
Quadratic Sieve
Factoring

November 13, 2019



Quick: Factor 8051

Factor 8051. Looks Hard.

OH- note that

8051 = 902 − 72 = (90 + 7)(90− 7) = 97× 83

Key Wrote 8051 as diff of two squares.

General If N = x2 − y2 then get N = (x − y)(x + y).

But Lucky: we happen to spot two squares that worked.

History Carl Pomerance was on the Math Team in High School and
this was a problem he was given. He didn’t to solve it in time, but
it inspired him to invent the Quadratic Sieve Factoring Algorithm



Quick: Factor 8051

Factor 8051. Looks Hard.
OH- note that

8051 = 902 − 72 = (90 + 7)(90− 7) = 97× 83

Key Wrote 8051 as diff of two squares.

General If N = x2 − y2 then get N = (x − y)(x + y).

But Lucky: we happen to spot two squares that worked.

History Carl Pomerance was on the Math Team in High School and
this was a problem he was given. He didn’t to solve it in time, but
it inspired him to invent the Quadratic Sieve Factoring Algorithm



Quick: Factor 8051

Factor 8051. Looks Hard.
OH- note that

8051 = 902 − 72 = (90 + 7)(90− 7) = 97× 83

Key Wrote 8051 as diff of two squares.

General If N = x2 − y2 then get N = (x − y)(x + y).

But Lucky: we happen to spot two squares that worked.

History Carl Pomerance was on the Math Team in High School and
this was a problem he was given. He didn’t to solve it in time, but
it inspired him to invent the Quadratic Sieve Factoring Algorithm



Quick: Factor 8051

Factor 8051. Looks Hard.
OH- note that

8051 = 902 − 72 = (90 + 7)(90− 7) = 97× 83

Key Wrote 8051 as diff of two squares.

General If N = x2 − y2 then get N = (x − y)(x + y).

But Lucky: we happen to spot two squares that worked.

History Carl Pomerance was on the Math Team in High School and
this was a problem he was given. He didn’t to solve it in time, but
it inspired him to invent the Quadratic Sieve Factoring Algorithm



Quick: Factor 8051

Factor 8051. Looks Hard.
OH- note that

8051 = 902 − 72 = (90 + 7)(90− 7) = 97× 83

Key Wrote 8051 as diff of two squares.

General If N = x2 − y2 then get N = (x − y)(x + y).

But Lucky: we happen to spot two squares that worked.

History Carl Pomerance was on the Math Team in High School and
this was a problem he was given. He didn’t to solve it in time, but
it inspired him to invent the Quadratic Sieve Factoring Algorithm



Quick: Factor 8051

Factor 8051. Looks Hard.
OH- note that

8051 = 902 − 72 = (90 + 7)(90− 7) = 97× 83

Key Wrote 8051 as diff of two squares.

General If N = x2 − y2 then get N = (x − y)(x + y).

But Lucky: we happen to spot two squares that worked.

History Carl Pomerance was on the Math Team in High School and
this was a problem he was given. He didn’t to solve it in time, but
it inspired him to invent the Quadratic Sieve Factoring Algorithm



Quick: Factor 1261

812 − 162 = 6305 = 5× 1261

Does this help?

(81− 16)× (81 + 16) = 5× 1261

65× 97 = 5× 1261

(Could divide both sides by 5, please ignore that.)
65 divides 5× 1261, so 65 might share a factor with 1261. Take
GCD: GCD(65, 1261) = 13. So 13 divides 1261.
General If (x2 − y2) = kN then

I GCD(x − y ,N) might be a nontrivial factor

I GCD(x + y ,N) might be a nontrivial factor.

Want
x2 − y2 = kN

x2 − y2 ≡ 0 (mod N)

x2 ≡ y2 (mod N).



Quick: Factor 1261

812 − 162 = 6305 = 5× 1261

Does this help? (81− 16)× (81 + 16) = 5× 1261

65× 97 = 5× 1261

(Could divide both sides by 5, please ignore that.)
65 divides 5× 1261, so 65 might share a factor with 1261. Take
GCD: GCD(65, 1261) = 13. So 13 divides 1261.
General If (x2 − y2) = kN then

I GCD(x − y ,N) might be a nontrivial factor

I GCD(x + y ,N) might be a nontrivial factor.

Want
x2 − y2 = kN

x2 − y2 ≡ 0 (mod N)

x2 ≡ y2 (mod N).



Quick: Factor 1261

812 − 162 = 6305 = 5× 1261

Does this help? (81− 16)× (81 + 16) = 5× 1261

65× 97 = 5× 1261

(Could divide both sides by 5, please ignore that.)

65 divides 5× 1261, so 65 might share a factor with 1261. Take
GCD: GCD(65, 1261) = 13. So 13 divides 1261.
General If (x2 − y2) = kN then

I GCD(x − y ,N) might be a nontrivial factor

I GCD(x + y ,N) might be a nontrivial factor.

Want
x2 − y2 = kN

x2 − y2 ≡ 0 (mod N)

x2 ≡ y2 (mod N).



Quick: Factor 1261

812 − 162 = 6305 = 5× 1261

Does this help? (81− 16)× (81 + 16) = 5× 1261

65× 97 = 5× 1261

(Could divide both sides by 5, please ignore that.)
65 divides 5× 1261, so 65 might share a factor with 1261. Take
GCD: GCD(65, 1261) = 13. So 13 divides 1261.

General If (x2 − y2) = kN then

I GCD(x − y ,N) might be a nontrivial factor

I GCD(x + y ,N) might be a nontrivial factor.

Want
x2 − y2 = kN

x2 − y2 ≡ 0 (mod N)

x2 ≡ y2 (mod N).



Quick: Factor 1261

812 − 162 = 6305 = 5× 1261

Does this help? (81− 16)× (81 + 16) = 5× 1261

65× 97 = 5× 1261

(Could divide both sides by 5, please ignore that.)
65 divides 5× 1261, so 65 might share a factor with 1261. Take
GCD: GCD(65, 1261) = 13. So 13 divides 1261.
General If (x2 − y2) = kN then

I GCD(x − y ,N) might be a nontrivial factor

I GCD(x + y ,N) might be a nontrivial factor.

Want
x2 − y2 = kN

x2 − y2 ≡ 0 (mod N)

x2 ≡ y2 (mod N).



Quick: Factor 1261

812 − 162 = 6305 = 5× 1261

Does this help? (81− 16)× (81 + 16) = 5× 1261

65× 97 = 5× 1261

(Could divide both sides by 5, please ignore that.)
65 divides 5× 1261, so 65 might share a factor with 1261. Take
GCD: GCD(65, 1261) = 13. So 13 divides 1261.
General If (x2 − y2) = kN then

I GCD(x − y ,N) might be a nontrivial factor

I GCD(x + y ,N) might be a nontrivial factor.

Want
x2 − y2 = kN

x2 − y2 ≡ 0 (mod N)

x2 ≡ y2 (mod N).



Quick: Factor 1649
Want x2 ≡ y2 (mod 1649). Start at

⌈√
1649

⌉
= 41.

412 ≡ 32 = 25 (mod 1649)

422 ≡ 115 = 5× 23 (mod 1649)

432 ≡ 200 = 23 × 52 (mod 1649)

Does any of this help?

412 × 432 ≡ 25 × 23 × 52 = 28 × 52 = (24 × 5)2 = 802

(41× 43)2 − 802 ≡ 0 (mod 1649)

17632 − 802 ≡ 0 (mod 1649)

1142 − 802 ≡ 0 (mod 1649)

(114− 80)(114 + 80) ≡ 34× 194 ≡ 0 (mod 1649)

GCD(34, 1649) = 17 Found a Factor!



Quick: Factor 1649
Want x2 ≡ y2 (mod 1649). Start at

⌈√
1649

⌉
= 41.

412 ≡ 32 = 25 (mod 1649)

422 ≡ 115 = 5× 23 (mod 1649)

432 ≡ 200 = 23 × 52 (mod 1649)

Does any of this help?

412 × 432 ≡ 25 × 23 × 52 = 28 × 52 = (24 × 5)2 = 802

(41× 43)2 − 802 ≡ 0 (mod 1649)

17632 − 802 ≡ 0 (mod 1649)

1142 − 802 ≡ 0 (mod 1649)

(114− 80)(114 + 80) ≡ 34× 194 ≡ 0 (mod 1649)

GCD(34, 1649) = 17 Found a Factor!



Quick: Factor 1649
Want x2 ≡ y2 (mod 1649). Start at

⌈√
1649

⌉
= 41.

412 ≡ 32 = 25 (mod 1649)

422 ≡ 115 = 5× 23 (mod 1649)

432 ≡ 200 = 23 × 52 (mod 1649)

Does any of this help?

412 × 432 ≡ 25 × 23 × 52 = 28 × 52 = (24 × 5)2 = 802

(41× 43)2 − 802 ≡ 0 (mod 1649)

17632 − 802 ≡ 0 (mod 1649)

1142 − 802 ≡ 0 (mod 1649)

(114− 80)(114 + 80) ≡ 34× 194 ≡ 0 (mod 1649)

GCD(34, 1649) = 17 Found a Factor!



Quick: Factor 1649
Want x2 ≡ y2 (mod 1649). Start at

⌈√
1649

⌉
= 41.

412 ≡ 32 = 25 (mod 1649)

422 ≡ 115 = 5× 23 (mod 1649)

432 ≡ 200 = 23 × 52 (mod 1649)

Does any of this help?

412 × 432 ≡ 25 × 23 × 52 = 28 × 52 = (24 × 5)2 = 802

(41× 43)2 − 802 ≡ 0 (mod 1649)

17632 − 802 ≡ 0 (mod 1649)

1142 − 802 ≡ 0 (mod 1649)

(114− 80)(114 + 80) ≡ 34× 194 ≡ 0 (mod 1649)

GCD(34, 1649) = 17 Found a Factor!



Quick: Factor 1649
Want x2 ≡ y2 (mod 1649). Start at

⌈√
1649

⌉
= 41.

412 ≡ 32 = 25 (mod 1649)

422 ≡ 115 = 5× 23 (mod 1649)

432 ≡ 200 = 23 × 52 (mod 1649)

Does any of this help?

412 × 432 ≡ 25 × 23 × 52 = 28 × 52 = (24 × 5)2 = 802

(41× 43)2 − 802 ≡ 0 (mod 1649)

17632 − 802 ≡ 0 (mod 1649)

1142 − 802 ≡ 0 (mod 1649)

(114− 80)(114 + 80) ≡ 34× 194 ≡ 0 (mod 1649)

GCD(34, 1649) = 17 Found a Factor!



Quick: Factor 1649
Want x2 ≡ y2 (mod 1649). Start at

⌈√
1649

⌉
= 41.

412 ≡ 32 = 25 (mod 1649)

422 ≡ 115 = 5× 23 (mod 1649)

432 ≡ 200 = 23 × 52 (mod 1649)

Does any of this help?

412 × 432 ≡ 25 × 23 × 52 = 28 × 52 = (24 × 5)2 = 802

(41× 43)2 − 802 ≡ 0 (mod 1649)

17632 − 802 ≡ 0 (mod 1649)

1142 − 802 ≡ 0 (mod 1649)

(114− 80)(114 + 80) ≡ 34× 194 ≡ 0 (mod 1649)

GCD(34, 1649) = 17 Found a Factor!



Quick: Factor 1649
Want x2 ≡ y2 (mod 1649). Start at

⌈√
1649

⌉
= 41.

412 ≡ 32 = 25 (mod 1649)

422 ≡ 115 = 5× 23 (mod 1649)

432 ≡ 200 = 23 × 52 (mod 1649)

Does any of this help?

412 × 432 ≡ 25 × 23 × 52 = 28 × 52 = (24 × 5)2 = 802

(41× 43)2 − 802 ≡ 0 (mod 1649)

17632 − 802 ≡ 0 (mod 1649)

1142 − 802 ≡ 0 (mod 1649)

(114− 80)(114 + 80) ≡ 34× 194 ≡ 0 (mod 1649)

GCD(34, 1649) = 17 Found a Factor!



Quick: Factor 1649
Want x2 ≡ y2 (mod 1649). Start at

⌈√
1649

⌉
= 41.

412 ≡ 32 = 25 (mod 1649)

422 ≡ 115 = 5× 23 (mod 1649)

432 ≡ 200 = 23 × 52 (mod 1649)

Does any of this help?

412 × 432 ≡ 25 × 23 × 52 = 28 × 52 = (24 × 5)2 = 802

(41× 43)2 − 802 ≡ 0 (mod 1649)

17632 − 802 ≡ 0 (mod 1649)

1142 − 802 ≡ 0 (mod 1649)

(114− 80)(114 + 80) ≡ 34× 194 ≡ 0 (mod 1649)

GCD(34, 1649) = 17 Found a Factor!



Quick: Factor 1649
Want x2 ≡ y2 (mod 1649). Start at

⌈√
1649

⌉
= 41.

