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Ever notice how civilians (that is non-math people) 
use math words badly? Ever notice how sometimes 
you know a math statement is false (or not known) 
since if it was true you would know it?

Each chapter of this book makes a point like those 
above and then illustrates the point by doing some 
real mathematics.

This book gives readers valuable information about 
how mathematics and theoretical computer 
science work, while teaching them some actual 
mathematics and computer science through 
examples and exercises. Much of the mathematics 
could be understood by a bright high school 
student. The points made can be understood by 
anyone with an interest in math, from the bright 
high school student to a Field’s medal winner.
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Book’s Origin

I In 2003 Lance Fortnow started Complexity Blog

I In 2007 Bill Gasarch joined and it was a co-blog.

I In 2015 various book publishers asked us

Can you make a book out of your blog?

I Lance declined but Bill said YES.



Book’s Point

Bill took the posts that had the following format:

I make a point about mathematics

I do some math to underscore those points

and made those into chapters.

Hence the title
Problems With a Point
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Possible Subtitles

Problems with a Point needed a subtitle.
I proposed

Problems with a Point: Mathematical Musing and Math to
make those Musings Magnificent

The publisher said NO!

I proposed
Problems with a Point: Mathematical Meditations and
Computer Science Cogitations

The publisher said NO!

The publisher wisely decided to be less cute and more informative:
Problems with a Point: Exploring Math and Computer
Science
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Clyde Joins the Project!

After some samples of Bill’s writing the publisher said

Please Procure People to Polish Prose and Proofs of
Problems with a Point

so
Clyde Kruskal became a co-author.
Now onto some samples of the book!
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Point: Students Can Give Odd Answers: Easy

From the Year 2000 Maryland Math Competition:
There are 2000 cans of paint. Show that at least one of the
following two statements is true:

I There are at least 45 cans of the same color.

I There are at least 45 cans that are different colors.

Work on it.

ANSWER
If there are 45 different colors of paint then we are done. Assume
there are ≤ 44 different colors. If all colors appear ≤ 44 times then
there are 44 × 44 = 1936 < 2000 cans of paint, a contradiction.
Note: this was Problem 1, which is supposed to be easy and
indeed 95% got it right. What about the other 5%? Next slide.
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One of the Wrong Answers. Or is it?

There are 2000 cans of paint. Show that at least one of the
following two statements is true:

I There are at least 45 cans of the same color.

I There are at least 45 cans that are different colors.

ANSWER
Paint cans are grey. Hence there are all the same color. Therefore
there are 2000 cans that are the same color.
What do you think:

I Thats just stupid. 0 points.

I Question says cans of the same color. . .. The full 30 pts.

I Not only does he get 30 points, but everyone else should get 0.
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differences. Hence, even if two cans seem to both be (say) RED,
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Point: Students Can Give Odd Answers: Hard

From the year 2007 Maryland Math Competition.

QUESTION: Let ABC be a fixed triangle. Let COL be any
2-coloring of the plane where each point is colored with red or
green. Prove that there is a triangle DEF in the plane such that
DEF is similar to ABC and the vertices of DEF all have the same
color.

Note I think I was assigned to grade it since it looks like the kind
of problem I would make up, even though I didn’t. It was problem
5 (out of 5) and was hard. About 100 students tried it, 8 got full
credit, 10 got partial credit
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Funny Answers One

QUESTION: Let ABC be a fixed triangle. Let COL be any
2-coloring of the plane where each point is colored with red or
green. Prove that there is a triangle DEF in the plane such that
DEF is similar to ABC and the vertices of DEF all have the same
color.

ANSWER
All the vertices are red because I can make them whatever color I
want. I can also write at a 30 degree angle to the bottom of this
paper (The students answer was written at a 30 degree angle to
the bottom of the paper.) if thats what I feel like doing at the
moment. Just like 2 + 2 = 5 if thats what my math teacher says.
Math is pretty subjective anyway.
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Was Student One Serious?

