it yet.
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The Old Saying in Reverse

Typically one hears the following about academic research:
It works in theory, can we make it work in practice?

Pollard’s ρ-algorithm is an example of the converse:
It works in practice, can we make it work in theory?

Why is it important to learn why it works in theory?

1. Make sure it really works. This is low-priority. Hey! It works!

2. If we know how it works in theory then perhaps can improve
it. This is high-priority. Commonly theory and practice work
together to improve both.
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