412 ≡ 32 = 25 (mod 1649)

422 ≡ 115 = 5× 23 (mod 1649)

432 ≡ 200 = 23 × 52 (mod 1649)

Does any of this help?

412 × 432 ≡ 25 × 23 × 52 = 28 × 52 = (24 × 5)2 = 802

(41× 43)2 − 802 ≡ 0 (mod 1649)

17632 − 802 ≡ 0 (mod 1649)

1142 − 802 ≡ 0 (mod 1649)

(114− 80)(114 + 80) ≡ 34× 194 ≡ 0 (mod 1649)

GCD(34, 1649) = 17 Found a Factor!



Quick: Factor 1649
Want x2 ≡ y2 (mod 1649). Start at

⌈√
1649

⌉
= 41.

412 ≡ 32 = 25 (mod 1649)

422 ≡ 115 = 5× 23 (mod 1649)

432 ≡ 200 = 23 × 52 (mod 1649)

Does any of this help?

412 × 432 ≡ 25 × 23 × 52 = 28 × 52 = (24 × 5)2 = 802

(41× 43)2 − 802 ≡ 0 (mod 1649)

17632 − 802 ≡ 0 (mod 1649)

1142 − 802 ≡ 0 (mod 1649)

(114− 80)(114 + 80) ≡ 34× 194 ≡ 0 (mod 1649)

GCD(34, 1649) = 17 Found a Factor!



Quick: Factor 1649
Want x2 ≡ y2 (mod 1649). Start at

⌈√
1649

⌉
= 41.

412 ≡ 32 = 25 (mod 1649)

422 ≡ 115 = 5× 23 (mod 1649)

432 ≡ 200 = 23 × 52 (mod 1649)

Does any of this help?

412 × 432 ≡ 25 × 23 × 52 = 28 × 52 = (24 × 5)2 = 802

(41× 43)2 − 802 ≡ 0 (mod 1649)

17632 − 802 ≡ 0 (mod 1649)

1142 − 802 ≡ 0 (mod 1649)

(114− 80)(114 + 80) ≡ 34× 194 ≡ 0 (mod 1649)

GCD(34, 1649) = 17 Found a Factor!



Factoring 1649: 194 Also Works?

Recall:

(114− 80)(114 + 80) ≡ 34× 194 ≡ 0 (mod 1649)

GCD(34, 1649) = 17 Found a Factor!

What is we used 194 instead of 34?
GCD(194, 1649) = 97 Found a Factor!
So 194 also works.



Factoring 1649: 194 Also Works?

Recall:

(114− 80)(114 + 80) ≡ 34× 194 ≡ 0 (mod 1649)

GCD(34, 1649) = 17 Found a Factor!

What is we used 194 instead of 34?
GCD(194, 1649) = 97 Found a Factor!
So 194 also works.



Factoring 1649: 194 Also Works?

Recall:

(114− 80)(114 + 80) ≡ 34× 194 ≡ 0 (mod 1649)

GCD(34, 1649) = 17 Found a Factor!

What is we used 194 instead of 34?

GCD(194, 1649) = 97 Found a Factor!
So 194 also works.



Factoring 1649: 194 Also Works?

Recall:

(114− 80)(114 + 80) ≡ 34× 194 ≡ 0 (mod 1649)

GCD(34, 1649) = 17 Found a Factor!

What is we used 194 instead of 34?
GCD(194, 1649) = 97 Found a Factor!
So 194 also works.



How Can We Make This Happen?
Idea Let x =

⌈√
N
⌉

.

(x + 0)2 ≡ y0 (mod N). Factor y0
(x + 1)2 ≡ y1 (mod N). Factor y1

...
...

Look for I ⊆ N such that:∏
i∈I

yi = q2e11 q2e22 · · · q
2ek
k

and then get (∏
i∈I

(x + i)

)2

≡
(∏

i∈I
qeii

)2

(mod N)

Let X =
∏

i∈I (x + i) (mod N) and Y =
∏

i∈I q
ei
i (mod N).

X 2 − Y 2 ≡ 0 (mod N).

Is this a good idea? Discuss.



MANDATORY

READ THE SOLUTIONS TO THE MIDTERM
On some of the solutions we say
Okay, We accepted this answer on the midterm, but we WILL
NOT on the final
So you really need to read the midterm solutions even for problems
you got right.



Look at the First Step

(x + 0)2 ≡ y0 (mod N). Factor y0
(x + 1)2 ≡ y1 (mod N). Factor y1

...
...

In order to factor N we needed to factor the yi ’s. Really? Darn!
Ideas?



Look at the First Step

(x + 0)2 ≡ y0 (mod N). Factor y0
(x + 1)2 ≡ y1 (mod N). Factor y1

...
...

In order to factor N we needed to factor the yi ’s.

Really? Darn!
Ideas?



Look at the First Step

(x + 0)2 ≡ y0 (mod N). Factor y0
(x + 1)2 ≡ y1 (mod N). Factor y1

...
...

In order to factor N we needed to factor the yi ’s. Really?

Darn!
Ideas?



Look at the First Step

(x + 0)2 ≡ y0 (mod N). Factor y0
(x + 1)2 ≡ y1 (mod N). Factor y1

...
...

In order to factor N we needed to factor the yi ’s. Really? Darn!

Ideas?



Look at the First Step

(x + 0)2 ≡ y0 (mod N). Factor y0
(x + 1)2 ≡ y1 (mod N). Factor y1

...
...

In order to factor N we needed to factor the yi ’s. Really? Darn!
Ideas?



B-Factoring

Idea B be a parameter. p1 < p2 < · · · < pB are the first B primes.
Def A number is B-factored if its largest prime factor is ≤ pB .

Example B = 5. Primes 2,3,5,7,11.
1000 = 23 × 53. So B-factored.
27378897 = 11× 312 × 37. NOT B-factored.
Is B-factoring faster than factoring?
Lets try to B-factor 82203.

1. Divide 2 into it. 2 does not divide 82203.

2. Divide 3 into whats left. 82203 = 3× 27401.

3. Divide 5 into whats left. 5 does not divide 27401.

4. Divide 7 into whats left. 7 does not divide 27401.

5. Divide 11 into whats left. 82203 = 3× 11× 2491.

6. DONE. NOT B-factorable. Only did B divisions.



B-Factoring

Idea B be a parameter. p1 < p2 < · · · < pB are the first B primes.
Def A number is B-factored if its largest prime factor is ≤ pB .

Example B = 5. Primes 2,3,5,7,11.
1000 = 23 × 53. So B-factored.
27378897 = 11× 312 × 37. NOT B-factored.

Is B-factoring faster than factoring?
Lets try to B-factor 82203.

1. Divide 2 into it. 2 does not divide 82203.

2. Divide 3 into whats left. 82203 = 3× 27401.

3. Divide 5 into whats left. 5 does not divide 27401.

4. Divide 7 into whats left. 7 does not divide 27401.

5. Divide 11 into whats left. 82203 = 3× 11× 2491.

6. DONE. NOT B-factorable. Only did B divisions.



B-Factoring

Idea B be a parameter. p1 < p2 < · · · < pB are the first B primes.
Def A number is B-factored if its largest prime factor is ≤ pB .

Example B = 5. Primes 2,3,5,7,11.
1000 = 23 × 53. So B-factored.
27378897 = 11× 312 × 37. NOT B-factored.
Is B-factoring faster than factoring?

Lets try to B-factor 82203.

1. Divide 2 into it. 2 does not divide 82203.

2. Divide 3 into whats left. 82203 = 3× 27401.

3. Divide 5 into whats left. 5 does not divide 27401.

4. Divide 7 into whats left. 7 does not divide 27401.

5. Divide 11 into whats left. 82203 = 3× 11× 2491.

6. DONE. NOT B-factorable. Only did B divisions.



B-Factoring

Idea B be a parameter. p1 < p2 < · · · < pB are the first B primes.
Def A number is B-factored if its largest prime factor is ≤ pB .

Example B = 5. Primes 2,3,5,7,11.
1000 = 23 × 53. So B-factored.
27378897 = 11× 312 × 37. NOT B-factored.
Is B-factoring faster than factoring?
Lets try to B-factor 82203.

1. Divide 2 into it. 2 does not divide 82203.

2. Divide 3 into whats left. 82203 = 3× 27401.

3. Divide 5 into whats left. 5 does not divide 27401.

4. Divide 7 into whats left. 7 does not divide 27401.

5. Divide 11 into whats left. 82203 = 3× 11× 2491.

6. DONE. NOT B-factorable. Only did B divisions.



B-Factoring

Idea B be a parameter. p1 < p2 < · · · < pB are the first B primes.
Def A number is B-factored if its largest prime factor is ≤ pB .

Example B = 5. Primes 2,3,5,7,11.
1000 = 23 × 53. So B-factored.
27378897 = 11× 312 × 37. NOT B-factored.
Is B-factoring faster than factoring?
Lets try to B-factor 82203.

1. Divide 2 into it. 2 does not divide 82203.

2. Divide 3 into whats left. 82203 = 3× 27401.

3. Divide 5 into whats left. 5 does not divide 27401.

4. Divide 7 into whats left. 7 does not divide 27401.

5. Divide 11 into whats left. 82203 = 3× 11× 2491.

6. DONE. NOT B-factorable. Only did B divisions.



B-Factoring

Idea B be a parameter. p1 < p2 < · · · < pB are the first B primes.
Def A number is B-factored if its largest prime factor is ≤ pB .

Example B = 5. Primes 2,3,5,7,11.
1000 = 23 × 53. So B-factored.
27378897 = 11× 312 × 37. NOT B-factored.
Is B-factoring faster than factoring?
Lets try to B-factor 82203.

1. Divide 2 into it. 2 does not divide 82203.

2. Divide 3 into whats left. 82203 = 3× 27401.

3. Divide 5 into whats left. 5 does not divide 27401.

4. Divide 7 into whats left. 7 does not divide 27401.

5. Divide 11 into whats left. 82203 = 3× 11× 2491.

6. DONE. NOT B-factorable. Only did B divisions.



B-Factoring

Idea B be a parameter. p1 < p2 < · · · < pB are the first B primes.
Def A number is B-factored if its largest prime factor is ≤ pB .

Example B = 5. Primes 2,3,5,7,11.
1000 = 23 × 53. So B-factored.
27378897 = 11× 312 × 37. NOT B-factored.
Is B-factoring faster than factoring?
Lets try to B-factor 82203.

1. Divide 2 into it. 2 does not divide 82203.

2. Divide 3 into whats left. 82203 = 3× 27401.

3. Divide 5 into whats left. 5 does not divide 27401.

4. Divide 7 into whats left. 7 does not divide 27401.

5. Divide 11 into whats left. 82203 = 3× 11× 2491.

6. DONE. NOT B-factorable. Only did B divisions.



B-Factoring

Idea B be a parameter. p1 < p2 < · · · < pB are the first B primes.
Def A number is B-factored if its largest prime factor is ≤ pB .

Example B = 5. Primes 2,3,5,7,11.
1000 = 23 × 53. So B-factored.
27378897 = 11× 312 × 37. NOT B-factored.
Is B-factoring faster than factoring?
Lets try to B-factor 82203.

1. Divide 2 into it. 2 does not divide 82203.

2. Divide 3 into whats left. 82203 = 3× 27401.

3. Divide 5 into whats left. 5 does not divide 27401.

4. Divide 7 into whats left. 7 does not divide 27401.

5. Divide 11 into whats left. 82203 = 3× 11× 2491.

6. DONE. NOT B-factorable. Only did B divisions.



B-Factoring

Idea B be a parameter. p1 < p2 < · · · < pB are the first B primes.
Def A number is B-factored if its largest prime factor is ≤ pB .

Example B = 5. Primes 2,3,5,7,11.
1000 = 23 × 53. So B-factored.
27378897 = 11× 312 × 37. NOT B-factored.
Is B-factoring faster than factoring?
Lets try to B-factor 82203.

1. Divide 2 into it. 2 does not divide 82203.

2. Divide 3 into whats left. 82203 = 3× 27401.

3. Divide 5 into whats left. 5 does not divide 27401.

4. Divide 7 into whats left. 7 does not divide 27401.

5. Divide 11 into whats left. 82203 = 3× 11× 2491.

6. DONE. NOT B-factorable. Only did B divisions.



B-Factoring

Idea B be a parameter. p1 < p2 < · · · < pB are the first B primes.
Def A number is B-factored if its largest prime factor is ≤ pB .

Example B = 5. Primes 2,3,5,7,11.
1000 = 23 × 53. So B-factored.
27378897 = 11× 312 × 37. NOT B-factored.
Is B-factoring faster than factoring?
Lets try to B-factor 82203.

1. Divide 2 into it. 2 does not divide 82203.

2. Divide 3 into whats left. 82203 = 3× 27401.

3. Divide 5 into whats left. 5 does not divide 27401.

4. Divide 7 into whats left. 7 does not divide 27401.

5. Divide 11 into whats left. 82203 = 3× 11× 2491.

6. DONE. NOT B-factorable. Only did B divisions.



Abbreviation

We use B-fact for B-factorable.

