BILL START RECORDING

Quadratic Sieve Factoring

[^0]
Notation Reminder

1) $\operatorname{GCD}(x, y)$ is the Greatest Common Divisor of x, y.

Notation Reminder

1) $\operatorname{GCD}(\mathbf{x}, \mathrm{y})$ is the Greatest Common Divisor of x, y.
2) Sums and Products

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n} \\
& \prod_{i=1}^{n} a_{i}=a_{1} \times a_{2} \times \cdots \times a_{n}
\end{aligned}
$$

Notation Reminder

1) $\operatorname{GCD}(\mathbf{x}, \mathbf{y})$ is the Greatest Common Divisor of x, y.
2) Sums and Products

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n} \\
& \prod_{i=1}^{n} a_{i}=a_{1} \times a_{2} \times \cdots \times a_{n}
\end{aligned}
$$

3) More Sums and Products We summed or producted over $\{1, \ldots, n\}$. Can use other sets.

Notation Reminder

1) $\operatorname{GCD}(\mathbf{x}, \mathbf{y})$ is the Greatest Common Divisor of x, y.
2) Sums and Products

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n} \\
& \prod_{i=1}^{n} a_{i}=a_{1} \times a_{2} \times \cdots \times a_{n}
\end{aligned}
$$

3) More Sums and Products We summed or producted over $\{1, \ldots, n\}$. Can use other sets.
If $A=\{1,4,9\}$ then

$$
\begin{aligned}
& \sum_{i \in A} a_{i}=a_{1}+a_{4}+a_{9} \\
& \prod_{i \in A} a_{i}=a_{1} \times a_{4} \times a_{9}
\end{aligned}
$$

More Notation Reminder

4) a_{1}, \ldots, a_{n} could be vectors.

$$
\sum_{i \in A} \vec{a}_{i}=\vec{a}_{1}+\vec{a}_{4}+\vec{a}_{9} .
$$

Addition is component-wise.

More Notation Reminder

4) a_{1}, \ldots, a_{n} could be vectors.

$$
\sum_{i \in A} \vec{a}_{i}=\vec{a}_{1}+\vec{a}_{4}+\vec{a}_{9}
$$

Addition is component-wise. We will not be using any notion of a product of vectors.

More Notation Reminder

4) a_{1}, \ldots, a_{n} could be vectors.

$$
\sum_{i \in A} \vec{a}_{i}=\vec{a}_{1}+\vec{a}_{4}+\vec{a}_{9}
$$

Addition is component-wise. We will not be using any notion of a product of vectors.
5) We extend mod notation to vectors of integers. Example:

$$
(8,1,0,9) \quad(\bmod 2)=(0,1,0,1)
$$

Quick: Factor 8051

Factor 8051. Looks Hard.

Quick: Factor 8051

Factor 8051. Looks Hard.
OH - note that

$$
8051=90^{2}-7^{2}=(90+7)(90-7)=97 \times 83
$$

Quick: Factor 8051

Factor 8051. Looks Hard.
OH - note that

$$
8051=90^{2}-7^{2}=(90+7)(90-7)=97 \times 83
$$

Key Wrote 8051 as diff of two squares.

Quick: Factor 8051

Factor 8051. Looks Hard.
OH - note that

$$
8051=90^{2}-7^{2}=(90+7)(90-7)=97 \times 83
$$

Key Wrote 8051 as diff of two squares.
General If $N=x^{2}-y^{2}$ then get $N=(x-y)(x+y)$.

Quick: Factor 8051

Factor 8051. Looks Hard.
OH - note that

$$
8051=90^{2}-7^{2}=(90+7)(90-7)=97 \times 83
$$

Key Wrote 8051 as diff of two squares.
General If $N=x^{2}-y^{2}$ then get $N=(x-y)(x+y)$.
But Lucky: we happen to spot two squares that worked.

Quick: Factor 8051

Factor 8051. Looks Hard.
OH - note that

$$
8051=90^{2}-7^{2}=(90+7)(90-7)=97 \times 83
$$

Key Wrote 8051 as diff of two squares.
General If $N=x^{2}-y^{2}$ then get $N=(x-y)(x+y)$.
But Lucky: we happen to spot two squares that worked.
History Carl Pomerance was on the Math Team in High School and this was a problem he was given. He didn't solve it in time, but it inspired him to (much later) invent the Quadratic Sieve Factoring Algorithm.

Quick: Factor 1261

$$
81^{2}-16^{2}=6305=5 \times 1261
$$

Does this help?

Quick: Factor 1261

$$
81^{2}-16^{2}=6305=5 \times 1261
$$

Does this help? $(81-16) \times(81+16)=5 \times 1261$

$$
65 \times 97=5 \times 1261
$$

Quick: Factor 1261

$$
81^{2}-16^{2}=6305=5 \times 1261
$$

Does this help? $(81-16) \times(81+16)=5 \times 1261$

$$
65 \times 97=5 \times 1261
$$

(Could divide both sides by 5 , please ignore that.)

Quick: Factor 1261

$$
81^{2}-16^{2}=6305=5 \times 1261
$$

Does this help? $(81-16) \times(81+16)=5 \times 1261$

$$
65 \times 97=5 \times 1261
$$

(Could divide both sides by 5 , please ignore that.)
65 divides 5×1261, so 65 might share a factor with 1261 . Take GCD: $\operatorname{GCD}(65,1261)=13$. So 13 divides 1261 .

Quick: Factor 1261

$$
81^{2}-16^{2}=6305=5 \times 1261
$$

Does this help? $(81-16) \times(81+16)=5 \times 1261$

$$
65 \times 97=5 \times 1261
$$

(Could divide both sides by 5 , please ignore that.)
65 divides 5×1261, so 65 might share a factor with 1261 . Take $\operatorname{GCD}: \operatorname{GCD}(65,1261)=13$. So 13 divides 1261 .
General If $\left(x^{2}-y^{2}\right)=k N$ then

- $\operatorname{GCD}(x-y, N)$ might be a nontrivial factor.
- $\operatorname{GCD}(x+y, N)$ might be a nontrivial factor.

Quick: Factor 1261

$$
81^{2}-16^{2}=6305=5 \times 1261
$$

Does this help? $(81-16) \times(81+16)=5 \times 1261$

$$
65 \times 97=5 \times 1261
$$

(Could divide both sides by 5 , please ignore that.)
65 divides 5×1261, so 65 might share a factor with 1261 . Take $\operatorname{GCD}: \operatorname{GCD}(65,1261)=13$. So 13 divides 1261 .
General If $\left(x^{2}-y^{2}\right)=k N$ then

- $\operatorname{GCD}(x-y, N)$ might be a nontrivial factor.
- $\operatorname{GCD}(x+y, N)$ might be a nontrivial factor.

Want
$x^{2}-y^{2}=k N$.
$x^{2}-y^{2} \equiv 0(\bmod N)$.
$x^{2} \equiv y^{2}(\bmod N)$.

