Threshold Secret Sharing: Length of Shares
Length of Shares

$s = 1111$, length 4. This is 15 in base 10, so we go to smallest prime > 15, namely 17.

We use $p = 17$. $s = 1111$, $|s| = 4$.

Elements of \mathbb{Z}_{17} are represented by strings of length 5

1. Everyone gets at least one share.
2. All shares length 5, even though s is length 4.

Can we always get length n? Length $n + 1$?
Length of Shares

If $|s| = n$ want prime p with $2^n < p$.

Known: For all n there exists prime p with $2^n \leq p \leq 2^{n+1}$.

Upshot: The secret is length n, the shares are of length $n + 1$.

Good News: Every A_i gets ONE share.

Bad News: That share is of length $n + 1$, not n.

VOTE: Can Zelda do threshold secret sh. where every student gets ONE share of length n?

1. YES
2. NO
3. YES given some hardness assumption
4. UNKNOWN TO SCIENCE
Length of Shares

If $|s| = n$ want prime p with $2^n < p$.

Known: For all n there exists prime p with $2^n \leq p \leq 2^{n+1}$.

Upshot: The secret is length n, the shares are of length $n + 1$.

Good News: Every A_i gets ONE share.

Bad News: That share is of length $n + 1$, not n.

VOTE: Can Zelda do threshold secret sh. where every student gets ONE share of length n?

1. YES
2. NO
3. YES given some hardness assumption
4. UNKNOWN TO SCIENCE

YES
Why Did We Use Primes?

We used \mathbb{Z}_p since need every element to have a *-inverse.

Def: A **Field** is a set F together with operations $+, \ast$ such that

1. 0 is the +-identity: $(\forall x)[x + 0 = x]$.
2. 1 is the *-identity: $(\forall x)[x \ast 1 = x]$.
3. +,* commutative: $(\forall x, y)[(x + y = y + x) \land (x \ast y = y \ast x)]$.
4. +,* associative:

 $$(\forall x, y, z)[(x + (y + z) = (x + y) + z) \land ((x \ast y) \ast z = x \ast (y \ast z))].$$
5. (*, +) distributive: $(\forall x, y, z)[x \ast (y + z) = x \ast y + x \ast z]$.
6. Exists +-inverse: $(\forall x)(\exists y)[x + y = 0]$.
7. Exists *-inverses: $(\forall x \neq 0)(\exists y)[x \ast y = 1].$ **IMPORTANT!**

WE USED: p prime iff \mathbb{Z}_p a field.
Can We use a Different Field?

KEY: There is a field of size p^n for all primes p and $n \geq 1$.
Can We use a Different Field?

KEY: There is a field of size p^n for all primes p and $n \geq 1$.

WE USE: For all n, there is a field on 2^n elements. If secret is s of length n, use the field on 2^n elements. All elements of it are of length n.
Can We use a Different Field?

KEY: There is a field of size p^n for all primes p and $n \geq 1$.

WE USE: For all n, there is a field on 2^n elements. If secret is s of length n, use the field on 2^n elements. All elements of it are of length n.

Upshot: For threshold there is a secret sh. scheme where everyone gets ONE share of size EXACTLY the size of the secret.
Example: A Field of 32 elements

\[\mathbb{Z}_2[x] \] is the set of polys over \(\mathbb{Z}_2 \). \(x^5 + x^2 + 1 \) is irreducible in \(\mathbb{Z}_2[x] \) (so it is not the product of two other elements of \(\mathbb{Z}_2[x] \)).

Field on \(2^5 \) elements:
Example: A Field of 32 elements

\[\mathbb{Z}_2[x] \] is the set of polys over \(\mathbb{Z}_2 \). \(x^5 + x^2 + 1 \) is irreducible in \(\mathbb{Z}_2[x] \) (so it is not the product of two other elements of \(\mathbb{Z}_2[x] \)).