Why?

Space on slides!



Abbreviation

We use B-fact for B-factorable.

Why?

Space on slides!



Example of Algorithm that Uses B-Factoring

Want to factor 539873. B = 7 so use 2, 3, 5, 7, 11, 13, 17⌈√
539873

⌉
= 735

7352 ≡ 352 = 25 × 111 (mod 539873).

7362,. . .,7492 did not 7-factor.

7502 ≡ 22627 ≡ 113 × 171 (mod 539873).

7512,. . ., 7822 did not 7-factor.

7832 ≡ 73216 ≡ 29 × 111 × 131 (mod 539873).

7842,. . .,8002 did not 7-factor.

8012 ≡ 101728 ≡ 25 × 111 × 172 (mod 539873).
Can we use this? Next Slide I write it nicer.



Example of Algorithm that Uses B-Factoring

Want to factor 539873. B = 7 so use 2, 3, 5, 7, 11, 13, 17⌈√
539873

⌉
= 735

7352 ≡ 352 = 25 × 111 (mod 539873).

7362,. . .,7492 did not 7-factor.

7502 ≡ 22627 ≡ 113 × 171 (mod 539873).

7512,. . ., 7822 did not 7-factor.

7832 ≡ 73216 ≡ 29 × 111 × 131 (mod 539873).

7842,. . .,8002 did not 7-factor.

8012 ≡ 101728 ≡ 25 × 111 × 172 (mod 539873).
Can we use this? Next Slide I write it nicer.



Example of Algorithm that Uses B-Factoring

Want to factor 539873. B = 7 so use 2, 3, 5, 7, 11, 13, 17⌈√
539873

⌉
= 735

7352 ≡ 352 = 25 × 111 (mod 539873).

7362,. . .,7492 did not 7-factor.

7502 ≡ 22627 ≡ 113 × 171 (mod 539873).

7512,. . ., 7822 did not 7-factor.

7832 ≡ 73216 ≡ 29 × 111 × 131 (mod 539873).

7842,. . .,8002 did not 7-factor.

8012 ≡ 101728 ≡ 25 × 111 × 172 (mod 539873).
Can we use this? Next Slide I write it nicer.



Example of Algorithm that Uses B-Factoring

Want to factor 539873. B = 7 so use 2, 3, 5, 7, 11, 13, 17⌈√
539873

⌉
= 735

7352 ≡ 352 = 25 × 111 (mod 539873).

7362,. . .,7492 did not 7-factor.

7502 ≡ 22627 ≡ 113 × 171 (mod 539873).

7512,. . ., 7822 did not 7-factor.

7832 ≡ 73216 ≡ 29 × 111 × 131 (mod 539873).

7842,. . .,8002 did not 7-factor.

8012 ≡ 101728 ≡ 25 × 111 × 172 (mod 539873).
Can we use this? Next Slide I write it nicer.



Example of Algorithm that Uses B-Factoring

Want to factor 539873. B = 7 so use 2, 3, 5, 7, 11, 13, 17⌈√
539873

⌉
= 735

7352 ≡ 352 = 25 × 111 (mod 539873).

7362,. . .,7492 did not 7-factor.

7502 ≡ 22627 ≡ 113 × 171 (mod 539873).

7512,. . ., 7822 did not 7-factor.

7832 ≡ 73216 ≡ 29 × 111 × 131 (mod 539873).

7842,. . .,8002 did not 7-factor.

8012 ≡ 101728 ≡ 25 × 111 × 172 (mod 539873).
Can we use this? Next Slide I write it nicer.



Example of Algorithm that Uses B-Factoring

Want to factor 539873. B = 7 so use 2, 3, 5, 7, 11, 13, 17⌈√
539873

⌉
= 735

7352 ≡ 352 = 25 × 111 (mod 539873).

7362,. . .,7492 did not 7-factor.

7502 ≡ 22627 ≡ 113 × 171 (mod 539873).

7512,. . ., 7822 did not 7-factor.

7832 ≡ 73216 ≡ 29 × 111 × 131 (mod 539873).

7842,. . .,8002 did not 7-factor.

8012 ≡ 101728 ≡ 25 × 111 × 172 (mod 539873).
Can we use this? Next Slide I write it nicer.



Example Continued: Trying to factor 539873

7352 ≡ 352 = 25 × 111 (mod 539873).
7502 ≡ 22627 ≡ 113 × 171 (mod 539873).
7832 ≡ 73216 ≡ 29 × 111 × 131 (mod 539873).
8012 ≡ 101728 ≡ 25 × 111 × 172 (mod 539873).

Can you find a way to multiple some of these to get X 2 ≡ Y 2?

(735× 801)2 ≡ 210 × 112 × 172 (mod 539873)

(735× 801)2 ≡ (25 × 11× 17)2 (mod 539873)

5887352 ≡ 59842 (mod 539873)

488622 ≡ 59842 (mod 539873)



Example Continued: Trying to factor 539873

7352 ≡ 352 = 25 × 111 (mod 539873).
7502 ≡ 22627 ≡ 113 × 171 (mod 539873).
7832 ≡ 73216 ≡ 29 × 111 × 131 (mod 539873).
8012 ≡ 101728 ≡ 25 × 111 × 172 (mod 539873).

Can you find a way to multiple some of these to get X 2 ≡ Y 2?

(735× 801)2 ≡ 210 × 112 × 172 (mod 539873)

(735× 801)2 ≡ (25 × 11× 17)2 (mod 539873)

5887352 ≡ 59842 (mod 539873)

488622 ≡ 59842 (mod 539873)



Example Finished: Trying to factor 539873

We have found:

488622 − 59842 ≡ 0 (mod 539873)

Now we use it to find a factor:

(48862− 5984)× (48862 + 5984) ≡ 0 (mod 539873)

42878× 54846 ≡ 0 (mod 539873)

GCD(42878, 539873) = 1949

1949 divides 539873. Found a Factor!



Example Finished: Trying to factor 539873

We have found:

488622 − 59842 ≡ 0 (mod 539873)

Now we use it to find a factor:

(48862− 5984)× (48862 + 5984) ≡ 0 (mod 539873)

42878× 54846 ≡ 0 (mod 539873)

GCD(42878, 539873) = 1949

1949 divides 539873. Found a Factor!



Example Finished: Trying to factor 539873

We have found:

488622 − 59842 ≡ 0 (mod 539873)

Now we use it to find a factor:

(48862− 5984)× (48862 + 5984) ≡ 0 (mod 539873)

42878× 54846 ≡ 0 (mod 539873)

GCD(42878, 539873) = 1949

1949 divides 539873. Found a Factor!



Example Finished: Trying to factor 539873

We have found:

488622 − 59842 ≡ 0 (mod 539873)

Now we use it to find a factor:

(48862− 5984)× (48862 + 5984) ≡ 0 (mod 539873)

42878× 54846 ≡ 0 (mod 539873)

GCD(42878, 539873) = 1949

1949 divides 539873. Found a Factor!



We Noticed That. . . Can a Program?

⌈√
539873

⌉
= 735

7352 ≡ 352 = 25 × 111 (mod 539873).
7502 ≡ 22627 ≡ 113 × 171 (mod 539873).
7832 ≡ 73216 ≡ 29 × 111 × 131 (mod 539873).
8012 ≡ 101728 ≡ 25 × 111 × 172 (mod 539873).

Notice that
(735× 801)2 ≡ 210 × 112 × 172

How can a program Notice That?
What is a program supposed to notice? Discuss.



We Noticed That. . . Can a Program? Cont

⌈√
539873

⌉
= 735

7352 ≡ 352 = 25 × 111 (mod 539873).
7502 ≡ 22627 ≡ 113 × 171 (mod 539873).
7832 ≡ 73216 ≡ 29 × 111 × 131 (mod 539873).
8012 ≡ 101728 ≡ 25 × 111 × 172 (mod 539873).

(735× 801)2 ≡ 210 × 112 × 172

All of the exponents on the right-hand-side are even.

We want to find a set of right-hand-sides so that when multiplied
together all of the exponents are even.



We Noticed That. . . Can a Program? Cont

⌈√
539873

⌉
= 735

7352 ≡ 352 = 25 × 111 (mod 539873).
7502 ≡ 22627 ≡ 113 × 171 (mod 539873).
7832 ≡ 73216 ≡ 29 × 111 × 131 (mod 539873).
8012 ≡ 101728 ≡ 25 × 111 × 172 (mod 539873).

(735× 801)2 ≡ 210 × 112 × 172

All of the exponents on the right-hand-side are even.

We want to find a set of right-hand-sides so that when multiplied
together all of the exponents are even.



Idea One

Store exponents in vector. Power-of-2, Power-of-3,. . .,Power-of-17.⌈√
539873

⌉
= 735

7352 ≡ 352 ≡ 25 × 111 (5, 0, 0, 0, 1, 0, 0)
7502 ≡ 22627 ≡ 113 × 171 (0, 0, 0, 0, 3, 0, 1)
7832 ≡ 73216 ≡ 29 × 111 × 131 (9, 0, 0, 0, 1, 1, 0)
8012 ≡ 101728 ≡ 25 × 111 × 172 (5, 0, 0, 0, 1, 0, 2)

Want some combination of the vectors to have all even numbers.
Can we use Linear Algebra? Discuss

We do not need the numbers. All we need are the parities!



Idea One

Store exponents in vector. Power-of-2, Power-of-3,. . .,Power-of-17.⌈√
539873

⌉
= 735

7352 ≡ 352 ≡ 25 × 111 (5, 0, 0, 0, 1, 0, 0)
7502 ≡ 22627 ≡ 113 × 171 (0, 0, 0, 0, 3, 0, 1)
7832 ≡ 73216 ≡ 29 × 111 × 131 (9, 0, 0, 0, 1, 1, 0)
8012 ≡ 101728 ≡ 25 × 111 × 172 (5, 0, 0, 0, 1, 0, 2)

Want some combination of the vectors to have all even numbers.
Can we use Linear Algebra? Discuss

We do not need the numbers. All we need are the parities!



Idea Two

Store parities of exponents in vector.⌈√
539873

⌉
= 735

7352 ≡ 352 ≡ 25 × 111 (1, 0, 0, 0, 1, 0, 0)
7502 ≡ 22627 ≡ 113 × 171 (0, 0, 0, 0, 1, 0, 1)
7832 ≡ 73216 ≡ 29 × 111 × 131 (1, 0, 0, 0, 1, 1, 0)
8012 ≡ 101728 ≡ 25 × 111 × 172 (1, 0, 0, 0, 1, 0, 0)

Well Defined Math Problem Given a set of 0-1 B-vectors over Z2,
does some subset of them sum to ~0? Equivalent to asking if some
subset is linearly dependent.

I Can solve using Gaussian Elimination.

I If there are B + 1 vectors then there will be such a set.



Idea Two

Store parities of exponents in vector.⌈√
539873

⌉
= 735

7352 ≡ 352 ≡ 25 × 111 (1, 0, 0, 0, 1, 0, 0)
7502 ≡ 22627 ≡ 113 × 171 (0, 0, 0, 0, 1, 0, 1)
7832 ≡ 73216 ≡ 29 × 111 × 131 (1, 0, 0, 0, 1, 1, 0)
8012 ≡ 101728 ≡ 25 × 111 × 172 (1, 0, 0, 0, 1, 0, 0)

Well Defined Math Problem Given a set of 0-1 B-vectors over Z2,
does some subset of them sum to ~0? Equivalent to asking if some
subset is linearly dependent.

I Can solve using Gaussian Elimination.

I If there are B + 1 vectors then there will be such a set.



Quad Sieve Alg: First Attempt

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

Some of the yi were B-factored, but some were not.
Let I be the set of all i such that yi was B-factored.

Find J ⊆ I such that
∑

i∈J ~vi = ~0.

Hence
∏

i∈J yi has all even exponents.
Important! Since

∏
i∈J yi has all even exponents, there exists Y∏

i∈J
yi = Y 2



Quad Sieve Alg: First Attempt

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

Some of the yi were B-factored, but some were not.
Let I be the set of all i such that yi was B-factored.

Find J ⊆ I such that
∑

i∈J ~vi = ~0.

Hence
∏

i∈J yi has all even exponents.
Important! Since

∏
i∈J yi has all even exponents, there exists Y∏

i∈J
yi = Y 2



Quad Sieve Alg: First Attempt

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

Some of the yi were B-factored, but some were not.
Let I be the set of all i such that yi was B-factored.

Find J ⊆ I such that
∑

i∈J ~vi = ~0.

Hence
∏

i∈J yi has all even exponents.
Important! Since

∏
i∈J yi has all even exponents, there exists Y∏

i∈J
yi = Y 2



Quad Sieve Alg: First Attempt

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

Some of the yi were B-factored, but some were not.
Let I be the set of all i such that yi was B-factored.

Find J ⊆ I such that
∑

i∈J ~vi = ~0.

Hence
∏

i∈J yi has all even exponents.
Important! Since

∏
i∈J yi has all even exponents, there exists Y∏

i∈J
yi = Y 2



Quad Sieve Alg: First Attempt

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

Some of the yi were B-factored, but some were not.
Let I be the set of all i such that yi was B-factored.