Quick: Factor 1649

Want $x^{2} \equiv y^{2}(\bmod 1649)$. Start at $\lceil\sqrt{1649}\rceil=41$.

Quick: Factor 1649

Want $x^{2} \equiv y^{2}(\bmod 1649)$. Start at $\lceil\sqrt{1649}\rceil=41$.
$41^{2} \equiv 32=2^{5}(\bmod 1649)$

Quick: Factor 1649

Want $x^{2} \equiv y^{2}(\bmod 1649)$. Start at $\lceil\sqrt{1649}\rceil=41$.
$41^{2} \equiv 32=2^{5}(\bmod 1649)$
$42^{2} \equiv 115=5 \times 23(\bmod 1649)$

Quick: Factor 1649

Want $x^{2} \equiv y^{2}(\bmod 1649)$. Start at $\lceil\sqrt{1649}\rceil=41$.
$41^{2} \equiv 32=2^{5}(\bmod 1649)$
$42^{2} \equiv 115=5 \times 23(\bmod 1649)$
$43^{2} \equiv 200=2^{3} \times 5^{2}(\bmod 1649)$

Quick: Factor 1649

Want $x^{2} \equiv y^{2}(\bmod 1649)$. Start at $\lceil\sqrt{1649}\rceil=41$.
$41^{2} \equiv 32=2^{5}(\bmod 1649)$
$42^{2} \equiv 115=5 \times 23(\bmod 1649)$
$43^{2} \equiv 200=2^{3} \times 5^{2}(\bmod 1649)$
Does any of this help?

Quick: Factor 1649

Want $x^{2} \equiv y^{2}(\bmod 1649)$. Start at $\lceil\sqrt{1649}\rceil=41$.
$41^{2} \equiv 32=2^{5}(\bmod 1649)$
$42^{2} \equiv 115=5 \times 23(\bmod 1649)$
$43^{2} \equiv 200=2^{3} \times 5^{2}(\bmod 1649)$
Does any of this help?

$$
41^{2} \times 43^{2} \equiv 2^{5} \times 2^{3} \times 5^{2}=2^{8} \times 5^{2}=\left(2^{4} \times 5\right)^{2}=80^{2}
$$

Quick: Factor 1649

Want $x^{2} \equiv y^{2}(\bmod 1649)$. Start at $\lceil\sqrt{1649}\rceil=41$.
$41^{2} \equiv 32=2^{5}(\bmod 1649)$
$42^{2} \equiv 115=5 \times 23(\bmod 1649)$
$43^{2} \equiv 200=2^{3} \times 5^{2}(\bmod 1649)$
Does any of this help?

$$
41^{2} \times 43^{2} \equiv 2^{5} \times 2^{3} \times 5^{2}=2^{8} \times 5^{2}=\left(2^{4} \times 5\right)^{2}=80^{2}
$$

$$
(41 \times 43)^{2}-80^{2} \equiv 0 \quad(\bmod 1649)
$$

Quick: Factor 1649

Want $x^{2} \equiv y^{2}(\bmod 1649)$. Start at $\lceil\sqrt{1649}\rceil=41$.
$41^{2} \equiv 32=2^{5}(\bmod 1649)$
$42^{2} \equiv 115=5 \times 23(\bmod 1649)$
$43^{2} \equiv 200=2^{3} \times 5^{2}(\bmod 1649)$
Does any of this help?

$$
\begin{gathered}
41^{2} \times 43^{2} \equiv 2^{5} \times 2^{3} \times 5^{2}=2^{8} \times 5^{2}=\left(2^{4} \times 5\right)^{2}=80^{2} \\
(41 \times 43)^{2}-80^{2} \equiv 0 \quad(\bmod 1649) \\
1763^{2}-80^{2} \equiv 0 \quad(\bmod 1649)
\end{gathered}
$$

Quick: Factor 1649

Want $x^{2} \equiv y^{2}(\bmod 1649)$. Start at $\lceil\sqrt{1649}\rceil=41$.
$41^{2} \equiv 32=2^{5}(\bmod 1649)$
$42^{2} \equiv 115=5 \times 23(\bmod 1649)$
$43^{2} \equiv 200=2^{3} \times 5^{2}(\bmod 1649)$
Does any of this help?

$$
41^{2} \times 43^{2} \equiv 2^{5} \times 2^{3} \times 5^{2}=2^{8} \times 5^{2}=\left(2^{4} \times 5\right)^{2}=80^{2}
$$

$$
(41 \times 43)^{2}-80^{2} \equiv 0 \quad(\bmod 1649)
$$

$$
1763^{2}-80^{2} \equiv 0 \quad(\bmod 1649)
$$

$$
114^{2}-80^{2} \equiv 0 \quad(\bmod 1649)
$$

Quick: Factor 1649

Want $x^{2} \equiv y^{2}(\bmod 1649)$. Start at $\lceil\sqrt{1649}\rceil=41$.
$41^{2} \equiv 32=2^{5}(\bmod 1649)$
$42^{2} \equiv 115=5 \times 23(\bmod 1649)$
$43^{2} \equiv 200=2^{3} \times 5^{2}(\bmod 1649)$
Does any of this help?

$$
41^{2} \times 43^{2} \equiv 2^{5} \times 2^{3} \times 5^{2}=2^{8} \times 5^{2}=\left(2^{4} \times 5\right)^{2}=80^{2}
$$

$$
(41 \times 43)^{2}-80^{2} \equiv 0 \quad(\bmod 1649)
$$

$$
1763^{2}-80^{2} \equiv 0 \quad(\bmod 1649)
$$

$$
114^{2}-80^{2} \equiv 0 \quad(\bmod 1649)
$$

$$
(114-80)(114+80) \equiv 34 \times 194 \equiv 0 \quad(\bmod 1649)
$$

Quick: Factor 1649

Want $x^{2} \equiv y^{2}(\bmod 1649)$. Start at $\lceil\sqrt{1649}\rceil=41$.
$41^{2} \equiv 32=2^{5}(\bmod 1649)$
$42^{2} \equiv 115=5 \times 23(\bmod 1649)$
$43^{2} \equiv 200=2^{3} \times 5^{2}(\bmod 1649)$
Does any of this help?
$41^{2} \times 43^{2} \equiv 2^{5} \times 2^{3} \times 5^{2}=2^{8} \times 5^{2}=\left(2^{4} \times 5\right)^{2}=80^{2}$

$$
(41 \times 43)^{2}-80^{2} \equiv 0 \quad(\bmod 1649)
$$

$$
1763^{2}-80^{2} \equiv 0 \quad(\bmod 1649)
$$

$$
114^{2}-80^{2} \equiv 0 \quad(\bmod 1649)
$$

$$
(114-80)(114+80) \equiv 34 \times 194 \equiv 0 \quad(\bmod 1649)
$$

$\operatorname{GCD}(34,1649)=17$ Found a Factor!