Field on \(2^5 \) elements:

1. The elements are polys in \(\mathbb{Z}_2[x] \) of degree \(\leq 4 \).
Example: A Field of 32 elements

\(\mathbb{Z}_2[x] \) is the set of polys over \(\mathbb{Z}_2 \). \(x^5 + x^2 + 1 \) is irreducible in \(\mathbb{Z}_2[x] \) (so it is not the product of two other elements of \(\mathbb{Z}_2[x] \)).

Field on \(2^5 \) elements:

1. The elements are polys in \(\mathbb{Z}_2[x] \) of degree \(\leq 4 \).
2. Addition and subtraction are as usual.
Example: A Field of 32 elements

\(\mathbb{Z}_2[x] \) is the set of polys over \(\mathbb{Z}_2 \). \(x^5 + x^2 + 1 \) is irreducible in \(\mathbb{Z}_2[x] \) (so it is not the product of two other elements of \(\mathbb{Z}_2[x] \)).

Field on \(2^5 \) elements:

1. The elements are polys in \(\mathbb{Z}_2[x] \) of degree \(\leq 4 \).
2. Addition and subtraction are as usual.
3. Mult is MOD \(x^5 + x^2 + 1 \). So Mult two polys together and
Example: A Field of 32 elements

\(\mathbb{Z}_2[x] \) is the set of polys over \(\mathbb{Z}_2 \). \(x^5 + x^2 + 1 \) is irreducible in \(\mathbb{Z}_2[x] \) (so it is not the product of two other elements of \(\mathbb{Z}_2[x] \)).

Field on \(2^5 \) elements:

1. The elements are polys in \(\mathbb{Z}_2[x] \) of degree \(\leq 4 \).
2. Addition and subtraction are as usual.
3. Mult is MOD \(x^5 + x^2 + 1 \). So Mult two polys together and Replace \(x^5 \) with \(-x^2 - 1 = x^2 + 1 \)
Example: A Field of 32 elements

$\mathbb{Z}_2[x]$ is the set of polys over \mathbb{Z}_2. $x^5 + x^2 + 1$ is irreducible in $\mathbb{Z}_2[x]$ (so it is not the product of two other elements of $\mathbb{Z}_2[x]$).

Field on 2^5 elements:

1. The elements are polys in $\mathbb{Z}_2[x]$ of degree ≤ 4.
2. Addition and subtraction are as usual.
3. Mult is MOD $x^5 + x^2 + 1$. So Mult two polys together and
 Replace x^5 with $-x^2 - 1 = x^2 + 1$
 Replace x^6 with $-x^3 - x = x^3 + x$
Example: A Field of 32 elements

$\mathbb{Z}_2[x]$ is the set of polys over \mathbb{Z}_2. $x^5 + x^2 + 1$ is irreducible in $\mathbb{Z}_2[x]$ (so it is not the product of two other elements of $\mathbb{Z}_2[x]$).

Field on 2^5 elements:

1. The elements are polys in $\mathbb{Z}_2[x]$ of degree ≤ 4.
2. Addition and subtraction are as usual.
3. Mult is MOD $x^5 + x^2 + 1$. So Mult two polys together and Replace x^5 with $-x^2 - 1 = x^2 + 1$
 Replace x^6 with $-x^3 - x = x^3 + x$
 Replace x^7 with $-x^4 - x^2 = x^4 + x^2$
Example: A Field of 32 elements

\[\mathbb{Z}_2[x] \] is the set of polys over \(\mathbb{Z}_2 \). \(x^5 + x^2 + 1 \) is irreducible in \(\mathbb{Z}_2[x] \) (so it is not the product of two other elements of \(\mathbb{Z}_2[x] \)).