Find J ⊆ I such that
∑

i∈J ~vi = ~0.

Hence
∏

i∈J yi has all even exponents.
Important! Since

∏
i∈J yi has all even exponents, there exists Y∏

i∈J
yi = Y 2



Quad Sieve Alg: First Attempt, Cont

(∏
i∈J

(x + i)

)2

≡
∏
i∈J

yi = Y 2 (mod N)

Let X =
∏

i∈J(x + i) (mod N) and Y =
∏

i∈J yi (mod N).

X 2 − Y 2 ≡ 0 (mod N).

(X − Y )(X + Y ) = kN for some k

GCD(X − Y ,N), GCD(X + Y ,N) should yield factors.



What Could go Wrong

1. There is no set of rows that is linearly dependent.

2. You find X ,Y such that X 2 ≡ Y 2 mod N but then
GCD(X − Y ,N) = 1 and GCD(X + Y ,N) = N. This is very
rare so we will not worry about it.



What Could go Wrong

1. There is no set of rows that is linearly dependent.

2. You find X ,Y such that X 2 ≡ Y 2 mod N but then
GCD(X − Y ,N) = 1 and GCD(X + Y ,N) = N. This is very
rare so we will not worry about it.



What Could go Wrong

1. There is no set of rows that is linearly dependent.

2. You find X ,Y such that X 2 ≡ Y 2 mod N but then
GCD(X − Y ,N) = 1 and GCD(X + Y ,N) = N. This is very
rare so we will not worry about it.



Balancing Act

1. Run time will depend on B and M. Gaussian Elimination is
O(B3) which will be the main time sink. So want B small.

2. If B is large then more numbers are B-fact, so have to go
through less numbers to get B + 1 B-fact numbers (hence
B + 1 vectors of dim B) so guaranteed to have a linear
dependency. Hence want B large.

3. In practice B is chosen carefully based on computation and
conjectures in Number Theory.



Balancing Act

1. Run time will depend on B and M. Gaussian Elimination is
O(B3) which will be the main time sink. So want B small.

2. If B is large then more numbers are B-fact, so have to go
through less numbers to get B + 1 B-fact numbers (hence
B + 1 vectors of dim B) so guaranteed to have a linear
dependency. Hence want B large.

3. In practice B is chosen carefully based on computation and
conjectures in Number Theory.



Balancing Act

1. Run time will depend on B and M. Gaussian Elimination is
O(B3) which will be the main time sink. So want B small.

2. If B is large then more numbers are B-fact, so have to go
through less numbers to get B + 1 B-fact numbers (hence
B + 1 vectors of dim B) so guaranteed to have a linear
dependency. Hence want B large.

3. In practice B is chosen carefully based on computation and
conjectures in Number Theory.



Balancing Act

1. Run time will depend on B and M. Gaussian Elimination is
O(B3) which will be the main time sink. So want B small.

2. If B is large then more numbers are B-fact, so have to go
through less numbers to get B + 1 B-fact numbers (hence
B + 1 vectors of dim B) so guaranteed to have a linear
dependency. Hence want B large.

3. In practice B is chosen carefully based on computation and
conjectures in Number Theory.



Most Important Step to Speed Up

An earlier slide said
Gaussian Elimination is O(B3) which will be the main time sink.

What about B factoring M numbers. That would seem to also be
a time sink.

The key to making the algorithm practical is Carl Pomerance’s
insight which is the how to do all that B-factoring fast. To do this
we need a LOOOOOONG aside on Sieving.



Most Important Step to Speed Up

An earlier slide said
Gaussian Elimination is O(B3) which will be the main time sink.

What about B factoring M numbers. That would seem to also be
a time sink.

The key to making the algorithm practical is Carl Pomerance’s
insight which is the how to do all that B-factoring fast. To do this
we need a LOOOOOONG aside on Sieving.



Most Important Step to Speed Up

An earlier slide said
Gaussian Elimination is O(B3) which will be the main time sink.

What about B factoring M numbers. That would seem to also be
a time sink.

The key to making the algorithm practical is Carl Pomerance’s
insight which is the how to do all that B-factoring fast. To do this
we need a LOOOOOONG aside on Sieving.



A LONG Aside on
Sieving

November 13, 2019



Finding all Primes ≤ 48, the Stupid Way

To find all primes ≤ 48 we could do the following:

for i = 2 to 48 if isprime(i)=YES then output i .

Is this a good idea? Discuss.

No You are testing many numbers that you could have, ahead of
time, ruled out.



Finding all Primes ≤ 48, the Stupid Way

To find all primes ≤ 48 we could do the following:

for i = 2 to 48 if isprime(i)=YES then output i .

Is this a good idea? Discuss.

No You are testing many numbers that you could have, ahead of
time, ruled out.



Finding all primes ≤ 48 the Smart Way

Write down the numbers ≤ 48.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48

Now output first unmarked—2—and MARK all multiples of 2.



Finding all primes ≤ 48 the Smart Way

Write down the numbers ≤ 48.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48

Now output first unmarked—2—and MARK all multiples of 2.



We Have Marked Multiples of 2

Now Have:

2 3 4 5 6 7 8 9 10 11 12 13 14 15

X X X X X X X

16 17 18 19 20 21 22 23 24 25 26 27

X X X X X X

28 29 30 31 32 33 34 35 36 37 38 39

X X X X X X

40 41 42 43 44 45 46 47 48

X X X X X

Now output first unmarked—3—and MARK all multiples of 3.



We Have Marked Multiples of 2

Now Have:

2 3 4 5 6 7 8 9 10 11 12 13 14 15

X X X X X X X

16 17 18 19 20 21 22 23 24 25 26 27

X X X X X X

28 29 30 31 32 33 34 35 36 37 38 39

X X X X X X

40 41 42 43 44 45 46 47 48

X X X X X

Now output first unmarked—3—and MARK all multiples of 3.



We Have Marked Multiples of 2 and 3

Now Have:

2 3 4 5 6 7 8 9 10 11 12 13 14 15

X X X X X X X X X X

16 17 18 19 20 21 22 23 24 25 26 27

X X X X X X X X

28 29 30 31 32 33 34 35 36 37 38 39

X X X X X X X X

40 41 42 43 44 45 46 47 48

X X X X X X

Now output first unmarked—5—and MARK all multiples of 5.



We Have Marked Multiples of 2 and 3

Now Have:

2 3 4 5 6 7 8 9 10 11 12 13 14 15

X X X X X X X X X X

16 17 18 19 20 21 22 23 24 25 26 27

X X X X X X X X

28 29 30 31 32 33 34 35 36 37 38 39

X X X X X X X X

40 41 42 43 44 45 46 47 48

X X X X X X

Now output first unmarked—5—and MARK all multiples of 5.



We Have Marked Multiples of 2,3 and 5

Now Have:

2 3 4 5 6 7 8 9 10 11 12 13 14 15

X X X X X X X X X X X

16 17 18 19 20 21 22 23 24 25 26 27

X X X X X X X X X

28 29 30 31 32 33 34 35 36 37 38 39

X X X X X X X X X

40 41 42 43 44 45 46 47 48

X X X X X X

Now output first unmarked—7—and MARK all multiples of 7. You
get the idea so we stop here.



We Have Marked Multiples of 2,3 and 5

Now Have:

2 3 4 5 6 7 8 9 10 11 12 13 14 15

X X X X X X X X X X X

16 17 18 19 20 21 22 23 24 25 26 27

X X X X X X X X X

28 29 30 31 32 33 34 35 36 37 38 39

X X X X X X X X X

40 41 42 43 44 45 46 47 48

X X X X X X

Now output first unmarked—7—and MARK all multiples of 7. You
get the idea so we stop here.



A Few Points About this Process
Speed

1. This process is really fast since when (say) MARKING mults
of 3: We DO NOT look at (say) 23 and say no. WE DO
NOT look at (say) 23 at all.

2. The KEY to many Number Theory Algorithms is not looking

3. Good number theory algs act on a need-to-know basis.

Could we make it faster?

1. When MARKING mults of 3 we could mark 3, 3+6, 3 + 2× 6
since mults of 2 are already MARKED.

2. When MARKING mults of 5 we could mark 5, 5+10,
5 + 2× 10 since mults of 2 are already MARKED. Hard to
also avoid mults of 3: 5, 25, 35 not equally spaced.

3. When MARKING mults of BLAH we could BLAHBLAH.

4. If our goal was to JUST get a list of primes, we might do this.

5. Our goal will be to FACTOR these numbers. As such we
cannot use this shortcut. (Clear later.)



A Few Points About this Process
Speed

1. This process is really fast since when (say) MARKING mults
of 3: We DO NOT look at (say) 23 and say no. WE DO
NOT look at (say) 23 at all.

2. The KEY to many Number Theory Algorithms is not looking

3. Good number theory algs act on a need-to-know basis.

Could we make it faster?

1. When MARKING mults of 3 we could mark 3, 3+6, 3 + 2× 6
since mults of 2 are already MARKED.

2. When MARKING mults of 5 we could mark 5, 5+10,
5 + 2× 10 since mults of 2 are already MARKED. Hard to
also avoid mults of 3: 5, 25, 35 not equally spaced.

3. When MARKING mults of BLAH we could BLAHBLAH.

4. If our goal was to JUST get a list of primes, we might do this.

5. Our goal will be to FACTOR these numbers. As such we
cannot use this shortcut. (Clear later.)



The Sieve of Eratosthenes

1. Input(N)

2. Write down 2, 3, . . . ,N. All are unmarked.

3. (MARK STEP) Goto the first unmarked element of the list p.
Output(p). Keep pointer there. (When pointer is at N or
beyond then stop.)

4. Mark all multiples of p up to
⌊
N
p

⌋
p. (This takes N

p steps.)

5. GOTO MARK STEP.

Time: ∑
p≤N

N

p
= N

∑
p≤N

1

p

New Question: What is
∑

p≤N
1
p?



As Aside on
∑

p≤N
1
p

November 13, 2019



Notation

∑
n≤N

1

n
=

1

1
+

1

2
+

1

3
+

1

4
+ · · ·+ 1

N∑
n<∞

1

n
=

1

1
+

1

2
+

1

3
+

1

4
+ · · ·

∑
p≤N

1

p
=

1

2
+

1

3
+

1

5
+

1

7
+ · · ·+ 1

q

where q is the largest prime ≤ N.∑
p<∞

1

p
=

1

2
+

1

3
+

1

5
+

1

7
+ · · ·

Example ∑
p≤14

1

p
=

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+

1

13



Notation

∑
n≤N

1

n
=

1

1
+

1

2
+

1

3
+

1

4
+ · · ·+ 1

N∑
n<∞

1

n
=

1

1
+

1

2
+

1

3
+

1

4
+ · · ·

∑
p≤N

1

p
=

1

2
+

1

3
+

1

5
+

1

7
+ · · ·+ 1

q

where q is the largest prime ≤ N.∑
p<∞

1

p
=

1

2
+

1

3
+

1

5
+

1

7
+ · · ·

Example ∑
p≤14

1

p
=

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+

1

13



What is
∑

p≤N
1
p Asymptotically? History

When I looked up
∑

p≤N
1
p on the web I found:

1. Proofs that
∑

p<∞
1
p diverges.

2. Some of those proofs show that
∑

p≤N
1
p ≥ ln(ln(N)) + O(1).

3. Nothing on upper bounds on the sum.

4. TA Erik, when proofreading these slides, was able to find the
theorem, though it was difficult. It’s Merten’s Second Thm.

A sequence of events:

1. In 2010 Larry W showed Bill G a proof that∑
p≤N

1

p
≤ ln(ln(N)) + O(1).

2. Larry says its a well known theorem but never written down.
Bill suggests they write it down. It is now on arxiv.

Moral of the Story Google is not always enough.



What is
∑

p≤N
1
p Asymptotically? History

When I looked up
∑

p≤N
1
p on the web I found:

1. Proofs that
∑

p<∞
1
p diverges.

2. Some of those proofs show that
∑

p≤N
1
p ≥ ln(ln(N)) + O(1).

3. Nothing on upper bounds on the sum.

4. TA Erik, when proofreading these slides, was able to find the
theorem, though it was difficult. It’s Merten’s Second Thm.

A sequence of events:

1. In 2010 Larry W showed Bill G a proof that∑
p≤N

1

p
≤ ln(ln(N)) + O(1).

2. Larry says its a well known theorem but never written down.
Bill suggests they write it down. It is now on arxiv.

Moral of the Story Google is not always enough.



What is
∑

p≤N
1
p Asymptotically? History

When I looked up
∑

p≤N
1
p on the web I found:

1. Proofs that
∑

p<∞
1
p diverges.

2. Some of those proofs show that
∑

p≤N
1
p ≥ ln(ln(N)) + O(1).

3. Nothing on upper bounds on the sum.

4. TA Erik, when proofreading these slides, was able to find the
theorem, though it was difficult. It’s Merten’s Second Thm.