Factoring 1649: 194 Also Works?

Recall:

$$
(114-80)(114+80) \equiv 34 \times 194 \equiv 0 \quad(\bmod 1649)
$$

Factoring 1649: 194 Also Works?

Recall:
$(114-80)(114+80) \equiv 34 \times 194 \equiv 0 \quad(\bmod 1649)$
$\operatorname{GCD}(34,1649)=17$ Found a Factor!

Factoring 1649: 194 Also Works?

Recall:
$(114-80)(114+80) \equiv 34 \times 194 \equiv 0 \quad(\bmod 1649)$
$\operatorname{GCD}(34,1649)=17$ Found a Factor!
What if we used 194 instead of 34 ?

Factoring 1649: 194 Also Works?

Recall:

$$
(114-80)(114+80) \equiv 34 \times 194 \equiv 0 \quad(\bmod 1649)
$$

$\operatorname{GCD}(34,1649)=17$ Found a Factor!
What if we used 194 instead of 34 ?
$\operatorname{GCD}(194,1649)=97$ Found a Factor!
So 194 also works.

How Can We Make This Happen?
Idea Let $x=\lceil\sqrt{N}\rceil$.

How Can We Make This Happen?

Idea Let $x=\lceil\sqrt{N}\rceil$.

$$
\begin{array}{lll}
(x+0)^{2} \equiv y_{0} & (\bmod N) . & \text { Factor } y_{0} \\
(x+1)^{2} \equiv y_{1} & (\bmod N) . & \text { Factor } y_{1}
\end{array}
$$

How Can We Make This Happen?

Idea Let $x=\lceil\sqrt{N}\rceil$.

$$
\begin{array}{lll}
(x+0)^{2} \equiv y_{0} & (\bmod N) . & \text { Factor } y_{0} \\
(x+1)^{2} \equiv y_{1} & (\bmod N) . & \text { Factor } y_{1}
\end{array}
$$

Look for $I \subseteq \mathbb{N}$ such that: $\prod_{i \in I} y_{i}=q_{1}^{2 e_{1}} q_{2}^{2 e_{2}} \cdots q_{k}^{2 e_{k}}$.

How Can We Make This Happen?

Idea Let $x=\lceil\sqrt{N}\rceil$.

$$
\begin{array}{lll}
(x+0)^{2} \equiv y_{0} & (\bmod N) . & \text { Factor } y_{0} \\
(x+1)^{2} \equiv y_{1} & (\bmod N) . & \text { Factor } y_{1}
\end{array}
$$

Look for $I \subseteq \mathbb{N}$ such that: $\prod_{i \in I} y_{i}=q_{1}^{2 e_{1}} q_{2}^{2 e_{2}} \cdots q_{k}^{2 e_{k}}$. Then we get:

$$
\left(\prod_{i \in I}(x+i)\right)^{2} \equiv\left(\prod_{i=1}^{k} q_{i}^{e_{i}}\right)^{2} \quad(\bmod N)
$$

How Can We Make This Happen?

Idea Let $x=\lceil\sqrt{N}\rceil$.

$$
\begin{array}{lll}
(x+0)^{2} \equiv y_{0} & (\bmod N) . & \text { Factor } y_{0} \\
(x+1)^{2} \equiv y_{1} & (\bmod N) . & \text { Factor } y_{1}
\end{array}
$$

Look for $I \subseteq \mathbb{N}$ such that: $\prod_{i \in I} y_{i}=q_{1}^{2 e_{1}} q_{2}^{2 e_{2}} \cdots q_{k}^{2 e_{k}}$.
Then we get:

$$
\begin{gathered}
\left(\prod_{i \in I}(x+i)\right)^{2} \equiv\left(\prod_{i=1}^{k} q_{i}^{e_{i}}\right)^{2}(\bmod N) \\
\text { Let } X=\prod_{i \in I}(x+i)(\bmod N) \text { and } Y=\prod_{i=1}^{k} q_{i}^{e_{i}}(\bmod N)
\end{gathered}
$$

How Can We Make This Happen?

Idea Let $x=\lceil\sqrt{N}\rceil$.

$$
\begin{array}{lll}
(x+0)^{2} \equiv y_{0} & (\bmod N) . & \text { Factor } y_{0} \\
(x+1)^{2} \equiv y_{1} & (\bmod N) . & \text { Factor } y_{1}
\end{array}
$$

Look for $I \subseteq \mathbb{N}$ such that: $\prod_{i \in I} y_{i}=q_{1}^{2 e_{1}} q_{2}^{2 e_{2}} \cdots q_{k}^{2 e_{k}}$.
Then we get:

$$
\begin{gathered}
\left(\prod_{i \in I}(x+i)\right)^{2} \equiv\left(\prod_{i=1}^{k} q_{i}^{e_{i}}\right)^{2}(\bmod N) \\
\text { Let } X=\prod_{i \in I}(x+i)(\bmod N) \text { and } Y=\prod_{i=1}^{k} q_{i}^{e_{i}}(\bmod N) \\
X^{2}-Y^{2} \equiv 0 \quad(\bmod N)
\end{gathered}
$$

How Can We Make This Happen?

Idea Let $x=\lceil\sqrt{N}\rceil$.

$$
\begin{array}{lll}
(x+0)^{2} \equiv y_{0} & (\bmod N) . & \text { Factor } y_{0} \\
(x+1)^{2} \equiv y_{1} & (\bmod N) . & \text { Factor } y_{1}
\end{array}
$$

Look for $I \subseteq \mathbb{N}$ such that: $\prod_{i \in I} y_{i}=q_{1}^{2 e_{1}} q_{2}^{2 e_{2}} \cdots q_{k}^{2 e_{k}}$.
Then we get:

$$
\begin{gathered}
\left(\prod_{i \in I}(x+i)\right)^{2} \equiv\left(\prod_{i=1}^{k} q_{i}^{e_{i}}\right)^{2}(\bmod N) \\
\text { Let } X=\prod_{i \in I}(x+i)(\bmod N) \text { and } Y=\prod_{i=1}^{k} q_{i}^{e_{i}}(\bmod N) \\
X^{2}-Y^{2} \equiv 0 \quad(\bmod N)
\end{gathered}
$$

Is this a good idea? Discuss.

Look at the First Step

$$
\begin{array}{lll}
(x+0)^{2} \equiv y_{0} & (\bmod N) . & \text { Factor } y_{0} \\
(x+1)^{2} \equiv y_{1} & (\bmod N) . & \text { Factor } y_{1}
\end{array}
$$

Look at the First Step

$$
\begin{array}{lll}
(x+0)^{2} \equiv y_{0} & (\bmod N) . & \text { Factor } y_{0} \\
(x+1)^{2} \equiv y_{1} & (\bmod N) . & \text { Factor } y_{1}
\end{array}
$$

In order to factor N we needed to factor the y_{i} 's.