Field on \(2^5 \) elements:

1. The elements are polys in \(\mathbb{Z}_2[x] \) of degree \(\leq 4 \).
2. Addition and subtraction are as usual.
3. Mult is MOD \(x^5 + x^2 + 1 \). So Mult two polys together and
 Replace \(x^5 \) with \(-x^2 - 1 = x^2 + 1 \)
 Replace \(x^6 \) with \(-x^3 - x = x^3 + x \)
 Replace \(x^7 \) with \(-x^4 - x^2 = x^4 + x^2 \)
 Replace \(x^8 \) with \(-x^5 - x^3 = x^5 + x^3 \equiv x^3 + x^2 + 1 \)
\(\mathbb{Z}_2[x] \) is the set of polys over \(\mathbb{Z}_2 \). \(x^5 + x^2 + 1 \) is irreducible in \(\mathbb{Z}_2[x] \) (so it is not the product of two other elements of \(\mathbb{Z}_2[x] \)).

Field on \(2^5 \) elements:

1. The elements are polys in \(\mathbb{Z}_2[x] \) of degree \(\leq 4 \).
2. Addition and subtraction are as usual.
3. Mult is MOD \(x^5 + x^2 + 1 \). So Mult two polys together and Replace \(x^5 \) with \(-x^2 - 1 = x^2 + 1 \)
 Replace \(x^6 \) with \(-x^3 - x = x^3 + x \)
 Replace \(x^7 \) with \(-x^4 - x^2 = x^4 + x^2 \)
 Replace \(x^8 \) with \(-x^5 - x^3 = x^5 + x^3 \equiv x^3 + x^2 + 1 \)
4. One can show that this is a Field—mult has inverses. For that proof need that the poly \(x^5 + x^2 + 1 \) is irreducible.
Field on p^a Elements

$\mathbb{Z}_p[x]$ is the set of polynomials over \mathbb{Z}_p.
$f(x)$ is irreducible in $\mathbb{Z}_p[x]$, and of degree a

Field on p^a elements:

1. The elements are polys in $\mathbb{Z}_p[x]$ of degree $\leq a - 1$.
2. Addition and subtraction are as usual.
3. Mult is MOD $f(x)$. So Multiply two polys together and mod down to degree $\leq a - 1$ by assuming $f(x) = 0$.
4. One can show that this is a Field- mult has inverses. For that proof need that the poly $f(x)$ is irreducible.
1. We **could** from now on, on HW and exams and slides and notes, work over the field on 2^n elements and have shares of length **exactly** the size of the secret.
Practical and Pedagogical Point

1. We **could** from now on, on HW and exams and slides and notes, work over the field on 2^n elements and have shares of length **exactly** the size of the secret.

2. That would be **madness!**
Practical and Pedagogical Point

1. We **could** from now on, on HW and exams and slides and notes, work over the field on 2^n elements and have shares of length **exactly** the size of the secret.

2. That would be **madness!** **Madness I say!**
1. We could from now on, on HW and exams and slides and notes, work over the field on 2^n elements and have shares of length exactly the size of the secret.

2. That would be madness! Madness I say!

3. For pedagogy we work over \mathbb{Z}_p for some well chosen p.

1. We could from now on, on HW and exams and slides and notes, work over the field on 2^n elements and have shares of length exactly the size of the secret.

2. That would be madness! Madness I say!

3. For pedagogy we work over \mathbb{Z}_p for some well chosen p.

4. We will cheat and lie. We will say the shares are the same length as the secret when may be off by 1 (YES, just by 1) because we use primes instead of the field on 2^n elements.)
1. We could from now on, on HW and exams and slides and notes, work over the field on 2^n elements and have shares of length exactly the size of the secret.

2. That would be madness! Madness I say!

3. For pedagogy we work over \mathbb{Z}_p for some well chosen p.

4. We will cheat and lie. We will say the shares are the same length as the secret when may be off by 1 (YES, just by 1) because we use primes instead of the field on 2^n elements.)

5. In the real world they use primes.
1. We could from now on, on HW and exams and slides and notes, work over the field on 2^n elements and have shares of length exactly the size of the secret.