All the vertices are red because I can make them whatever color I
want. I can also write at a 30 degree angle to the bottom of this
paper (The students answer was written at a 30 degree angle to
the bottom of the paper.) if thats what I feel like doing at the
moment. Just like 2 + 2 = 5 if thats what my math teacher says.
Math is pretty subjective anyway.

Theorem The students is not serious.
Proof Assume, by contradiction, that they are serious. Then they
really think math is subjective. Hence they don’t really understand
math. Hence they would not have done well enough on Part I to
qualify for Part II. But they took Part II. Contradiction.
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Funny Answers Two

QUESTION: Let ABC be a fixed triangle. Let COL be any
2-coloring of the plane where each point is colored with red or
green. Prove that there is a triangle DEF in the plane such that
DEF is similar to ABC and the vertices of DEF all have the same
color.

ANSWER
I like to think that we live in a world where points are not judged
by their color, but by the content of their character. Color should
be irrelevant in the the plane. To prove that there exists a group of
points where only one color is acceptable is a reprehensible act of
bigotry and discrimination.

Was Student Two Serious. Yes. about Justice!.
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Point: What is a Simple Function?

I assigned the following in Discrete Math: For each of the following
sequences find a simple function A(n) such that the sequence is
A(1),A(2),A(3), . . .

1. 10, -17, 24, -31, 38, -45, 52, · · ·
2. -1, 1, 5, 13, 29, 61, 125, · · ·
3. 6, 9, 14, 21, 30, 41, 54, · · ·

Caveat: These are NOT trick questions.
Work on it.

1. 10, -17, 24, -31, 38, -45, 52, · · · A(n) = (−1)n+1(7n + 3).

2. -1, 1, 5, 13, 29, 61, 125, · · · A(n) = 2n − 3.

3. 6, 9, 14, 21, 30, 41, 54, · · · A(n) = n2 + 5.
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A Student asks — What is a Simple Function?

One student, in earnest, emailed Bill the following:

We never defined Simple Function in class so I went to
Wikipedia. It said that A Simple Function is a linear
combination of indicator functions of measurable sets. Is that
what you want us to use?

I doubt the student knows what those terms mean
I doubt Bill knows what those terms mean.

I told him NO— all Bill wanted is an easy-to-describe function. In
retrospect I should have told him to use that definition to see what
he came up with.
The student got the first one right, but left the other two blank.
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Point: When Do Patterns Hold?

The last question brings up the question of when patterns do and
don’t hold. We looked for cases where a pattern did not hold.



First Non-Pattern: n Points on a circle

What is the max number of regions formed by connecting every
pair of n points on a circle. For n = 1, 2, 3, 4, 5:

Tempted to guess 2n−1.

But for n = 6, the number of regions is only 31.
The actual number of regions for n points is

(n
4

)
+
(n
2

)
+ 1.
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Second Non-Pattern: Borwein Integrals∫ ∞
0

sin x

x
=
π

2∫ ∞
0

sin x

x

sin x
3

x
3

=
π

2

...∫ ∞
0

sin x

x

sin x
3

x
3

sin x
5

x
5

sin x
7

x
7

sin x
9

x
9

sin x
11

x
11

sin x
13

x
13

=
π

2

But ∫ ∞
0

sin x

x

sin x
3

x
3

sin x
5

x
5

sin x
7

x
7

sin x
9

x
9

sin x
11

x
11

sin x
13

x
13

sin x
15

x
15

=

467807924713440738696537864469π

935615849440640907310521750000
∼ 0.9999999999852937186×π

2



Second Non-Pattern: Borwein Integrals∫ ∞
0

sin x

x
=
π

2∫ ∞
0

sin x

x

sin x
3

x
3

=
π

2

...∫ ∞
0

sin x

x

sin x
3

x
3

sin x
5

x
5

sin x
7

x
7

sin x
9

x
9

sin x
11

x
11

sin x
13

x
13

=
π

2

But ∫ ∞
0

sin x

x

sin x
3

x
3

sin x
5

x
5

sin x
7

x
7

sin x
9

x
9

sin x
11

x
11

sin x
13

x
13

sin x
15

x
15

=

467807924713440738696537864469π

935615849440640907310521750000
∼ 0.9999999999852937186×π

2



Why the breakdown at 15?