Look at the First Step

$$
\begin{array}{lll}
(x+0)^{2} \equiv y_{0} & (\bmod N) . & \text { Factor } y_{0} \\
(x+1)^{2} \equiv y_{1} & (\bmod N) . & \text { Factor } y_{1}
\end{array}
$$

In order to factor N we needed to factor the y_{i} 's. Really?

Look at the First Step

$$
\begin{array}{lll}
(x+0)^{2} \equiv y_{0} & (\bmod N) . & \text { Factor } y_{0} \\
(x+1)^{2} \equiv y_{1} & (\bmod N) . & \text { Factor } y_{1}
\end{array}
$$

In order to factor N we needed to factor the y_{i} 's. Really? Darn!

Look at the First Step

$$
\begin{array}{lll}
(x+0)^{2} \equiv y_{0} & (\bmod N) . & \text { Factor } y_{0} \\
(x+1)^{2} \equiv y_{1} & (\bmod N) . & \text { Factor } y_{1}
\end{array}
$$

In order to factor N we needed to factor the y_{i} 's. Really? Darn! Ideas?

B-Factoring

Idea B be a parameter. $p_{1}<p_{2}<\cdots<p_{B}$ are the first B primes.
Def A number is B-factorable if largest prime factor is $\leq p_{B}$.

B-Factoring

Idea B be a parameter. $p_{1}<p_{2}<\cdots<p_{B}$ are the first B primes.
Def A number is B-factorable if largest prime factor is $\leq p_{B}$.
Example $B=5$. Primes $2,3,5,7,11$. $1000=2^{3} \times 5^{3}$. So B-factored. $27378897=11 \times 31^{2} \times 37$. NOT B-factored.

B-Factoring

Idea B be a parameter. $p_{1}<p_{2}<\cdots<p_{B}$ are the first B primes.
Def A number is B-factorable if largest prime factor is $\leq p_{B}$.
Example $B=5$. Primes $2,3,5,7,11$. $1000=2^{3} \times 5^{3}$. So B-factored. $27378897=11 \times 31^{2} \times 37$. NOT B-factored.
Is B-factoring faster than factoring?

B-Factoring

Idea B be a parameter. $p_{1}<p_{2}<\cdots<p_{B}$ are the first B primes.
Def A number is B-factorable if largest prime factor is $\leq p_{B}$.
Example $B=5$. Primes $2,3,5,7,11$. $1000=2^{3} \times 5^{3}$. So B-factored. $27378897=11 \times 31^{2} \times 37$. NOT B-factored.
Is B-factoring faster than factoring?
Lets try to B-factor 82203.

B-Factoring

Idea B be a parameter. $p_{1}<p_{2}<\cdots<p_{B}$ are the first B primes.
Def A number is B-factorable if largest prime factor is $\leq p_{B}$.
Example $B=5$. Primes $2,3,5,7,11$.
$1000=2^{3} \times 5^{3}$. So B-factored.
$27378897=11 \times 31^{2} \times 37$. NOT B-factored.
Is B-factoring faster than factoring?
Lets try to B-factor 82203.

1. Divide 2 into it. 2 does not divide 82203.

B-Factoring

Idea B be a parameter. $p_{1}<p_{2}<\cdots<p_{B}$ are the first B primes.
Def A number is B-factorable if largest prime factor is $\leq p_{B}$.
Example $B=5$. Primes $2,3,5,7,11$.
$1000=2^{3} \times 5^{3}$. So B-factored.
$27378897=11 \times 31^{2} \times 37$. NOT B-factored.
Is B-factoring faster than factoring?
Lets try to B-factor 82203.

1. Divide 2 into it. 2 does not divide 82203.
2. Divide 3 into what's left. $82203=3 \times 27401$.

B-Factoring

Idea B be a parameter. $p_{1}<p_{2}<\cdots<p_{B}$ are the first B primes.
Def A number is B-factorable if largest prime factor is $\leq p_{B}$.
Example $B=5$. Primes $2,3,5,7,11$.
$1000=2^{3} \times 5^{3}$. So B-factored.
$27378897=11 \times 31^{2} \times 37$. NOT B-factored.
Is B-factoring faster than factoring?
Lets try to B-factor 82203.

1. Divide 2 into it. 2 does not divide 82203.
2. Divide 3 into what's left. $82203=3 \times 27401$.
3. Divide 5 into what's left. 5 does not divide 27401.

B-Factoring

Idea B be a parameter. $p_{1}<p_{2}<\cdots<p_{B}$ are the first B primes.
Def A number is B-factorable if largest prime factor is $\leq p_{B}$.
Example $B=5$. Primes $2,3,5,7,11$.
$1000=2^{3} \times 5^{3}$. So B-factored.
$27378897=11 \times 31^{2} \times 37$. NOT B-factored.
Is B-factoring faster than factoring?
Lets try to B-factor 82203.

1. Divide 2 into it. 2 does not divide 82203.
2. Divide 3 into what's left. $82203=3 \times 27401$.
3. Divide 5 into what's left. 5 does not divide 27401.
4. Divide 7 into what's left. 7 does not divide 27401.

B-Factoring

Idea B be a parameter. $p_{1}<p_{2}<\cdots<p_{B}$ are the first B primes.
Def A number is B-factorable if largest prime factor is $\leq p_{B}$.
Example $B=5$. Primes $2,3,5,7,11$.
$1000=2^{3} \times 5^{3}$. So B-factored.
$27378897=11 \times 31^{2} \times 37$. NOT B-factored.
Is B-factoring faster than factoring?
Lets try to B-factor 82203.

1. Divide 2 into it. 2 does not divide 82203.
2. Divide 3 into what's left. $82203=3 \times 27401$.
3. Divide 5 into what's left. 5 does not divide 27401.
4. Divide 7 into what's left. 7 does not divide 27401.
5. Divide 11 into what's left. $82203=3 \times 11 \times 2491$.

B-Factoring

Idea B be a parameter. $p_{1}<p_{2}<\cdots<p_{B}$ are the first B primes.
Def A number is B-factorable if largest prime factor is $\leq p_{B}$.
Example $B=5$. Primes $2,3,5,7,11$.
$1000=2^{3} \times 5^{3}$. So B-factored.
$27378897=11 \times 31^{2} \times 37$. NOT B-factored.
Is B-factoring faster than factoring?
Lets try to B-factor 82203.

1. Divide 2 into it. 2 does not divide 82203.
2. Divide 3 into what's left. $82203=3 \times 27401$.
3. Divide 5 into what's left. 5 does not divide 27401.
4. Divide 7 into what's left. 7 does not divide 27401.
5. Divide 11 into what's left. $82203=3 \times 11 \times 2491$.
6. DONE. NOT B-factorable. Only did B divisions.

Abbreviation

We use B-fact for B-factorable.
Why?