2. That would be madness! Madness I say!

3. For pedagogy we work over \mathbb{Z}_p for some well chosen p.

4. We will cheat and lie. We will say the shares are the same length as the secret when may be off by 1 (YES, just by 1) because we use primes instead of the field on 2^n elements.)

5. In the real world they use primes. I think.
Practical and Pedagogical Point

1. We **could** from now on, on HW and exams and slides and notes, work over the field on 2^n elements and have shares of length **exactly** the size of the secret.

2. That would be **madness**! *Madness* I say!

3. For pedagogy we work over \mathbb{Z}_p for some well chosen p.

4. We will **cheat and lie**. We will say the shares are the same length as the secret when may be off by 1 (YES, just by 1) because we use primes instead of the field on 2^n elements.)

5. In the real world they use primes. I think. I’ll ask Putin.
Can Shares be SHORTER than Secret?

1. If we use Fields, we have size-of-shares EQUALS size-of-secret.
2. If we use Mod p with p prime, we have size-of-shares EQUALS size-of-secret (+1).

Can Zelda Secret Share with shares SHORTER than the secret?

1. YES
2. NO
3. YES but needs a hardness assumption.
4. UNKNOWN TO SCIENCE

VOTE
Can Shares be SHORTER than Secret?

1. If we use Fields, we have size-of-shares EQUALS size-of-secret.
2. If we use Mod p with p prime, we have size-of-shares EQUALS size-of-secret (+1).

Can Zelda Secret Share with shares SHORTER than the secret?

1. YES
2. NO
3. YES but needs a hardness assumption.
4. UNKNOWN TO SCIENCE

VOTE

NO
Example of Why Can’t Have Short Shares

Assume there is a (4, 5) Secret Sharing Scheme where Zelda shares a secret of length 7. (This proof will assume NOTHING about the scheme.) The players are A_1, \ldots, A_5

Before the protocol begins there are $2^7 = 128$ possibilities for the secret.

Assume that A_5 gets a share of length 6. We show that the scheme is NOT info-theoretic secure.
If A_1, A_2, A_3, A_5 got together they COULD learn the secret, since its a $(4, 5)$ scheme.
We show that A_1, A_2, A_3 can learn SOMETHING about the secret.

$CAND = \emptyset$. $CAND$ will be set of Candidates for s.

For $x \in \{0, 1\}^6$ (go through ALL shares A_5 could have)

A_1, A_2, A_3 pretend A_5 has x and deduce candidates secret s'

$CAND := CAND \cup \{s'\}$

Secret is in $CAND$. $|CAND| = 2^6 < 2^6$. So A_1, A_2, A_3 have eliminated many strings from being the secret s That is INFORMATION!!!!

On the HW you will do more examples and perhaps generalize to show can NEVER have shorter shares.
Are Shorter Shares Ever Possible?

If we demand info-security then everyone gets a share $\geq n$. What if we only demand comp-security?

VOTE

1. Can get shares $< \beta n$ with a hardness assumption.
2. Even with hardness assumption REQUIRES shares $\geq n$.
Are Shorter Shares Ever Possible?

If we demand info-security then everyone gets a share \(\geq n \).
What if we only demand comp-security?

VOTE

1. Can get shares \(< \beta n\) with a hardness assumption.
2. Even with hardness assumption REQUIRES shares \(\geq n \).

Can get shares \(< \beta n\) with a hardness assumption.
Will do that later.
Generalize The Problem

Our problem: Player A_1, \ldots, A_m, secret s.

1. If t of them get together they can find s.
2. If $t - 1$ of them get together they cannot find s.

That is not quite right. Why?
Generalize The Problem

Our problem: Player A_1, \ldots, A_m, secret s.

1. If t of them get together they can find s.
2. If $t - 1$ of them get together they cannot find s.

That is not quite right. Why?

1. If $\geq t$ of them get together they can find s.
2. If $\leq t - 1$ of them get together they cannot find s.

We want to generalize and look at other subsets.