Because

1

3
+

1

5
+ · · · +

1

13
< 1

but

1

3
+

1

5
+ · · · +

1

15
> 1.

For more Google
Borwein Integral



Our Book on Amazon



Notice the Price/Sequel?

The bottom of that page said:

Chapter 1 of the sequel

Problems with two Points:
More Explorations of Math and Computer Science

will be

The Mathematics of Book Pricing on Amazon
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Suppose you have five muffins that you want to divide and 
give to Alice, Bob, and Carol. You want each of them to get 
5/3. You could cut each muffin into 1/3-1/3-1/3 and give 
each student five 1/3-sized pieces. But Alice objects! She 
has large hands! She wants everyone to have pieces larger 
than 1/3.

Is there a way to divide five muffins for three students 
so that everyone gets 5/3, and all pieces are larger than 
1/3? Spoiler alert: Yes! In fact, there is a division where the 
smallest piece is 5/12. Is there a better division? Spoiler 
alert: No.

In this book we consider THE MUFFIN PROBLEM: what is 
the best way to divide up m muffins for s students so 
that everyone gets m/s muffins, with the smallest pieces 
maximized. We look at both procedures for the problem 
and proofs that these procedures are optimal.

This problem takes us through much mathematics of 
interest, for example, combinatorics and optimization 
theory. However, the math is elementary enough for an 
advanced high school student.

ISBN 978-981-121-517-9

Nobody wants a small piece

Mathematical 
Muffin Morsels

Mathematical Muffin Morsels
Nobody wants a small piece



How I Learned the Muffin Problem

A Recreational Math Conference
(Gathering for Gardner)

May 2016
Bill found a pamphlet:

The Julia Robinson Mathematics Festival:
A Sample of Mathematical Puzzles

Compiled by Nancy Blachman
which had this problem, proposed by Alan Frank:

How can you divide and distribute 5 muffins to 3 students so that
every student gets 5

3 where nobody gets a tiny sliver?



Five Muffins, Three Students, Proc by Picture

Person Color What they Get

Alice RED 1 + 2
3 = 5

3

Bob BLUE 1 + 2
3 = 5

3

Carol GREEN 1 + 1
3 + 1

3 = 5
3

Smallest Piece: 1
3



Can We Do Better?

The smallest piece in the above solution is 1
3 .

Is there a procedure with a larger smallest piece?

Work no it



Five Muffins, Three People–Proc by Picture

Person Color What they Get

Alice RED 6
12 + 7

12 + 7
12

Bob BLUE 6
12 + 7

12 + 7
12

Carol GREEN 5
12 + 5

12 + 5
12 + 5

12

Smallest Piece: 5
12



Can We Do Better?

The smallest piece in the above solution is 5
12 .

Is there a procedure with a larger smallest piece?

NO WE CAN’T!



5 Muffins, 3 People–Can’t Do Better Than 5
12

There is a procedure for 5 muffins,3 students where each student
gets 5

3 muffins, smallest piece N. We want N ≤ 5
12 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both 1

2 -sized
pieces to whoever got the uncut muffin. (Note 1

2 >
5
12 .) Reduces

to other cases.
(Henceforth: All muffins are cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then N ≤ 1
3 <

5
12 .

(Henceforth: All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students:
Someone gets ≥ 4 pieces. He has some piece

≤ 5

3
× 1

4
=

5

12
Great to see

5

12



General Problem

The Muffin Problem:
How can you divide and distribute m muffins to s students so that
each students gets m

s AND the MIN piece is MAXIMIZED?

This Problem went from recreational Mathematics to Serious Math
when we replaced (5,3) with (m, s).

f (m, s) be the smallest piece in the best procedure (best in that
the smallest piece is maximized) to divide m muffins among s
students so that everyone gets m

s .