Abbreviation

We use B-fact for B-factorable.
Why?
Space on slides!

Example of Algorithm that Uses B-Factoring

Want to factor 539873. $B=7$ so use $2,3,5,7,11,13,17$
$\lceil\sqrt{539873}\rceil=735$

Example of Algorithm that Uses B-Factoring

Want to factor 539873. $B=7$ so use $2,3,5,7,11,13,17$
$\lceil\sqrt{539873}\rceil=735$
$735^{2} \equiv 352=2^{5} \times 11^{1}(\bmod 539873)$.
$736^{2}, \ldots, 749^{2}$ did not 7 -factor.

Example of Algorithm that Uses B-Factoring

Want to factor 539873. $B=7$ so use $2,3,5,7,11,13,17$
$\lceil\sqrt{539873}\rceil=735$
$735^{2} \equiv 352=2^{5} \times 11^{1}(\bmod 539873)$.
$736^{2}, \ldots, 749^{2}$ did not 7 -factor.
$750^{2} \equiv 22627 \equiv 11^{3} \times 17^{1}(\bmod 539873)$.

Example of Algorithm that Uses B-Factoring

Want to factor 539873. $B=7$ so use $2,3,5,7,11,13,17$
$\lceil\sqrt{539873}\rceil=735$
$735^{2} \equiv 352=2^{5} \times 11^{1}(\bmod 539873)$.
$736^{2}, \ldots, 749^{2}$ did not 7 -factor.
$750^{2} \equiv 22627 \equiv 11^{3} \times 17^{1}(\bmod 539873)$.
$751^{2}, \ldots, 782^{2}$ did not 7-factor.

Example of Algorithm that Uses B-Factoring

Want to factor 539873. $B=7$ so use $2,3,5,7,11,13,17$
$\lceil\sqrt{539873}\rceil=735$
$735^{2} \equiv 352=2^{5} \times 11^{1}(\bmod 539873)$.
$736^{2}, \ldots, 749^{2}$ did not 7 -factor.
$750^{2} \equiv 22627 \equiv 11^{3} \times 17^{1}(\bmod 539873)$.
$751^{2}, \ldots, 782^{2}$ did not 7 -factor.
$783^{2} \equiv 73216 \equiv 2^{9} \times 11^{1} \times 13^{1}(\bmod 539873)$.

Example of Algorithm that Uses B-Factoring

Want to factor 539873. $B=7$ so use $2,3,5,7,11,13,17$
$\lceil\sqrt{539873}\rceil=735$
$735^{2} \equiv 352=2^{5} \times 11^{1}(\bmod 539873)$.
$736^{2}, \ldots, 749^{2}$ did not 7 -factor.
$750^{2} \equiv 22627 \equiv 11^{3} \times 17^{1}(\bmod 539873)$.
$751^{2}, \ldots, 782^{2}$ did not 7-factor.
$783^{2} \equiv 73216 \equiv 2^{9} \times 11^{1} \times 13^{1}(\bmod 539873)$.
$784^{2}, \ldots, 800^{2}$ did not 7 -factor.
$801^{2} \equiv 101728 \equiv 2^{5} \times 11^{1} \times 17^{2}(\bmod 539873)$.
Can we use this? Next Slide I write it more nicely.

Example Continued: Trying to factor 539873

$$
\begin{aligned}
& 735^{2} \equiv 352=2^{5} \times 11^{1}(\bmod 539873) . \\
& 750^{2} \equiv 22627 \equiv 11^{3} \times 17^{1}(\bmod 539873) \\
& 783^{2} \equiv 73216 \equiv 2^{9} \times 11^{1} \times 13^{1}(\bmod 539873) \\
& 801^{2} \equiv 101728 \equiv 2^{5} \times 11^{1} \times 17^{2}(\bmod 539873)
\end{aligned}
$$

Can you find a way to multiple some of these to get $X^{2} \equiv Y^{2}$?

Example Continued: Trying to factor 539873

$735^{2} \equiv 352=2^{5} \times 11^{1}(\bmod 539873)$.
$750^{2} \equiv 22627 \equiv 11^{3} \times 17^{1}(\bmod 539873)$.
$783^{2} \equiv 73216 \equiv 2^{9} \times 11^{1} \times 13^{1}(\bmod 539873)$.
$801^{2} \equiv 101728 \equiv 2^{5} \times 11^{1} \times 17^{2}(\bmod 539873)$.
Can you find a way to multiple some of these to get $X^{2} \equiv Y^{2}$?

$$
\begin{aligned}
& (735 \times 801)^{2} \equiv 2^{10} \times 11^{2} \times 17^{2} \quad(\bmod 539873) \\
& (735 \times 801)^{2} \equiv\left(2^{5} \times 11 \times 17\right)^{2} \quad(\bmod 539873)
\end{aligned}
$$

$$
588735^{2} \equiv 5984^{2} \quad(\bmod 539873)
$$

$$
48862^{2} \equiv 5984^{2} \quad(\bmod 539873)
$$

Example Finished: Trying to factor 539873

We have found:

$$
48862^{2}-5984^{2} \equiv 0 \quad(\bmod 539873)
$$

Now we use it to find a factor:

Example Finished: Trying to factor 539873

We have found:

$$
48862^{2}-5984^{2} \equiv 0 \quad(\bmod 539873)
$$

Now we use it to find a factor:

$$
(48862-5984) \times(48862+5984) \equiv 0 \quad(\bmod 539873)
$$

Example Finished: Trying to factor 539873

We have found:

$$
48862^{2}-5984^{2} \equiv 0 \quad(\bmod 539873)
$$

Now we use it to find a factor:

$$
\begin{gathered}
(48862-5984) \times(48862+5984) \equiv 0 \quad(\bmod 539873) \\
42878 \times 54846 \equiv 0 \quad(\bmod 539873)
\end{gathered}
$$

Example Finished: Trying to factor 539873

We have found:

$$
48862^{2}-5984^{2} \equiv 0 \quad(\bmod 539873)
$$

Now we use it to find a factor:

$$
\begin{gathered}
(48862-5984) \times(48862+5984) \equiv 0 \quad(\bmod 539873) \\
42878 \times 54846 \equiv 0 \quad(\bmod 539873) \\
G C D(42878,539873)=1949
\end{gathered}
$$

1949 divides 539873. Found a Factor!

We Noticed That... Can a Program?

$$
\begin{aligned}
& \lceil\sqrt{539873}\rceil=735 \\
& 735^{2} \equiv 352=2^{5} \times 11^{1}(\bmod 539873) \\
& 750^{2} \equiv 22627 \equiv 11^{3} \times 17^{1}(\bmod 539873) \\
& 783^{2} \equiv 73216 \equiv 2^{9} \times 11^{1} \times 13^{1}(\bmod 539873) \\
& 801^{2} \equiv 101728 \equiv 2^{5} \times 11^{1} \times 17^{2}(\bmod 539873)
\end{aligned}
$$

Notice that

$$
(735 \times 801)^{2} \equiv 2^{10} \times 11^{2} \times 17^{2}
$$

How can a program Notice That ?
What is a program supposed to notice? Discuss.