Example

1. If an even number of players get together can find s.
2. If an odd number of players get together cannot find s.

Try to find a scheme for this secret sharing problem.

You've Been Punked!

A_1, A_2 CAN find s but A_1, A_2, A_3 CANNOT. That's Stupid!
Generalize The Problem

Our problem: Player A_1, \ldots, A_m, secret s.
1. If t of them get together they can find s.
2. If $t - 1$ of them get together they cannot find s.

That is not quite right. Why?
1. If $\geq t$ of them get together they can find s.
2. If $\leq t - 1$ of them get together they cannot find s.

We want to generalize and look at other subsets.

Example
1. If an even number of players get together can find s.
2. If an odd number of players get together can’t find s.

Try to find a scheme for this secret sh. problem.
Generalize The Problem

Our problem: Player A_1, \ldots, A_m, secret s.

1. If t of them get together they can find s.
2. If $t - 1$ of them get together they cannot find s.

That is not quite right. Why?

1. If $\geq t$ of them get together they can find s.
2. If $\leq t - 1$ of them get together they cannot find s.

We want to generalize and look at other subsets.

Example

1. If an even number of players get together can find s.
2. If an odd number of players get together can’t find s.

Try to find a scheme for this secret sh. problem.

You’ve Been Punked!

A_1, A_2 CAN find s but A_1, A_2, A_3 CANNOT. Thats Stupid!
What is it about Threshold?

1. If \(\geq t \) of them get together they can find out secret.
2. If \(\leq t - 1 \) of them get together they cannot find out secret.

Lets rephrase that so we can generalize:

\[
X \text{ is the set of all subsets of } \{A_1, \ldots, A_m\} \text{ with } \geq t \text{ players.}
\]

1. If \(Y \in X \) then the players in \(Y \) can find \(s \).
2. If \(Y \not\in X \) then the players in \(Y \) cannot find \(s \).

This question makes sense. What is it about \(X \) that makes it make sense?

\(X \) is closed under superset: If \(Y \in X \) and \(Y \subseteq Z \) then \(Z \in X \).
What is it about Threshold?

1. If $\geq t$ of them get together they can find out secret.
2. If $\leq t-1$ of them get together they cannot find out secret.

Let's rephrase that so we can generalize:
\mathcal{X} is the set of all subsets of $\{A_1, \ldots, A_m\}$ with $\geq t$ players.

1. If $Y \in \mathcal{X}$ then the players in Y can find s.
2. If $Y \notin \mathcal{X}$ then the players in Y cannot find s.

This question makes sense. What is it about \mathcal{X} that makes it make sense?
What is it about Threshold?

1. If \(\geq t \) of them get together they can find out secret.
2. If \(\leq t - 1 \) of them get together they cannot find out secret.

Let's rephrase that so we can generalize:
\(\mathcal{X} \) is the set of all subsets of \(\{A_1, \ldots, A_m\} \) with \(\geq t \) players.

1. If \(Y \in \mathcal{X} \) then the players in \(Y \) can find \(s \).
2. If \(Y \notin \mathcal{X} \) then the players in \(Y \) cannot find \(s \).

This question makes sense. What is it about \(\mathcal{X} \) that makes it make sense?
\(\mathcal{X} \) is closed under superset:
If \(Y \in \mathcal{X} \) and \(Y \subseteq Z \) then \(Z \in \mathcal{X} \).
Access Structures

Definition
An **Access Structure** is a subset of \(\{A_1, \ldots, A_m\} \) closed under superset.

1. If \(\mathcal{X} \) is an access structure then the following questions make sense:
 1.1 Is there a secret sh. scheme for \(\mathcal{X} \)?
 1.2 Is there a secret sh. scheme for \(\mathcal{X} \) where all shares are the same size as the secret?

2. \((t, m)\)-Threshold is an Access structure. The poly method gives a Secret Sharing scheme where all the shares are the same length as the secret.