A sequence of events:

1. In 2010 Larry W showed Bill G a proof that∑
p≤N

1

p
≤ ln(ln(N)) + O(1).

2. Larry says its a well known theorem but never written down.
Bill suggests they write it down. It is now on arxiv.

Moral of the Story Google is not always enough.



What is
∑

p≤N
1
p Asymptotically? History

When I looked up
∑

p≤N
1
p on the web I found:

1. Proofs that
∑

p<∞
1
p diverges.

2. Some of those proofs show that
∑

p≤N
1
p ≥ ln(ln(N)) + O(1).

3. Nothing on upper bounds on the sum.

4. TA Erik, when proofreading these slides, was able to find the
theorem, though it was difficult. It’s Merten’s Second Thm.

A sequence of events:

1. In 2010 Larry W showed Bill G a proof that∑
p≤N

1

p
≤ ln(ln(N)) + O(1).

2. Larry says its a well known theorem but never written down.
Bill suggests they write it down. It is now on arxiv.

Moral of the Story Google is not always enough.



What is
∑

p≤N
1
p Asymptotically? History

When I looked up
∑

p≤N
1
p on the web I found:

1. Proofs that
∑

p<∞
1
p diverges.

2. Some of those proofs show that
∑

p≤N
1
p ≥ ln(ln(N)) + O(1).

3. Nothing on upper bounds on the sum.

4. TA Erik, when proofreading these slides, was able to find the
theorem, though it was difficult. It’s Merten’s Second Thm.

A sequence of events:

1. In 2010 Larry W showed Bill G a proof that∑
p≤N

1

p
≤ ln(ln(N)) + O(1).

2. Larry says its a well known theorem but never written down.
Bill suggests they write it down. It is now on arxiv.

Moral of the Story Google is not always enough.



What is
∑

p≤N
1
p Asymptotically? History

When I looked up
∑

p≤N
1
p on the web I found:

1. Proofs that
∑

p<∞
1
p diverges.

2. Some of those proofs show that
∑

p≤N
1
p ≥ ln(ln(N)) + O(1).

3. Nothing on upper bounds on the sum.

4. TA Erik, when proofreading these slides, was able to find the
theorem, though it was difficult. It’s Merten’s Second Thm.

A sequence of events:

1. In 2010 Larry W showed Bill G a proof that∑
p≤N

1

p
≤ ln(ln(N)) + O(1).

2. Larry says its a well known theorem but never written down.
Bill suggests they write it down. It is now on arxiv.

Moral of the Story Google is not always enough.



What is
∑

p≤N
1
p Asymptotically? History

When I looked up
∑

p≤N
1
p on the web I found:

1. Proofs that
∑

p<∞
1
p diverges.

2. Some of those proofs show that
∑

p≤N
1
p ≥ ln(ln(N)) + O(1).

3. Nothing on upper bounds on the sum.

4. TA Erik, when proofreading these slides, was able to find the
theorem, though it was difficult. It’s Merten’s Second Thm.

A sequence of events:

1. In 2010 Larry W showed Bill G a proof that∑
p≤N

1

p
≤ ln(ln(N)) + O(1).

2. Larry says its a well known theorem but never written down.
Bill suggests they write it down. It is now on arxiv.

Moral of the Story Google is not always enough.



What is
∑

p≤N
1
p Asymptotically? History

When I looked up
∑

p≤N
1
p on the web I found:

1. Proofs that
∑

p<∞
1
p diverges.

2. Some of those proofs show that
∑

p≤N
1
p ≥ ln(ln(N)) + O(1).

3. Nothing on upper bounds on the sum.

4. TA Erik, when proofreading these slides, was able to find the
theorem, though it was difficult. It’s Merten’s Second Thm.

A sequence of events:

1. In 2010 Larry W showed Bill G a proof that∑
p≤N

1

p
≤ ln(ln(N)) + O(1).

2. Larry says its a well known theorem but never written down.
Bill suggests they write it down. It is now on arxiv.

Moral of the Story Google is not always enough.



More on
∑

p≤N
1
p

1.
∑

n≤N
1
n ∼ ln(n).

2.
∑

p≤N
1
p ∼ ln(ln(N))

How good is this approximation?
1) When N ≥ 286,

ln(lnN)− 1

2(lnN)2
+ C ≤

∑
p≤N

1

p
≤ ln(lnN) +

1

(2 lnN)2
+ C ,

where C ∼ 0.261497212847643.

2)

I
∑

p≤10
1
p = 1.176

I
∑

p≤109
1
p = 3.293

I
∑

p≤10100
1
p ∼ 5.7

I
∑

p≤101000
1
p ∼ 7.8



Take Away

∑
p≤N

1

p
∼ ln(lnN)

I This is a very good approximation.

I This is very small

I (Cheating to make math easier) The largest pq factored is
around 170-digits. We assume a limit of 1000 digits. Hence
we treat ln(ln(N)) as if it was

ln(ln(N)) ≤ ln(ln(1000)) ∼ 8.

(Nobody else does this.)



Back to our Aside on
Sieves

November 13, 2019



Time Analysis of Sieve of E
The Sieve of E can find all primes ≤ N in time

≤ N
∑
p≤N

1

p
≤ N ln(ln(N))

How long would finding all primes ≤ N be the stupid way?

Testing if a number is prime takes (log n)3 steps (we did not do
this in class; however, it involves taking what we did do an adding
to it to avoid false positives).

So testing all numbers n ≤ N for primality takes time:∑
n≤N

(log n)3 ∼ N(logN)3

I The time difference here is not that impressive. When we
modify the Sieve to actually factor, it will be much more
impressive.

I The key to the speed of The Sieve of E is that when it marks
it DOES NOT look at (say) 3 and say Oh, thats not even. It
literally does not look at all!



Time Analysis of Sieve of E
The Sieve of E can find all primes ≤ N in time

≤ N
∑
p≤N

1

p
≤ N ln(ln(N))

How long would finding all primes ≤ N be the stupid way?

Testing if a number is prime takes (log n)3 steps (we did not do
this in class; however, it involves taking what we did do an adding
to it to avoid false positives).

So testing all numbers n ≤ N for primality takes time:∑
n≤N

(log n)3 ∼ N(logN)3

I The time difference here is not that impressive. When we
modify the Sieve to actually factor, it will be much more
impressive.

I The key to the speed of The Sieve of E is that when it marks
it DOES NOT look at (say) 3 and say Oh, thats not even. It
literally does not look at all!



Time Analysis of Sieve of E
The Sieve of E can find all primes ≤ N in time

≤ N
∑
p≤N

1

p
≤ N ln(ln(N))

How long would finding all primes ≤ N be the stupid way?

Testing if a number is prime takes (log n)3 steps (we did not do
this in class; however, it involves taking what we did do an adding
to it to avoid false positives).

So testing all numbers n ≤ N for primality takes time:∑
n≤N

(log n)3 ∼ N(logN)3

I The time difference here is not that impressive. When we
modify the Sieve to actually factor, it will be much more
impressive.

I The key to the speed of The Sieve of E is that when it marks
it DOES NOT look at (say) 3 and say Oh, thats not even. It
literally does not look at all!



Time Analysis of Sieve of E
The Sieve of E can find all primes ≤ N in time

≤ N
∑
p≤N

1

p
≤ N ln(ln(N))

How long would finding all primes ≤ N be the stupid way?

Testing if a number is prime takes (log n)3 steps (we did not do
this in class; however, it involves taking what we did do an adding
to it to avoid false positives).

So testing all numbers n ≤ N for primality takes time:∑
n≤N

(log n)3 ∼ N(logN)3

I The time difference here is not that impressive. When we
modify the Sieve to actually factor, it will be much more
impressive.

I The key to the speed of The Sieve of E is that when it marks
it DOES NOT look at (say) 3 and say Oh, thats not even. It
literally does not look at all!



B-Factoring-Variant on Sieve of E: Example

The Sieve of E marked all evens.
Better Divide by 2 knowing it will work. Then divide by 2 again (it
might not work) until factor out all powers of 2.

The Sieve of E marked all numbers ≡ 0 (mod 3)
Better Divide by 3 knowing it will work. Then divide by 3 again (it
might not work) until factor out all powers of 3.

Do this for the first B primes and you will have B-factored many
numbers.



B-factoring all N ≤ 48, the Smart Way

Write down numbers ≤ 48. We 2-factor them, so divide by 2,3.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48

First unmarked is 2. DIVIDE mults of 2 by 2.



B-factoring all N ≤ 48, the Smart Way

Write down numbers ≤ 48. We 2-factor them, so divide by 2,3.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48

First unmarked is 2. DIVIDE mults of 2 by 2.



Divide by 2

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 ∗ 1 2 ∗ 2 2 ∗ 3 23 2 ∗ 5 22 ∗ 3 2 ∗ 7

16 17 18 19 20 21 22 23 24 25 26 27

24 2 ∗ 9 2 ∗ 10 2 ∗ 11 23 ∗ 3 2 ∗ 13

28 29 30 31 32 33 34 35 36 37 38 39

22 ∗ 7 2 ∗ 15 25 2 ∗ 17 22 ∗ 9 2 ∗ 19

40 41 42 43 44 45 46 47 48

23 ∗ 5 2 ∗ 21 22 ∗ 11 2 ∗ 23 24 ∗ 3

First unmarked is 2. DIVIDE mults of 3 by 3.



Divide by 3

We only show the last row (for reasons of space).

40 41 42 43 44 45 46 47 48

23 ∗ 5 2 ∗ 3 ∗ 7 22 ∗ 11 32 ∗ 5 2 ∗ 23 24 ∗ 3

I 48 was 2-factored

I Nothing else was.



Variant of The Sieve of Eratosthenes: Algorithm

1. Input(N,B)

2. Write down 2, 3, . . . ,N. All are have blank in box.

3. (BOX STEP) Goto the first blank box, p. (When have visited
this step B times then stop).

4. Divide what the elements p, 2p, . . .,
⌊
N
p

⌋
p by p then p again

and again until can’t. (This takes ∼ N
p steps.)

5. GOTO BOX STEP.

Time: ∑
p≤B

N

p
+
∑
p≤B

N

p2
+
∑
p≤B

N

p3
+
∑
p≤B

N

p4
· · ·

= N

(∑
p≤B

1

p
+
∑
p≤B

1

p2
+
∑
p≤B

1

p3
+
∑
p≤B

1

p4
+ · · ·

)



Variant of The Sieve of Eratosthenes: Analysis

= N

(∑
p≤B

1

p
+
∑
p≤B

1

p2
+
∑
p≤B

1

p3
+
∑
p≤B

1

p4
+ · · ·

)

N
∑
p≤B

1

p
+ N

∑
p≤B

1

p2
+ N

∑
p≤B

1

p3
+ N

∑
p≤B

1

p4
+ · · ·

= N ln(ln(B)) + N
∞∑
a=2

∑
p≤B

1

pa

Next slide shows that N
∑∞

a=2

∑
p≤B

1
pa ≤ (0.5)N, so time is

≤ N ln(ln(B)) + (0.5)N.

Note: The mult constants really are ≤ 1 and it does matter for
real world performance.



Variant of The Sieve of Eratosthenes: Analysis

= N

(∑
p≤B

1

p
+
∑
p≤B

1

p2
+
∑
p≤B

1

p3
+
∑
p≤B

1

p4
+ · · ·

)

N
∑
p≤B

1

p
+ N

∑
p≤B

1

p2
+ N

∑
p≤B

1

p3
+ N

∑
p≤B

1

p4
+ · · ·

= N ln(ln(B)) + N
∞∑
a=2

∑
p≤B

1

pa

Next slide shows that N
∑∞

a=2

∑
p≤B

1
pa ≤ (0.5)N, so time is

≤ N ln(ln(B)) + (0.5)N.

Note: The mult constants really are ≤ 1 and it does matter for
real world performance.



Variant of The Sieve of E: That last term is ≤ N

= N
∞∑
a=2

∑
p≤B

1

pa
= N

∑
p≤B

∞∑
a=2

1

pa

= N
∑
p≤B

1/p2

1− (1/p)

= N
∑
p≤B

1

p2 − p
∼ N

∑
p≤B

1

p2

How big is
∑

p≤B
1
p2

?

1.
∑∞

n=1
1
n2

cvg. Do you know to what? π2

6 ∼ 1.644

2.
∑∞

p=1
1
p2

cvg. Do you know to what? ∼ 0.45.



Variant of The Sieve of E: That last term is ≤ N

= N
∞∑
a=2

∑
p≤B

1

pa
= N

∑
p≤B

∞∑
a=2

1

pa

= N
∑
p≤B

1/p2

1− (1/p)

= N
∑
p≤B

1

p2 − p
∼ N

∑
p≤B

1

p2

How big is
∑

p≤B
1
p2

?

1.
∑∞

n=1
1
n2

cvg. Do you know to what? π2

6 ∼ 1.644

2.
∑∞

p=1
1
p2

cvg. Do you know to what? ∼ 0.45.