We Noticed That... Can a Program? Cont

$$
\begin{aligned}
& \lceil\sqrt{539873}\rceil=735 \\
& 735^{2} \equiv 352=2^{5} \times 11^{1}(\bmod 539873) \\
& 750^{2} \equiv 22627 \equiv 11^{3} \times 17^{1}(\bmod 539873) \\
& 783^{2} \equiv 73216 \equiv 2^{9} \times 11^{1} \times 13^{1}(\bmod 539873) \\
& 801^{2} \equiv 101728 \equiv 2^{5} \times 11^{1} \times 17^{2}(\bmod 539873)
\end{aligned}
$$

$$
(735 \times 801)^{2} \equiv 2^{10} \times 11^{2} \times 17^{2}
$$

All of the exponents on the right-hand-side are even.

We Noticed That... Can a Program? Cont

$\lceil\sqrt{539873}\rceil=735$
$735^{2} \equiv 352=2^{5} \times 11^{1}(\bmod 539873)$.
$750^{2} \equiv 22627 \equiv 11^{3} \times 17^{1}(\bmod 539873)$.
$783^{2} \equiv 73216 \equiv 2^{9} \times 11^{1} \times 13^{1}(\bmod 539873)$.
$801^{2} \equiv 101728 \equiv 2^{5} \times 11^{1} \times 17^{2}(\bmod 539873)$.

$$
(735 \times 801)^{2} \equiv 2^{10} \times 11^{2} \times 17^{2}
$$

All of the exponents on the right-hand-side are even.
We want to find a set of right-hand-sides so that when multiplied together all of the exponents are even.

Idea One

Store exponents in vector. Power-of-2, Power-of-3,...,Power-of-17. $\lceil\sqrt{539873}\rceil=735$

$$
\begin{aligned}
& 735^{2} \equiv 352 \equiv 2^{5} \times 11^{1} \quad(5,0,0,0,1,0,0) \\
& 750^{2} \equiv 22627 \equiv 11^{3} \times 17^{1} \\
& 783^{2} \equiv 73216 \equiv 2^{9} \times 11^{1} \times 13^{1} \quad(9,0,0,0,1,1,0) \\
& 801^{2} \equiv 101728 \equiv 2^{5} \times 11^{1} \times 17^{2} \quad(5,0,0,0,1,0,2)
\end{aligned}
$$

Want some combination of the vectors to have all even numbers.
Can we use Linear Algebra? Discuss

Idea One

Store exponents in vector. Power-of-2, Power-of-3,...,Power-of-17. $\lceil\sqrt{539873}\rceil=735$

$$
\begin{aligned}
& 735^{2} \equiv 352 \equiv 2^{5} \times 11^{1} \quad(5,0,0,0,1,0,0) \\
& 750^{2} \equiv 22627 \equiv 11^{3} \times 17^{1} \quad(0,0,0,0,3,0,1) \\
& 783^{2} \equiv 73216 \equiv 2^{9} \times 11^{1} \times 13^{1} \quad(9,0,0,0,1,1,0) \\
& 801^{2} \equiv 101728 \equiv 2^{5} \times 11^{1} \times 17^{2} \quad(5,0,0,0,1,0,2)
\end{aligned}
$$

Want some combination of the vectors to have all even numbers.
Can we use Linear Algebra? Discuss
We do not need the numbers. All we need are the parities!

Idea Two

Store parities of exponents in vector.

$$
\lceil\sqrt{539873}\rceil=735
$$

$$
\begin{aligned}
& 735^{2} \equiv 352 \equiv 2^{5} \times 11^{1} \quad(1,0,0,0,1,0,0) \\
& 750^{2} \equiv 22627 \equiv 11^{3} \times 17^{1} \\
& 783^{2} \equiv 73216 \equiv 2^{9} \times 11^{1} \times 13^{1} \\
& 801^{2} \equiv 101728 \equiv 2^{5} \times 11^{1} \times 17^{2} \quad(1,0,0,0,1,0,0)
\end{aligned}
$$

Idea Two

Store parities of exponents in vector.

$$
\lceil\sqrt{539873}\rceil=735
$$

$$
\begin{aligned}
& 735^{2} \equiv 352 \equiv 2^{5} \times 11^{1} \quad(1,0,0,0,1,0,0) \\
& 750^{2} \equiv 22627 \equiv 11^{3} \times 17^{1} \quad(0,0,0,0,1,0,1) \\
& 783^{2} \equiv 73216 \equiv 2^{9} \times 11^{1} \times 13^{1} \quad(1,0,0,0,1,1,0) \\
& 801^{2} \equiv 101728 \equiv 2^{5} \times 11^{1} \times 17^{2} \quad(1,0,0,0,1,0,0)
\end{aligned}
$$

Well Defined Math Problem Given a set of 0-1 B-vectors over mod 2 does some subset of them sum to $\overrightarrow{0}$? Equivalent to asking if some subset is linearly dependent.

- Can solve using Gaussian Elimination.
- If there are $B+1$ vectors then there will be such a set.

Quad Sieve Alg: First Attempt

Given N let $x=\lceil\sqrt{N}\rceil$. All $\equiv \operatorname{are} \bmod N . B, M$ are params.

Quad Sieve Alg: First Attempt

Given N let $x=\lceil\sqrt{N}\rceil$. All $\equiv \operatorname{are} \bmod N . B, M$ are params.

$$
(x+0)^{2} \equiv y_{0} \quad \text { Try to } B \text {-Factor } y_{0} \text { to get parity } \vec{v}_{0} .
$$

$(x+M)^{2} \equiv y_{M} \quad$ Try to B-Factor y_{M} to get parity \vec{v}_{M}.

Quad Sieve Alg: First Attempt

Given N let $x=\lceil\sqrt{N}\rceil$. All $\equiv \operatorname{are} \bmod N . B, M$ are params.

$$
\begin{aligned}
(x+0)^{2} \equiv y_{0} & \text { Try to } B \text {-Factor } y_{0} \text { to get parity } \vec{v}_{0} . \\
\vdots & \vdots \\
(x+M)^{2} \equiv y_{M} & \text { Try to } B \text {-Factor } y_{M} \text { to get parity }{\overrightarrow{v_{M}}} .
\end{aligned}
$$

Some of the y_{i} were B-factored, but some were not.

Quad Sieve Alg: First Attempt (Example)

Some of the y_{i} were B-factored, but some were not:

Quad Sieve Alg: First Attempt (Example)

Some of the y_{i} were B-factored, but some were not:
$(x+a)^{2} \bmod N=y_{a}=2^{a_{1}} 3^{a_{2}} \cdots p_{B}^{a_{B}} \cdot \vec{a}=\left(a_{1}, \ldots, a_{B}\right)(\bmod 2)$.