We have shown f (5, 3) = 5
12 here.



Amazing Results!/Amazing Theorems!

1. f (43, 33) = 91
264 .

2. f (52, 11) = 83
176 .

3. f (35, 13) = 64
143 .

All done by hand, no use of a computer
by Co-author Erik Metz is a muffin savant !



Our First Obstacle

We solved f (m, 3) and f (m, 4) completely.
We solved f (m, 5) except for f (11, 5).
We had a procedure which shows f (11, 5) ≥ 13

30 .
We have an upper bound. But they don’t match!

13

30
≤ f (11, 5) ≤ 11

25
Diff= 0.006666 . . .

We then showed:
f (11, 5) = 13

30 using an Exciting new technique!



Terminology: Buddy

Assume that in some protocol every muffin is cut into two pieces.

Let x be a piece from muffin M.
The other piece from muffin M is the buddy of x .

Note that the buddy of x is of size

1 − x .



f (11, 5) = 13
30

, Easy Case Based on Muffins

There is a procedure for 11 muffins, 5 students where each student
gets 11

5 muffins, smallest piece N. We want N ≤ 13
30 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin. Reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. N ≤ 1
3 <

13
30 .

(Negation of Case 0 and Case 1: All muffins cut into 2 pieces.)



f (11, 5) = 13
30

, Easy Case Based on Students

Case 2: Some student gets ≥ 6 pieces.

N ≤ 11

5
× 1

6
=

11

30
<

13

30
.

Case 3: Some student gets ≤ 3 pieces.
One of the pieces is

≥ 11

5
× 1

3
=

11

15
.

Look at the muffin it came from to find a piece that is

≤ 1 − 11

15
=

4

15
<

13

30
.

(Negation of Cases 2 and 3: Every student gets 4 or 5 pieces.)



f (11, 5) = 13
30

, Fun Cases

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5
pieces. Number of pieces: 22. Note ≤ 11 pieces are > 1

2 .

I s4 is number of students who get 4 pieces

I s5 is number of students who get 5 pieces

4s4 + 5s5 = 22
s4 + s5 = 5

s4 = 3: There are 3 students who have 4 shares.
s5 = 2: There are 2 students who have 5 shares.

We call a share that goes to a person who gets 4 shares a 4-share.
We call a share that goes to a person who gets 5 shares a 5-share.



f (11, 5) = 13
30

, Fun Cases

Case 4.1: Some 4-share is ≤ 1
2 .

Alice gets w , x , y , z and w ≤ 1
2 .

Since w + x + y + z = 11
5 and w ≤ 1

2

x + y + z ≥ 11

5
− 1

2
=

17

10

Let x be the largest of x , y , z

x ≥ 17

10
× 1

3
=

17

30

Look at buddy of x .

B(x) ≤ 1 − x = 1 − 17

30
=

13

30

GREAT! This is where 13
30 comes from!



f (11, 5) = 13
30

, Fun Cases

Case 4.2: All 4-shares are > 1
2 . There are 4s4 = 12 4-shares.

There are ≥ 12 pieces > 1
2 . Can’t occur.



The Future of Muffins

Our ultimate goal was a poly time algorithm for f (m, s). We never
got it.

But the following happened:

1. Scott Huddleston emailed me code that ALWAYS solves the
problem REALLY FAST, though he had no proof of this.

2. Richard Chatwin independently discovered Scott’s algorithm
and prove it is correct.

Richard’s paper is on arXiv.
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Alan Frank

As noted earlier, Alan Frank invented the muffin problem.

1. I found him on the web and contacted him.

2. He is delighted that someone is working on his problem.

3. I arranged to to give a talk on Muffins at the MIT
combinatorics seminar and to meet him before the talk (he
lives in Boston).

4. I found out from the organizers that, counting me and Alan,
there should be 13 people at the talk.

5. Alan came and brought 35 muffins cut in such a way that 13
people could each get 35

13 and the smallest piece was of size
64
143 .
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