Variant of The Sieve of E: That last term is ≤ N

= N
∞∑
a=2

∑
p≤B

1

pa
= N

∑
p≤B

∞∑
a=2

1

pa

= N
∑
p≤B

1/p2

1− (1/p)

= N
∑
p≤B

1

p2 − p
∼ N

∑
p≤B

1

p2

How big is
∑

p≤B
1
p2

?

1.
∑∞

n=1
1
n2

cvg. Do you know to what?

π2

6 ∼ 1.644

2.
∑∞

p=1
1
p2

cvg. Do you know to what? ∼ 0.45.



Variant of The Sieve of E: That last term is ≤ N

= N
∞∑
a=2

∑
p≤B

1

pa
= N

∑
p≤B

∞∑
a=2

1

pa

= N
∑
p≤B

1/p2

1− (1/p)

= N
∑
p≤B

1

p2 − p
∼ N

∑
p≤B

1

p2

How big is
∑

p≤B
1
p2

?

1.
∑∞

n=1
1
n2

cvg. Do you know to what? π2

6 ∼ 1.644

2.
∑∞

p=1
1
p2

cvg. Do you know to what? ∼ 0.45.



Variant of The Sieve of E: That last term is ≤ N

= N
∞∑
a=2

∑
p≤B

1

pa
= N

∑
p≤B

∞∑
a=2

1

pa

= N
∑
p≤B

1/p2

1− (1/p)

= N
∑
p≤B

1

p2 − p
∼ N

∑
p≤B

1

p2

How big is
∑

p≤B
1
p2

?

1.
∑∞

n=1
1
n2

cvg. Do you know to what? π2

6 ∼ 1.644

2.
∑∞

p=1
1
p2

cvg. Do you know to what?

∼ 0.45.



Variant of The Sieve of E: That last term is ≤ N

= N
∞∑
a=2

∑
p≤B

1

pa
= N

∑
p≤B

∞∑
a=2

1

pa

= N
∑
p≤B

1/p2

1− (1/p)

= N
∑
p≤B

1

p2 − p
∼ N

∑
p≤B

1

p2

How big is
∑

p≤B
1
p2

?

1.
∑∞

n=1
1
n2

cvg. Do you know to what? π2

6 ∼ 1.644

2.
∑∞

p=1
1
p2

cvg. Do you know to what? ∼ 0.45.



Recap Variant of The Sieve of Eratosthenes

Given N,B can B-factor {2, . . . ,N} in time

≤ N ln(ln(B)) + 0.5N

Can easily modify to get a fast algorithm for B-factoring
N1, . . . ,N1 + N.

This is not the problem we originally needed to solve, though its
close. We now go back to our original problem.



Back to Quadratic Sieve
Factoring Algorithm

November 13, 2019



Recall Quad Sieve Alg: First Attempt
Given N let x =

⌈√
N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

Let I ⊆ {0, . . . ,M} so that (∀i ∈ I ), yi is B-factored. Find J ⊆ I
such that

∑
i∈J ~vi = ~0. Hence

∏
i∈J yi has all even exponents, so

exists Y : ∏
i∈J

yi = Y 2

(
∏
i∈J

(x + i))2 ≡
∏
i∈J

yi = Y 2 (mod N)

Let X =
∏

i∈J(x + i) (mod N) and Y =
∏

i∈J q
ei
i (mod N).

X 2 − Y 2 ≡ 0 (mod N).

GCD(X − Y ,N), GCD(X + Y ,N) should yield factors.



Recall Quad Sieve Alg: First Attempt, First Step

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

How do we B-factor all of those numbers?

Modified Sieve of E B-factored N1 + 1, . . . ,N1 + N.
We need to B-factor y0, y1, . . . , yM .

Plan It was more efficient to B-factor 2, . . . ,N all at once then one
at at time. Same will be true for y0, . . . , yM .



Recall Quad Sieve Alg: First Attempt, First Step

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

How do we B-factor all of those numbers?
Modified Sieve of E B-factored N1 + 1, . . . ,N1 + N.

We need to B-factor y0, y1, . . . , yM .

Plan It was more efficient to B-factor 2, . . . ,N all at once then one
at at time. Same will be true for y0, . . . , yM .



Recall Quad Sieve Alg: First Attempt, First Step

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

How do we B-factor all of those numbers?
Modified Sieve of E B-factored N1 + 1, . . . ,N1 + N.
We need to B-factor y0, y1, . . . , yM .

Plan It was more efficient to B-factor 2, . . . ,N all at once then one
at at time. Same will be true for y0, . . . , yM .



Recall Quad Sieve Alg: First Attempt, First Step

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

How do we B-factor all of those numbers?
Modified Sieve of E B-factored N1 + 1, . . . ,N1 + N.
We need to B-factor y0, y1, . . . , yM .

Plan It was more efficient to B-factor 2, . . . ,N all at once then one
at at time. Same will be true for y0, . . . , yM .



The Quadratic Sieve: The Problem

New Problem Given N,B,M, x , want to B-factor
(x + 0)2 (mod N)
(x + 1)2 (mod N)

...
...

(x + M)2 (mod N)
We do an example on the next slide.



The Quadratic Sieve: Example

N = 1147, B = 2, M = 10, x = 34.
Want to 2-factor (so all powers of 2 and 3)
(34 + 0)2 (mod 1147)

...
...

...
(34 + 10)2 (mod 1147)

For the Sieve of E when we wanted to divide by p we looked at
every pth element. Is there an analog here?

For which 0 ≤ i ≤ 10 does 2 divide (34 + i)2 (mod 1147)?
Next Slide



The Quadratic Sieve: Example

N = 1147, B = 2, M = 10, x = 34.
Want to 2-factor (so all powers of 2 and 3)
(34 + 0)2 (mod 1147)

...
...

...
(34 + 10)2 (mod 1147)
For the Sieve of E when we wanted to divide by p we looked at
every pth element. Is there an analog here?

For which 0 ≤ i ≤ 10 does 2 divide (34 + i)2 (mod 1147)?
Next Slide



The Quadratic Sieve: Example

N = 1147, B = 2, M = 10, x = 34.
Want to 2-factor (so all powers of 2 and 3)
(34 + 0)2 (mod 1147)

...
...

...
(34 + 10)2 (mod 1147)
For the Sieve of E when we wanted to divide by p we looked at
every pth element. Is there an analog here?

For which 0 ≤ i ≤ 10 does 2 divide (34 + i)2 (mod 1147)?

Next Slide



The Quadratic Sieve: Example

N = 1147, B = 2, M = 10, x = 34.
Want to 2-factor (so all powers of 2 and 3)
(34 + 0)2 (mod 1147)

...
...

...
(34 + 10)2 (mod 1147)
For the Sieve of E when we wanted to divide by p we looked at
every pth element. Is there an analog here?

For which 0 ≤ i ≤ 10 does 2 divide (34 + i)2 (mod 1147)?
Next Slide



The Quadratic Sieve: Example of dividing by 2

Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147))

What is (34 + i)2 (mod 1147)? Since 0 ≤ i ≤ 10,

(34 + 0)2 < (34 + i)2 < (34 + 10)2

1156 < (34 + i)2 < 1936

1147 + 9 < (34 + i)2 < 1147 + 789

So (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i does:

(34 + i)2 − 1147 ≡ 0 (mod 2)



The Quadratic Sieve: Example of dividing by 2

Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147))

What is (34 + i)2 (mod 1147)?

Since 0 ≤ i ≤ 10,

(34 + 0)2 < (34 + i)2 < (34 + 10)2

1156 < (34 + i)2 < 1936

1147 + 9 < (34 + i)2 < 1147 + 789

So (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i does:

(34 + i)2 − 1147 ≡ 0 (mod 2)



The Quadratic Sieve: Example of dividing by 2

Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147))

What is (34 + i)2 (mod 1147)? Since 0 ≤ i ≤ 10,

(34 + 0)2 < (34 + i)2 < (34 + 10)2

1156 < (34 + i)2 < 1936

1147 + 9 < (34 + i)2 < 1147 + 789

So (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i does:

(34 + i)2 − 1147 ≡ 0 (mod 2)



The Quadratic Sieve: Example of dividing by 2

Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147))

What is (34 + i)2 (mod 1147)? Since 0 ≤ i ≤ 10,

(34 + 0)2 < (34 + i)2 < (34 + 10)2

1156 < (34 + i)2 < 1936

1147 + 9 < (34 + i)2 < 1147 + 789

So (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i does:

(34 + i)2 − 1147 ≡ 0 (mod 2)



The Quadratic Sieve: Example of dividing by 2

Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147))

What is (34 + i)2 (mod 1147)? Since 0 ≤ i ≤ 10,

(34 + 0)2 < (34 + i)2 < (34 + 10)2

1156 < (34 + i)2 < 1936

1147 + 9 < (34 + i)2 < 1147 + 789

So (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i does:

(34 + i)2 − 1147 ≡ 0 (mod 2)



The Quadratic Sieve: Example of dividing by 2

Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147))

What is (34 + i)2 (mod 1147)? Since 0 ≤ i ≤ 10,

(34 + 0)2 < (34 + i)2 < (34 + 10)2

1156 < (34 + i)2 < 1936

1147 + 9 < (34 + i)2 < 1147 + 789

So (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i does:

(34 + i)2 − 1147 ≡ 0 (mod 2)



The Quadratic Sieve: Example of dividing by 2

Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147))

What is (34 + i)2 (mod 1147)? Since 0 ≤ i ≤ 10,

(34 + 0)2 < (34 + i)2 < (34 + 10)2

1156 < (34 + i)2 < 1936

1147 + 9 < (34 + i)2 < 1147 + 789

So (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i does:

(34 + i)2 − 1147 ≡ 0 (mod 2)



The Quadratic Sieve: Example of dividing by 2, cont
Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147))

We know that

(34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i does:

(34 + i)2 − 1147 ≡ 0 (mod 2)

Take mod 2 to both sides to get

i2 − 1 ≡ 0 (mod 2)

i ≡ 1 (mod 2).

Great!- just need to divide the yi where i ≡ 1 (mod 2).



The Quadratic Sieve: Example of dividing by 2, cont
Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147))

We know that

(34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i does:

(34 + i)2 − 1147 ≡ 0 (mod 2)

Take mod 2 to both sides to get

i2 − 1 ≡ 0 (mod 2)

i ≡ 1 (mod 2).

Great!- just need to divide the yi where i ≡ 1 (mod 2).



The Quadratic Sieve: Example of dividing by 2, cont
Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147))

We know that

(34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i does:

(34 + i)2 − 1147 ≡ 0 (mod 2)

Take mod 2 to both sides to get

i2 − 1 ≡ 0 (mod 2)

i ≡ 1 (mod 2).

Great!- just need to divide the yi where i ≡ 1 (mod 2).



The Quadratic Sieve: Example of dividing by 2, cont
Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147))

We know that

(34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i does:

(34 + i)2 − 1147 ≡ 0 (mod 2)

Take mod 2 to both sides to get

i2 − 1 ≡ 0 (mod 2)

i ≡ 1 (mod 2).

Great!- just need to divide the yi where i ≡ 1 (mod 2).



The Quadratic Sieve: Example of dividing by 3

For which 0 ≤ i ≤ 10 does 3 divide (34 + i)2 (mod 1147)?

We know that (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i does

(34 + i)2 − 1147 ≡ 0 (mod 3)

(1 + i)2 − 1 ≡ 0 (mod 3)

i ≡ 1, 2 (mod 3).

Great!- just need to divide the yi where i ≡ 0, 1 (mod 3).



The Quadratic Sieve: Example of dividing by 3

For which 0 ≤ i ≤ 10 does 3 divide (34 + i)2 (mod 1147)?

We know that (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i does

(34 + i)2 − 1147 ≡ 0 (mod 3)

(1 + i)2 − 1 ≡ 0 (mod 3)

i ≡ 1, 2 (mod 3).

Great!- just need to divide the yi where i ≡ 0, 1 (mod 3).



The Quadratic Sieve: Example of dividing by 3

For which 0 ≤ i ≤ 10 does 3 divide (34 + i)2 (mod 1147)?
We know that (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i does

(34 + i)2 − 1147 ≡ 0 (mod 3)

(1 + i)2 − 1 ≡ 0 (mod 3)

i ≡ 1, 2 (mod 3).

Great!- just need to divide the yi where i ≡ 0, 1 (mod 3).



The Quad Sieve: Example of dividing by 5,7,11,13

(34 + i)2 − 1147 ≡ 0 (mod 5)
(4 + i)2 − 2 ≡ 0 (mod 5)
NO SOLUTIONS

(34 + i)2 − 1147 ≡ 0 (mod 7)
(6 + i)2 ≡ 1 (mod 7)
i ≡ 0, 2 (mod 7)

(34 + i)2 − 1147 ≡ 0 (mod 11)
(1 + i)2 ≡ 3 (mod 11)
i ≡ 4, 5 (mod 11)

(34 + i)2 − 1147 ≡ 0 (mod 13)
(8 + i)2 + 10 ≡ 0 (mod 13)
i ≡ 1, 9 (mod 13)



The Quad Sieve: Example of dividing by 17,19,23

(34 + i)2 − 1147 ≡ 0 (mod 17)
i2 + 9 ≡ 0 (mod 17)
i ≡ 5, 12 (mod 17)

(34 + i)2 − 1147 ≡ 0 (mod 19)
(15 + i)2 + 12 ≡ 0 (mod 19)
i ≡ 8, 15 (mod 19)

(34 + i)2 − 1147 ≡ 0 (mod 23)
(11 + i)2 + 3 ≡ 0 (mod 23)
NO SOLUTIONS



The B-Factor Step Using Quad Sieve: Program

Problem Given N,B,M, x , want to B-factor
(x + 0)2 (mod N)

...
...

(x + M)2 (mod N)
Algorithm
As p goes through the first B primes.

Find A ⊆ {0, . . . , p − 1}: i ∈ A iff (x + i)2 − N ≡ 0 (mod p)
for a ∈ A

for k = 0 to
⌈
M−a
p

⌉
divide (x + pk + a)2 by p (and then p again. . .)

Time ≤
∑

p≤B(lg p + 2M−1
p ) =

∑
p≤B lg p + 2M

∑
p≤B

1
p .

= (
∑
p≤B

lg p) + 2M ln ln(B) = 2B + 2M ln(ln(B)).



Names of Sieves

1. The Sieve of E is the Sieve that, given N, finds all of the
primes ≤ N. We may also use the name for finding all primes
between N1 and N2.

2. The B-Factoring Sieve of E is the Sieve that, given N, tries to
B-factors all of the numbers from 2 to N. We may also use
the name for B-factoring all numbers between N1 and N2.

3. The Quadratic Sieve is from the last slide. Given N,B,M, x it
tries to B-factor (x + 0)2 (mod N), . . ., (x + M)2 (mod N).
Note that it is quite fast.



Quad Sieve Alg: Second Attempt, Algorithm
Given N let x =

⌈√
N
⌉

. All ≡ are mod N. B,M are params.

B-factor (x + 0)2 (mod N), . . ., (x + M)2 (mod N) by Quad S.

Let I ⊆ {0, . . . ,M} so that (∀i ∈ I ), yi is B-factored. Find J ⊆ I
such that

∑
i∈J ~vi = ~0. Hence

∏
i∈J yi has all even exponents, so

there exists Y ∏
i∈J

yi = Y 2

(
∏
i∈J

(x + i))2 ≡
∏
i∈J

yi = Y 2 (mod N)

Let X =
∏

i∈J(x + i) (mod N) and Y =
∏

i∈J q
ei
i (mod N).

X 2 − Y 2 ≡ 0 (mod N).

GCD(X − Y ,N), GCD(X + Y ,N) should yield factors.



Analysis of Quadratic Sieve Factoring Algorithm

Time to B-factor:

2B + 2M ln(ln(B)).

Time to find J: B3.

Total Time:
2B + 2M ln(ln(B)) + B3

Intuitive but not rigorous arguments yield run time

e
√
lnN ln lnN ∼ e

√
8 lnN ∼ e2.8

√
lnN



Speed Up One

Recall:
(34 + i)2 − 1147 ≡ 0 (mod 23)
(11 + i)2 + 3 ≡ 0 (mod 23)
NO SOLUTIONS

If there is a prime p such that z2 ≡ 1147 (mod p) has NO
SOLUTION then we should not ever consider it.

There is a fast test to determine just if z2 ≡ 1147 (mod p) has a
solution (and more generally z2 ≡ N (mod p)). So can eliminate
some primes p ≤ B before you start.



Speed Up One

Recall:
(34 + i)2 − 1147 ≡ 0 (mod 23)
(11 + i)2 + 3 ≡ 0 (mod 23)
NO SOLUTIONS

If there is a prime p such that z2 ≡ 1147 (mod p) has NO
SOLUTION then we should not ever consider it.

There is a fast test to determine just if z2 ≡ 1147 (mod p) has a
solution (and more generally z2 ≡ N (mod p)). So can eliminate
some primes p ≤ B before you start.



Speed Up One

Recall:
(34 + i)2 − 1147 ≡ 0 (mod 23)
(11 + i)2 + 3 ≡ 0 (mod 23)
NO SOLUTIONS

If there is a prime p such that z2 ≡ 1147 (mod p) has NO
SOLUTION then we should not ever consider it.

There is a fast test to determine just if z2 ≡ 1147 (mod p) has a
solution (and more generally z2 ≡ N (mod p)). So can eliminate
some primes p ≤ B before you start.



Speed Up Two

Recall:
We started with x =

⌈√
N
⌉

and did (x + i)2 for 0 ≤ i ≤ M.

We can also (with some care) use (x + i)2 when i ≤ 0.

Advantage Smaller numbers more likely to be B-fact.



Speed Up Two

Recall:
We started with x =

⌈√
N
⌉

and did (x + i)2 for 0 ≤ i ≤ M.

We can also (with some care) use (x + i)2 when i ≤ 0.

Advantage Smaller numbers more likely to be B-fact.



Speed Up Three

Recall:
(34 + i)2 − 1147 ≡ 0 (mod 19)
(15 + i)2 + 12 ≡ 0 (mod 19)
i ≡ 8, 15 (mod 19)

We can have one more variable:
(34j + i)2 − 1147 ≡ 0 (mod 19)
(15j + i)2 + 12 ≡ 0 (mod 19)
15j + i ≡ 8, 15 (mod 19)
Many values of (i , j) work.



Speed Up Three

Recall:
(34 + i)2 − 1147 ≡ 0 (mod 19)
(15 + i)2 + 12 ≡ 0 (mod 19)
i ≡ 8, 15 (mod 19)

We can have one more variable:
(34j + i)2 − 1147 ≡ 0 (mod 19)
(15j + i)2 + 12 ≡ 0 (mod 19)
15j + i ≡ 8, 15 (mod 19)
Many values of (i , j) work.



Speed Up Four—Use some primes > B

1. Look at all of the non B-factored numbers. For each one test
if what is left is prime. Let Z1 be the set of all of those
primes..

2. Look at all of the non B-factored numbers. For each of them
try a factoring algorithm (e.g, Pollards rho) for a limited
amount of time. Let Z2 be the set of primes you come across.

3. Do Q. Sieve on all of the non B-factored numbers using the
primes in Z1 ∪ Z2.

This will increase the number of B-factored numbers.



Speed Up Five—Avoid Division

For this slide lg means dlg e which is very fast on a computer.

Using Divisions Primes q1, . . . , qm < B divide x . Divide x by all
the qi . Also q2i , q3i , etc until does not work. When you are done
you’ve B-factored the number or not.

Using Subtraction Primes q1, . . . , qm < B divide x . Do

d = lg(x)− lg(q1)− lg(q2)− · · · − lg(qm)

If d ∼ 0 then we think x IS B-fact, so B-factor x .
If far from 0 then DO NOT DIVIDE!



Speed Up Five—Avoid Division

For this slide lg means dlg e which is very fast on a computer.

Using Divisions Primes q1, . . . , qm < B divide x . Divide x by all
the qi . Also q2i , q3i , etc until does not work. When you are done
you’ve B-factored the number or not.
Using Subtraction Primes q1, . . . , qm < B divide x . Do

d = lg(x)− lg(q1)− lg(q2)− · · · − lg(qm)

If d ∼ 0 then we think x IS B-fact, so B-factor x .
If far from 0 then DO NOT DIVIDE!



Speed Up Five—Avoid Division

For this slide lg means dlg e which is very fast on a computer.

Using Divisions Primes q1, . . . , qm < B divide x . Divide x by all
the qi . Also q2i , q3i , etc until does not work. When you are done
you’ve B-factored the number or not.
Using Subtraction Primes q1, . . . , qm < B divide x . Do

d = lg(x)− lg(q1)− lg(q2)− · · · − lg(qm)

If d ∼ 0 then we think x IS B-fact, so B-factor x .
If far from 0 then DO NOT DIVIDE!



Speed Up Five—Avoid Division, Why Works
Why Does This Work? If x = q1q2q3 then

lg(x) = lg(q1) + lg(q2) + lg(q3)

lg(x)− lg(q1)− lg(q2)− lg(q3) = 0

So why not insist that

lg(x)− lg(q1)− lg(q2)− · · · − lg(qm) = 0

1. Using dlge may introduce approximations so you don’t get 0.

2. If x = q21q2q3 then

lg(x) = lg(q21) + lg(q2) + lg(q3) = 2 lg(q1) + lg(q2) + lg(q3)

lg(x)− lg(q1) + lg(q2) + lg(q3) = lg(q1) 6= 0

3. We need to define small carefully. Will still err.



Speed Up Five—Avoid Division, Why Works
Why Does This Work? If x = q1q2q3 then

lg(x) = lg(q1) + lg(q2) + lg(q3)

lg(x)− lg(q1)− lg(q2)− lg(q3) = 0

So why not insist that

lg(x)− lg(q1)− lg(q2)− · · · − lg(qm) = 0

1. Using dlge may introduce approximations so you don’t get 0.

2. If x = q21q2q3 then

lg(x) = lg(q21) + lg(q2) + lg(q3) = 2 lg(q1) + lg(q2) + lg(q3)

lg(x)− lg(q1) + lg(q2) + lg(q3) = lg(q1) 6= 0

3. We need to define small carefully. Will still err.



Speed Up Five—Avoid Division, Why Fast

Why is this fast?

1. Subtraction is much faster than division.

2. Most numbers are not B-fact, so don’t do divisions that won’t
help.



Speed Up Five—Avoid Division, Example One

B = 7 so we are looking at 2, 3, 5, 7, 11, 13, 17. Small is ≤ 10.

108290 7-fact? We find that 2,5,7,13,17 all divide it.

lg(108290)− lg(2)− lg(5)− lg(7)− lg(13)− lg(17) = 4 ≤ 10

So we think 108290 IS 7-fact. Is this correct? Yes:

108290 = 2× 5× 72 × 13× 17



Speed Up Five—Avoid Division, Example One

B = 7 so we are looking at 2, 3, 5, 7, 11, 13, 17. Small is ≤ 10.

108290 7-fact? We find that 2,5,7,13,17 all divide it.

lg(108290)− lg(2)− lg(5)− lg(7)− lg(13)− lg(17) = 4 ≤ 10

So we think 108290 IS 7-fact. Is this correct? Yes:

108290 = 2× 5× 72 × 13× 17



Speed Up Five—Avoid Division, Example One

B = 7 so we are looking at 2, 3, 5, 7, 11, 13, 17. Small is ≤ 10.

108290 7-fact? We find that 2,5,7,13,17 all divide it.

lg(108290)− lg(2)− lg(5)− lg(7)− lg(13)− lg(17) = 4 ≤ 10

So we think 108290 IS 7-fact. Is this correct? Yes:

108290 = 2× 5× 72 × 13× 17



Speed Up Five—Avoid Division, Example One

B = 7 so we are looking at 2, 3, 5, 7, 11, 13, 17. Small is ≤ 10.

108290 7-fact? We find that 2,5,7,13,17 all divide it.

lg(108290)− lg(2)− lg(5)− lg(7)− lg(13)− lg(17) = 4 ≤ 10

So we think 108290 IS 7-fact. Is this correct? Yes:

108290 = 2× 5× 72 × 13× 17



Speed Up Five—Avoid Division, Example One

B = 7 so we are looking at 2, 3, 5, 7, 11, 13, 17. Small is ≤ 10.

108290 7-fact? We find that 2,5,7,13,17 all divide it.

lg(108290)− lg(2)− lg(5)− lg(7)− lg(13)− lg(17) = 4 ≤ 10

So we think 108290 IS 7-fact. Is this correct? Yes:

108290 = 2× 5× 72 × 13× 17



Speed Up Five—Avoid Division, Examples Two
Is 78975897 7-fact? We find that 3,7,11,13,17 all divide it.

lg(78975897)− lg(3)− lg(7)− lg(11)− lg(13)− lg(17) = 11 > 10

So we think 78975897 is NOT 7-fact. Is this correct? No!

78975897 = 3× 72 × 11× 132 × 174.

Cautionary Note
78975897 = 3× 72 × 11× 132 × 174. was thought to NOT be
7-fact. Erred because primes had large exponents. The large
exponents made

lg(78975897)

LARGER than

lg(3) + lg(7) + lg(11) + lg(13) + lg(17)



Speed Up Five—Avoid Division, Examples Two
Is 78975897 7-fact? We find that 3,7,11,13,17 all divide it.

lg(78975897)− lg(3)− lg(7)− lg(11)− lg(13)− lg(17) = 11 > 10

So we think 78975897 is NOT 7-fact. Is this correct? No!

78975897 = 3× 72 × 11× 132 × 174.

Cautionary Note
78975897 = 3× 72 × 11× 132 × 174. was thought to NOT be
7-fact. Erred because primes had large exponents. The large
exponents made

lg(78975897)

LARGER than

lg(3) + lg(7) + lg(11) + lg(13) + lg(17)



Speed Up Five—Avoid Division, Examples Two
Is 78975897 7-fact? We find that 3,7,11,13,17 all divide it.

lg(78975897)− lg(3)− lg(7)− lg(11)− lg(13)− lg(17) = 11 > 10

So we think 78975897 is NOT 7-fact. Is this correct? No!

78975897 = 3× 72 × 11× 132 × 174.

Cautionary Note
78975897 = 3× 72 × 11× 132 × 174. was thought to NOT be
7-fact. Erred because primes had large exponents. The large
exponents made

lg(78975897)

LARGER than

lg(3) + lg(7) + lg(11) + lg(13) + lg(17)



Speed Up Five—Avoid Division, Examples Two
Is 78975897 7-fact? We find that 3,7,11,13,17 all divide it.

lg(78975897)− lg(3)− lg(7)− lg(11)− lg(13)− lg(17) = 11 > 10

So we think 78975897 is NOT 7-fact. Is this correct? No!

78975897 = 3× 72 × 11× 132 × 174.

Cautionary Note
78975897 = 3× 72 × 11× 132 × 174. was thought to NOT be
7-fact. Erred because primes had large exponents. The large
exponents made

lg(78975897)

LARGER than

lg(3) + lg(7) + lg(11) + lg(13) + lg(17)



Speed Up Five—Avoid Division, Examples Three

Is 9699690 7-fact? We find that 2,3,5,7,11,13,17 all divide it.

lg(9699690)−lg(2)−lg(3)−lg(5)−lg(7)−lg(11)−lg(13)−lg(17) = 1 ≤ 10

So we think 9699690 is 7-fact. Is this correct? No!

lg(9699690)−lg(2)−lg(3)−lg(5)−lg(7)−lg(11)−lg(13)−lg(17) = 1 ≤ 10

Cautionary Note 78975897 = 2× 3× 5× 7× 11× 13× 17× 19.
was thought to NOT be 7-fact. Erred because it had low
exponents and only one a small prime over B.
Lemon to Lemonade Not B-fact, but still useful. Speedup 4.



Speed Up Five—Avoid Division, Examples Three

Is 9699690 7-fact? We find that 2,3,5,7,11,13,17 all divide it.

lg(9699690)−lg(2)−lg(3)−lg(5)−lg(7)−lg(11)−lg(13)−lg(17) = 1 ≤ 10

So we think 9699690 is 7-fact. Is this correct? No!

lg(9699690)−lg(2)−lg(3)−lg(5)−lg(7)−lg(11)−lg(13)−lg(17) = 1 ≤ 10

Cautionary Note 78975897 = 2× 3× 5× 7× 11× 13× 17× 19.
was thought to NOT be 7-fact. Erred because it had low
exponents and only one a small prime over B.
Lemon to Lemonade Not B-fact, but still useful. Speedup 4.



Speed Up Five—Avoid Division, Examples Three

Is 9699690 7-fact? We find that 2,3,5,7,11,13,17 all divide it.

lg(9699690)−lg(2)−lg(3)−lg(5)−lg(7)−lg(11)−lg(13)−lg(17) = 1 ≤ 10

So we think 9699690 is 7-fact. Is this correct? No!

lg(9699690)−lg(2)−lg(3)−lg(5)−lg(7)−lg(11)−lg(13)−lg(17) = 1 ≤ 10

Cautionary Note 78975897 = 2× 3× 5× 7× 11× 13× 17× 19.
was thought to NOT be 7-fact. Erred because it had low
exponents and only one a small prime over B.

Lemon to Lemonade Not B-fact, but still useful. Speedup 4.



Speed Up Five—Avoid Division, Examples Three

Is 9699690 7-fact? We find that 2,3,5,7,11,13,17 all divide it.

lg(9699690)−lg(2)−lg(3)−lg(5)−lg(7)−lg(11)−lg(13)−lg(17) = 1 ≤ 10

So we think 9699690 is 7-fact. Is this correct? No!

lg(9699690)−lg(2)−lg(3)−lg(5)−lg(7)−lg(11)−lg(13)−lg(17) = 1 ≤ 10

Cautionary Note 78975897 = 2× 3× 5× 7× 11× 13× 17× 19.
was thought to NOT be 7-fact. Erred because it had low
exponents and only one a small prime over B.
Lemon to Lemonade Not B-fact, but still useful. Speedup 4.



Speed Up Five-extra—Avoid Division, One More
Trick

We are just approximating if

lg x − lg(q1)− · · · − lg(qm)

is small.

lg 2, lg 3, lg 5 are so tiny, don’t bother with those.

If B = 7 then use:

23, 32, 52, 7, 11, 13, 17, 19



Speed Up Five-extra—Avoid Division, One More
Trick

We are just approximating if

lg x − lg(q1)− · · · − lg(qm)

is small.

lg 2, lg 3, lg 5 are so tiny, don’t bother with those.

If B = 7 then use:

23, 32, 52, 7, 11, 13, 17, 19



Speed Up Five-extra—Avoid Division, One More
Trick

We are just approximating if

lg x − lg(q1)− · · · − lg(qm)

is small.

lg 2, lg 3, lg 5 are so tiny, don’t bother with those.

If B = 7 then use:

23, 32, 52, 7, 11, 13, 17, 19



Speed Up Six

The Gaussian Elimination is over Z2 and is for a sparse matrix
(most of the entries are 0).

There are special purpose algorithms for this.

1. Can be done in O(B2+ε) steps rather than O(B3).

2. Can’t store the entire matrix—to big.



Speed Up Seven

(This is a paragraph from a blog post about Quad Sieve
https://blogs.msdn.microsoft.com/devdev/2006/06/19/

factoring-large-numbers-with-quadratic-sieve/)

Is z B-fact? There is a light for each p ≤ B whose intensity is
proportional to the lg p. Each light turns on just two times every p
cycles, corresponding to the two square roots of N mod p. A
sensor senses the combined intensity of all the lights together, and
if this is close enough to the lg z then z is a B-fact number
candidate. Can do in parallel.

https://blogs.msdn.microsoft.com/devdev/2006/06/19/factoring-large-numbers-with-quadratic-sieve/
https://blogs.msdn.microsoft.com/devdev/2006/06/19/factoring-large-numbers-with-quadratic-sieve/


The Number Field Sieve

The Quad Sieve had run time:

e(lnN ln lnN)1/2 ∼ e2.8(lnN)1/2

The Number Field Sieve which uses some of the same ideas has
run time:

e1.9(lnN)1/3(ln lnN)2/3 ∼ e14(lnN)1/3



The Number Field Sieve

The Quad Sieve had run time:

e(lnN ln lnN)1/2 ∼ e2.8(lnN)1/2

The Number Field Sieve which uses some of the same ideas has
run time:

e1.9(lnN)1/3(ln lnN)2/3 ∼ e14(lnN)1/3



Compare Run Times

Alg Run Time as Na/Lδ Run Time in terms of L

Naive N1/2 2L/2

Pollard Rho N1/4 2L/4

Linear Sieve N3.9/L1/2 21.95L
1/2

Quad Sieve N2.8/L1/2 21.4L
1/2

N.F. Sieve N14/L2/3 220L
1/3

1. Times are more conjectured than proven.

2. Quad S. is better than Linear Sieve by only a constant in the
exponent. Made a big difference IRL.

3. Quad Sieve is better than Pollard-Rho at about 1050.



Relevance for RSA

1. Carl Pomerance devised the Quad S. algorithm in 1982.

2. People did not think it would work that well; however, he had
friends at Sandia Labs who tried it out. Just for fun.

3. At the same time another group at Sandia Labs was working
on a serious RSA project that would use 100-digit N

4. Quad Sieve could factor 100-digit numbers, so the RSA
project had to be scrapped.



Relevance for RSA

1. Carl Pomerance devised the Quad S. algorithm in 1982.

2. People did not think it would work that well; however, he had
friends at Sandia Labs who tried it out. Just for fun.

3. At the same time another group at Sandia Labs was working
on a serious RSA project that would use 100-digit N

4. Quad Sieve could factor 100-digit numbers, so the RSA
project had to be scrapped.



Relevance for RSA

1. Carl Pomerance devised the Quad S. algorithm in 1982.

2. People did not think it would work that well; however, he had
friends at Sandia Labs who tried it out. Just for fun.

3. At the same time another group at Sandia Labs was working
on a serious RSA project that would use 100-digit N

4. Quad Sieve could factor 100-digit numbers, so the RSA
project had to be scrapped.



Relevance for RSA

1. Carl Pomerance devised the Quad S. algorithm in 1982.

2. People did not think it would work that well; however, he had
friends at Sandia Labs who tried it out. Just for fun.

3. At the same time another group at Sandia Labs was working
on a serious RSA project that would use 100-digit N

4. Quad Sieve could factor 100-digit numbers, so the RSA
project had to be scrapped.



Relevance for RSA

1. Carl Pomerance devised the Quad S. algorithm in 1982.

2. People did not think it would work that well; however, he had
friends at Sandia Labs who tried it out. Just for fun.

3. At the same time another group at Sandia Labs was working
on a serious RSA project that would use 100-digit N

4. Quad Sieve could factor 100-digit numbers, so the RSA
project had to be scrapped.



The Future of Factoring

I paraphrase The Joy of Factoring by Wagstaff:
The best factoring algorithms have time complexity of the form

ec(lnN)t(ln lnN)1−t

with Q.Sieve using t = 1
2 and N.F.Sieve using t = 1

3 . Moreover,
any method that uses B-factoring must take this long.

I No progress since N.F.Sieve in 1988.

I My opinion: ec(lnN)t(ln lnN)1−t
is the best you can do ever,

though t can be improved.
I Why hasn’t t been improved? Wagstaff told me:

I We’ve run out of parameters to optimize.
I Brandon, Solomon, Mark, and Ivan haven’t worked on it yet.



The Future of Factoring

I paraphrase The Joy of Factoring by Wagstaff:
The best factoring algorithms have time complexity of the form

ec(lnN)t(ln lnN)1−t

with Q.Sieve using t = 1
2 and N.F.Sieve using t = 1

3 . Moreover,
any method that uses B-factoring must take this long.

I No progress since N.F.Sieve in 1988.

I My opinion: ec(lnN)t(ln lnN)1−t
is the best you can do ever,

though t can be improved.
I Why hasn’t t been improved? Wagstaff told me:

I We’ve run out of parameters to optimize.
I Brandon, Solomon, Mark, and Ivan haven’t worked on it yet.



The Future of Factoring

I paraphrase The Joy of Factoring by Wagstaff:
The best factoring algorithms have time complexity of the form

ec(lnN)t(ln lnN)1−t

with Q.Sieve using t = 1
2 and N.F.Sieve using t = 1

3 . Moreover,
any method that uses B-factoring must take this long.

I No progress since N.F.Sieve in 1988.

I My opinion: ec(lnN)t(ln lnN)1−t
is the best you can do ever,

though t can be improved.

I Why hasn’t t been improved? Wagstaff told me:
I We’ve run out of parameters to optimize.
I Brandon, Solomon, Mark, and Ivan haven’t worked on it yet.



The Future of Factoring

I paraphrase The Joy of Factoring by Wagstaff:
The best factoring algorithms have time complexity of the form

ec(lnN)t(ln lnN)1−t

with Q.Sieve using t = 1
2 and N.F.Sieve using t = 1

3 . Moreover,
any method that uses B-factoring must take this long.

I No progress since N.F.Sieve in 1988.

I My opinion: ec(lnN)t(ln lnN)1−t
is the best you can do ever,

though t can be improved.
I Why hasn’t t been improved? Wagstaff told me:

I We’ve run out of parameters to optimize.
I Brandon, Solomon, Mark, and Ivan haven’t worked on it yet.



The Future of Factoring

I paraphrase The Joy of Factoring by Wagstaff:
The best factoring algorithms have time complexity of the form

ec(lnN)t(ln lnN)1−t

with Q.Sieve using t = 1
2 and N.F.Sieve using t = 1

3 . Moreover,
any method that uses B-factoring must take this long.

I No progress since N.F.Sieve in 1988.

I My opinion: ec(lnN)t(ln lnN)1−t
is the best you can do ever,

though t can be improved.
I Why hasn’t t been improved? Wagstaff told me:

I We’ve run out of parameters to optimize.

I Brandon, Solomon, Mark, and Ivan haven’t worked on it yet.



The Future of Factoring

I paraphrase The Joy of Factoring by Wagstaff:
The best factoring algorithms have time complexity of the form

ec(lnN)t(ln lnN)1−t

with Q.Sieve using t = 1
2 and N.F.Sieve using t = 1

3 . Moreover,
any method that uses B-factoring must take this long.

I No progress since N.F.Sieve in 1988.

I My opinion: ec(lnN)t(ln lnN)1−t
is the best you can do ever,

though t can be improved.
I Why hasn’t t been improved? Wagstaff told me:

I We’ve run out of parameters to optimize.
I Brandon, Solomon, Mark, and Ivan haven’t worked on it yet.