Quad Sieve Alg: First Attempt (Example)

Some of the y_{i} were B-factored, but some were not:
$(x+a)^{2} \bmod N=y_{a}=2^{a_{1}} 3^{a_{2}} \cdots p_{B}^{a_{B}} \cdot \vec{a}=\left(a_{1}, \ldots, a_{B}\right)(\bmod 2)$.

Quad Sieve Alg: First Attempt (Example)

Some of the y_{i} were B-factored, but some were not:
$(x+a)^{2} \bmod N=y_{a}=2^{a_{1}} 3^{a_{2}} \cdots p_{B}^{a_{B}} \cdot \vec{a}=\left(a_{1}, \ldots, a_{B}\right)(\bmod 2)$.
$(x+z)^{2} \bmod N=y_{z}=2^{z_{1}} 3^{z_{2}} \cdots p_{B}^{z_{B}}, \vec{b}=\left(z_{1}, \ldots, z_{B}\right)(\bmod 2)$.

Quad Sieve Alg: First Attempt (Example)

Some of the y_{i} were B-factored, but some were not:
$(x+a)^{2} \bmod N=y_{a}=2^{a_{1}} 3^{a_{2}} \cdots p_{B}^{a_{B}} \cdot \vec{a}=\left(a_{1}, \ldots, a_{B}\right)(\bmod 2)$.
\vdots
$(x+z)^{2} \bmod N=y_{z}=2^{z_{1}} 3^{z_{2}} \cdots p_{B}^{z_{B}}, \vec{b}=\left(z_{1}, \ldots, z_{B}\right)(\bmod 2)$.
Try to find come combination of \vec{a}, \ldots, \vec{z} that sums $\overrightarrow{0} \bmod 2$.

Quad Sieve Alg: First Attempt (Example)

Some of the y_{i} were B-factored, but some were not:
$(x+a)^{2} \bmod N=y_{a}=2^{a_{1}} 3^{a_{2}} \cdots p_{B}^{a_{B}} \cdot \vec{a}=\left(a_{1}, \ldots, a_{B}\right)(\bmod 2)$.
引
$(x+z)^{2} \bmod N=y_{z}=2^{z_{1}} 3^{z_{2}} \cdots p_{B}^{z_{B}}, \vec{b}=\left(z_{1}, \ldots, z_{B}\right)(\bmod 2)$.
Try to find come combination of \vec{a}, \ldots, \vec{z} that sums $\overrightarrow{0} \bmod 2$.
Lets say $\vec{a}+\vec{d}+\vec{q} \equiv \overrightarrow{0}(\bmod 2)$. Then

$$
(x+a)^{2}(x+d)^{2}(x+q)^{2} \equiv y_{a} y_{d} y_{q}=Y^{2}
$$

Quad Sieve Alg: First Attempt (Example)

Some of the y_{i} were B-factored, but some were not:
$(x+a)^{2} \bmod N=y_{a}=2^{a_{1}} 3^{a_{2}} \cdots p_{B}^{a_{B}} \cdot \vec{a}=\left(a_{1}, \ldots, a_{B}\right)(\bmod 2)$.
$(x+z)^{2} \bmod N=y_{z}=2^{z_{1}} 3^{z_{2}} \cdots p_{B}^{z_{B}}, \vec{b}=\left(z_{1}, \ldots, z_{B}\right)(\bmod 2)$.
Try to find come combination of \vec{a}, \ldots, \vec{z} that sums $\overrightarrow{0} \bmod 2$. Lets say $\vec{a}+\vec{d}+\vec{q} \equiv \overrightarrow{0}(\bmod 2)$. Then

$$
\begin{aligned}
& (x+a)^{2}(x+d)^{2}(x+q)^{2} \equiv y_{a} y_{d} y_{q}=Y^{2} \\
& ((x+a)(x+d)(x+q))^{2} \equiv y_{a} y_{d} y_{q}=Y^{2}
\end{aligned}
$$

Quad Sieve Alg: First Attempt (Example)

Some of the y_{i} were B-factored, but some were not:
$(x+a)^{2} \bmod N=y_{a}=2^{a_{1}} 3^{a_{2}} \cdots p_{B}^{a_{B}} \cdot \vec{a}=\left(a_{1}, \ldots, a_{B}\right)(\bmod 2)$.
$(x+z)^{2} \bmod N=y_{z}=2^{z_{1}} 3^{z_{2}} \cdots p_{B}^{z_{B}}, \vec{b}=\left(z_{1}, \ldots, z_{B}\right)(\bmod 2)$.
Try to find come combination of \vec{a}, \ldots, \vec{z} that sums $\overrightarrow{0} \bmod 2$.
Lets say $\vec{a}+\vec{d}+\vec{q} \equiv \overrightarrow{0}(\bmod 2)$. Then

$$
\begin{gathered}
(x+a)^{2}(x+d)^{2}(x+q)^{2} \equiv y_{a} y_{d} y_{q}=Y^{2} \\
((x+a)(x+d)(x+q))^{2} \equiv y_{a} y_{d} y_{q}=Y^{2} \\
X^{2} \equiv Y^{2} \quad(\bmod N)
\end{gathered}
$$

Quad Sieve Alg: First Attempt (Example)

Some of the y_{i} were B-factored, but some were not:
$(x+a)^{2} \bmod N=y_{a}=2^{a_{1}} 3^{a_{2}} \cdots p_{B}^{a_{B}} \cdot \vec{a}=\left(a_{1}, \ldots, a_{B}\right)(\bmod 2)$.
$(x+z)^{2} \bmod N=y_{z}=2^{z_{1}} 3^{z_{2}} \cdots p_{B}^{z_{B}}, \vec{b}=\left(z_{1}, \ldots, z_{B}\right)(\bmod 2)$.
Try to find come combination of \vec{a}, \ldots, \vec{z} that sums $\overrightarrow{0} \bmod 2$.
Lets say $\vec{a}+\vec{d}+\vec{q} \equiv \overrightarrow{0}(\bmod 2)$. Then

$$
\begin{gathered}
(x+a)^{2}(x+d)^{2}(x+q)^{2} \equiv y_{a} y_{d} y_{q}=Y^{2} \\
((x+a)(x+d)(x+q))^{2} \equiv y_{a} y_{d} y_{q}=Y^{2} \\
X^{2} \equiv Y^{2} \quad(\bmod N) \\
(X-Y)(X+Y) \equiv 0 \quad(\bmod N)
\end{gathered}
$$

Quad Sieve Alg: First Attempt (Example)