Definition
A sec. sharing sch. is **ideal** if all shares same size as secret.
Want

1. At least 2 of A_1, A_2, A_3, OR
2. At least 4 of $B_1, B_2, B_3, B_4, B_5, B_6, B_7$.

How can Zelda do this?
OR of AND: Ideal Sec Sharing Protocol

Want

1. At least 2 of A_1, A_2, A_3, OR
2. At least 4 of $B_1, B_2, B_3, B_4, B_5, B_6, B_7$.

How can Zelda do this?

1. Zelda does $(2, 3)$ secret sh. with A_1, A_2, A_3.
2. Zelda does $(4, 7)$ secret sh. with B_1, \ldots, B_7.

To generalize this we need a better notation.
OR of AND: Ideal Sec Sharing Protocol

Want

1. At least 2 of A_1, A_2, A_3, OR
2. At least 4 of $B_1, B_2, B_3, B_4, B_5, B_6, B_7$.

How can Zelda do this?

1. Zelda does (2, 3) secret sh. with A_1, A_2, A_3.
2. Zelda does (4, 7) secret sh. with B_1, \ldots, B_7.

To generalize this we need a better notation.
Notation for Threshold

Let $TH_A(t, m)$ be the Boolean Formula that represents at least t out of m of the A_i's.
Notation for Threshold

Let $TH_A(t, m)$ be the Boolean Formula that represents at least t out of m of the A_i's.

Example $TH_A(2, 4)$ is
At least 2 of A_1, A_2, A_3, A_4.
Notation for Threshold

Let $TH_A(t, m)$ be the Boolean Formula that represents at least t out of m of the A_i’s.

Example $TH_A(2, 4)$ is
At least 2 of A_1, A_2, A_3, A_4.

Example $TH_B(3, 6)$ is
At least 3 of B_1, \ldots, B_6.
Notation for Threshold

Let $TH_A(t, m)$ be the Boolean Formula that represents at least t out of m of the A_i's.

Example $TH_A(2, 4)$ is
At least 2 of A_1, A_2, A_3, A_4.

Example $TH_B(3, 6)$ is
At least 3 of B_1, \ldots, B_6.

Note $TH_A(t, m)$ has ideal secret sh..
Notation for Threshold

Let $TH_A(t, m)$ be the Boolean Formula that represents at least t out of m of the A_i's.

Example $TH_A(2, 4)$ is
At least 2 of A_1, A_2, A_3, A_4.

Example $TH_B(3, 6)$ is
At least 3 of B_1, \ldots, B_6.

Note $TH_A(t, m)$ has ideal secret sh..

Notation $TH_A(t_1, m_1) \lor TH_B(t_2, m_2)$ means that:

1. $\geq t_1$ A_1, \ldots, A_{m_1} can learn the secret.
2. $\geq t_2$ B_1, \ldots, B_{m_2} can learn the secret.
3. No other group can learn the secret (e.g., A_1, A_2, B_1 cannot)
There is Ideal Secret Sharing for $TH_A(t_1, m_1) \lor \cdots \lor TH_Z(t_{26}, m_{26})$

1. Zelda and the A_1, \ldots, A_{m_1} do (t_1, m_1) secret sh..

2.

3. Zelda and the $Z_1, \ldots, Z_{m_{26}}$ do (t_{26}, m_{26}) secret sh..

Note We now have a large set of non-threshold scenarios that have ideal secret sh..
AND of $TH_A(t, m)$s: An Example

We want that if ≥ 2 of A_1, A_2, A_3, A_4 AND ≥ 4 of B_1, \ldots, B_7 get together than they can learn the secret, but no other groups can. Think about it.
AND of $TH_A(t, m)$s: An Example

We want that if ≥ 2 of A_1, A_2, A_3, A_4 AND ≥ 4 of B_1, \ldots, B_7 get together than they can learn the secret, but no other groups can. Think about it.

1. Zelda has secret s, $|s| = n$.
2. Zelda generates random $r \in \{0, 1\}^n$.
3. Zelda does $(2, 4)$ secret sh. of r with A_1, A_2, A_3, A_4.
4. Zelda does $(4, 7)$ secret sh. of $r \oplus s$ with B_1, \ldots, B_7.
5. If ≥ 2 of A_i’s get together they can find r. If ≥ 4 of B_i’s get together they can find $r \oplus s$. So if they call get together they can find

$$r \oplus (r \oplus s) = s$$
AND of $TH_A(t, m)$s: General

$TH_A(t_1, m_1) \land \cdots \land TH_Z(t_{26}, m_{26})$ can do secret sh..

1. Zelda has secret s, $|s| = n$.

2. Zelda generates random $r_1, \ldots, r_{25} \in \{0, 1\}^n$.

3. Zelda does (t_1, m_1) secret sh. of r_1 with A_i’s.

4. :

5. Zelda does (t_{25}, m_{25}) secret sh. of r_{25} with Y_i’s.

6. Zelda does (t_{26}, m_{26}) secret sh. of $r_1 \oplus \cdots \oplus r_{25} \oplus s$ with Z_i’s.

7. If $\geq t_1$ of A_i’s get together they can find r_1. If $\geq t_2$ of B_i’s get together they can find r_2. \cdots If $\geq t_{25}$ of Y_i’s get together they can find r_{25}. If $\geq t_{26}$ of Z_i’s get together they can find $r_1 \oplus \cdots \oplus r_{25} \oplus s$. So if they call get together they can find

$$r_1 \oplus \cdots \oplus r_{25} \oplus (r_1 \oplus \cdots \oplus r_{25} \oplus s) = s$$
Definition A **monotone formula** is a Boolean formula with no NOT signs.

If you put together what we did with TH and use induction you can prove the following:

Theorem Let X_1, \ldots, X_N each be a threshold $TH_A(t, m)$ but all using DIFFERENT players.

Let $F(X_1, \ldots, X_N)$ be a monotone Boolean formula where each X_i appears only once. Then Zelda can do ideal secret sh. where only sets that satisfy $F(X_1, \ldots, X_N)$ can learn the secret.

Routine proof left to the reader. Might be on a HW or the Final.
Access Structures that admit Ideal Sec. Sharing

1. Threshold Secret sharing: if \(t \) or more get together. WE DID THIS.
2. Monotone Boolean Formulas of Threshold where every set of players appears only once. WE DID THIS.
3. Let \(G \) be a graph. Let \(s, t \) be nodes. People are edges. Any connected path can get the secret. WE DIDN”T DO THIS AND WON”T.
4. Monotone Span Programs (Omitted – its a Matrix Thing) WE DIDN”T DO THIS AND WON”T.
Access Structures that do not admit Ideal Sec Sharing

1. \((A_1 \land A_2) \lor (A_2 \land A_3) \lor (A_3 \land A_4)\)

2. \((A_1 \land A_2 \land A_3) \lor (A_1 \land A_4) \lor (A_2 \land A_4) \lor (A_3 \lor A_4)\) (Captain and Crew) \(A_1, A_2, A_3\) is the crew, and \(A_4\) is the captain. Entire crew, or captain and 1 crew, can get \(s\).

3. \((A_1 \land A_2 \land A_3) \lor (A_1 \land A_4) \lor (A_2 \land A_4)\) (Captain and Rival) \(A_1, A_2, A_3\) is the crew, \(A_3\) is a rival, \(A_4\) is the captain. Entire crew, or captain and 1 crew who is NOT rival, can get \(s\).

4. Any access structure that contains any of the above.

In all of the above, all get a share of size \(1.5n\) and this is optimal.
Open Question

Determine for every access structure the functions $f(n)$ and $g(n)$ such that

1. (\exists) Scheme where everyone gets $\leq f(n)$ sized share.
2. (\forall) Scheme someone gets $\geq g(n)$ sized share.
3. $f(n)$ and $g(n)$ are close together.