Some of the y_{i} were B-factored, but some were not:
$(x+a)^{2} \bmod N=y_{a}=2^{a_{1}} 3^{a_{2}} \cdots p_{B}^{a_{B}} \cdot \vec{a}=\left(a_{1}, \ldots, a_{B}\right)(\bmod 2)$.
$(x+z)^{2} \bmod N=y_{z}=2^{z_{1}} 3^{z_{2}} \cdots p_{B}^{z_{B}}, \vec{b}=\left(z_{1}, \ldots, z_{B}\right)(\bmod 2)$.
Try to find come combination of \vec{a}, \ldots, \vec{z} that sums $\overrightarrow{0} \bmod 2$. Lets say $\vec{a}+\vec{d}+\vec{q} \equiv \overrightarrow{0}(\bmod 2)$. Then

$$
\begin{gathered}
(x+a)^{2}(x+d)^{2}(x+q)^{2} \equiv y_{a} y_{d} y_{q}=Y^{2} \\
((x+a)(x+d)(x+q))^{2} \equiv y_{a} y_{d} y_{q}=Y^{2} \\
X^{2} \equiv Y^{2} \quad(\bmod N) \\
(X-Y)(X+Y) \equiv 0 \quad(\bmod N)
\end{gathered}
$$

$\mathrm{GCD}(X-Y, N)$ probably a factor of N.

Quad Sieve Alg: Back to First Attempt

Given N let $x=\lceil\sqrt{N}\rceil$. All \equiv are $\bmod N . B, M$ are params.

Quad Sieve Alg: Back to First Attempt

Given N let $x=\lceil\sqrt{N}\rceil$. All \equiv are $\bmod N . B, M$ are params.

$$
\begin{aligned}
(x+0)^{2} \equiv y_{0} & \text { Try to } B \text {-Factor } y_{0} \text { to get parity } \vec{v}_{0} . \\
\vdots & \vdots \\
(x+M)^{2} \equiv y_{M} & \text { Try to } B \text {-Factor } y_{M} \text { to get parity } \vec{v}_{M} .
\end{aligned}
$$

Let I be the set of all i such that y_{i} was B-factored.

Quad Sieve Alg: Back to First Attempt

Given N let $x=\lceil\sqrt{N}\rceil$. All \equiv are $\bmod N . B, M$ are params.

$$
\begin{array}{rll}
(x+0)^{2} \equiv y_{0} & \text { Try to } B \text {-Factor } y_{0} \text { to get parity } \vec{v}_{0} \\
\vdots & \vdots \\
(x+M)^{2} \equiv y_{M} & \text { Try to } B \text {-Factor } y_{M} \text { to get parity } \vec{v}_{M} .
\end{array}
$$

Let I be the set of all i such that y_{i} was B-factored.
Find $J \subseteq I$ such that $\sum_{i \in J} \vec{v}_{i}=\overrightarrow{0}$.

Quad Sieve Alg: Back to First Attempt

Given N let $x=\lceil\sqrt{N}\rceil$. All \equiv are $\bmod N . B, M$ are params.

$$
\begin{array}{rll}
(x+0)^{2} \equiv y_{0} & \text { Try to } B \text {-Factor } y_{0} \text { to get parity } \vec{v}_{0} \\
\vdots & \vdots \\
(x+M)^{2} \equiv y_{M} & \text { Try to } B \text {-Factor } y_{M} \text { to get parity } \vec{v}_{M} .
\end{array}
$$

Let I be the set of all i such that y_{i} was B-factored.
Find $J \subseteq I$ such that $\sum_{i \in J} \vec{v}_{i}=\overrightarrow{0}$.
Hence $\prod_{i \in J} y_{i}$ has all even exponents.
Important! Since $\prod_{i \in J} y_{i}$ has all even exponents, there exists Y

$$
\prod_{i \in J} y_{i}=Y^{2}
$$

Quad Sieve Alg: First Attempt, Cont

$$
\begin{gathered}
\left(\prod_{i \in J}(x+i)\right)^{2} \equiv \prod_{i \in J} y_{i}=Y^{2}(\bmod N) \\
\text { Let } X=\prod_{i \in J}(x+i)(\bmod N) \text { and } Y=\prod_{i \in J} y_{i}(\bmod N) . \\
x^{2}-Y^{2} \equiv 0(\bmod N)
\end{gathered}
$$

$$
(X-Y)(X+Y)=k N \text { for some } k
$$

$\operatorname{GCD}(X-Y, N), \operatorname{GCD}(X+Y, N)$ should yield factors.

A Tip for Learning This Material

We will revisit the above algorithm later when we get it to really work.

A Tip for Learning This Material

We will revisit the above algorithm later when we get it to really work.

When we do we are not going to redo the $y_{a} y_{d} y_{q}$ example.

A Tip for Learning This Material

We will revisit the above algorithm later when we get it to really work.

When we do we are not going to redo the $y_{a} y_{d} y_{q}$ example.
SO - Make sure you understand the algorithm before the next lecture (and the one after that).

What Could go Wrong

What Could go Wrong

1. There is no set of rows that is linearly dependent.

What Could go Wrong

1. There is no set of rows that is linearly dependent.
2. You find X, Y such that $X^{2} \equiv Y^{2} \bmod N$ but then $\operatorname{GCD}(X-Y, N)=1$ and $\operatorname{GCD}(X+Y, N)=N$. This is very rare so we will not worry about it.

Balancing Act

Balancing Act

1. Run time will depend on B and M. Gaussian Elimination is $O\left(B^{3}\right)$ which will be the main time sink. So want B small.

Balancing Act

1. Run time will depend on B and M. Gaussian Elimination is $O\left(B^{3}\right)$ which will be the main time sink. So want B small.
2. If B is large then more numbers are B-fact, so have to go through less numbers to get $B+1 B$-fact numbers (hence $B+1$ vectors of $\operatorname{dim} B$) so guaranteed to have a linear dependency. Hence want B large.

Balancing Act

1. Run time will depend on B and M. Gaussian Elimination is $O\left(B^{3}\right)$ which will be the main time sink. So want B small.
2. If B is large then more numbers are B-fact, so have to go through less numbers to get $B+1 B$-fact numbers (hence $B+1$ vectors of $\operatorname{dim} B$) so guaranteed to have a linear dependency. Hence want B large.
3. In practice B is chosen carefully based on computation and conjectures in Number Theory.

Most Important Step to Speed Up

An earlier slide said
Gaussian Elimination is $O\left(B^{3}\right)$ which will be the main time sink.

Most Important Step to Speed Up

An earlier slide said
Gaussian Elimination is $O\left(B^{3}\right)$ which will be the main time sink.
What about B factoring M numbers. That would seem to also be a time sink.

Most Important Step to Speed Up

An earlier slide said
Gaussian Elimination is $O\left(B^{3}\right)$ which will be the main time sink.
What about B factoring M numbers. That would seem to also be a time sink.

The key to making the algorithm practical is Carl Pomerance's insight which is the how to do all that B-factoring fast. To do this we need a LOOOOOONG aside on Sieving.

[^0]:

