BILL START RECORDING

Quadratic Sieve Factoring

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

1) GCD(x, y) is the Greatest Common Divisor of x, y.

- 1) GCD(x, y) is the Greatest Common Divisor of x, y.
- 2) Sums and Products

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n.$$
$$\prod_{i=1}^{n} a_i = a_1 \times a_2 \times \dots \times a_n.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1) GCD(x, y) is the Greatest Common Divisor of x, y.
- 2) Sums and Products

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n.$$
$$\prod_{i=1}^{n} a_i = a_1 \times a_2 \times \dots \times a_n.$$

3) More Sums and Products We summed or producted over $\{1, \ldots, n\}$. Can use other sets.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

- 1) GCD(x, y) is the Greatest Common Divisor of x, y.
- 2) Sums and Products

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n.$$
$$\prod_{i=1}^{n} a_i = a_1 \times a_2 \times \dots \times a_n.$$

3) More Sums and Products We summed or producted over $\{1, ..., n\}$. Can use other sets. If $A = \{1, 4, 9\}$ then

$$\sum_{i \in A} a_i = a_1 + a_4 + a_9.$$
$$\prod_{i \in A} a_i = a_1 \times a_4 \times a_9.$$

More Notation Reminder

4) a_1, \ldots, a_n could be vectors.

$$\sum_{i\in A}\vec{a}_i=\vec{a}_1+\vec{a}_4+\vec{a}_9.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Addition is **component-wise**.

More Notation Reminder

4) a_1, \ldots, a_n could be vectors.

$$\sum_{i\in A}\vec{a}_i=\vec{a}_1+\vec{a}_4+\vec{a}_9.$$

(ロト (個) (E) (E) (E) (E) のへの

Addition is **component-wise**.

We will not be using any notion of a product of vectors.

More Notation Reminder

4) a_1, \ldots, a_n could be vectors.

$$\sum_{i\in A}\vec{a_i}=\vec{a_1}+\vec{a_4}+\vec{a_9}.$$

Addition is **component-wise**.

We will not be using any notion of a product of vectors.

5) We extend mod notation to vectors of integers. Example:

$$(8,1,0,9) \pmod{2} = (0,1,0,1).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

A LONG Aside on Sieving

▲□▶ ▲□▶ ▲国▶ ▲国▶ ▲国 ● のへで

Finding all Primes \leq 48, the Stupid Way

To find all primes \leq 48 we could do the following:

for i = 2 to 48 if isprime(i)=YES then output i.

Is this a good idea? Discuss.

Finding all Primes \leq 48, the Stupid Way

To find all primes \leq 48 we could do the following:

for i = 2 to 48 if isprime(i)=YES then output i.

Is this a good idea? Discuss.

No You are testing many numbers that you could have, ahead of time, ruled out.

Finding all Primes \leq 48 the Smart Way

Write down the numbers \leq 48.

2	3	4	5	6	7	8	9	10	11	12	13	14	15

16	ĵ	17	18	19	20	21	22	23	24	25	26	27

28	29	30	31	32	33	34	35	36	37	38	39

40	41	42	43	44	45	46	47	48

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Finding all Primes \leq 48 the Smart Way

Write down the numbers \leq 48.

ſ	2	3	4	5	6	7	8	9	10	11	12	13	14	15

16	17	18	19	20	21	22	23	24	25	26	27

28	29	30	31	32	33	34	35	36	37	38	39

40	41	42	43	44	45	46	47	48

Now output first unmarked—2—and MARK all multiples of 2.

We Have Marked Multiples of 2

Now Have:

	2	3	4		5	6	7	8	9		10	11	12		13	14	15
	X		X			Χ		X			X		X			X	
	16	5	17	1	8	19	2	0 2	21	2	2	23	24	2	5	26	27
	X			>	(X	(X			Χ			X	
ĺ	28	2	29	3	0	31	3	2	33	34	1	35	36	3	7	38	39
	$\frac{20}{X}$		29))	-	51			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u>x</u>		55	<u>30</u> Х	5	_	30 Х	55
l				_		•		40		4				_	40	'	
			4	0 (4:		12 X	43	$\begin{vmatrix} 4 \\ \lambda \end{vmatrix}$		45	46 X	6 4	1	48 <i>X</i>		

We Have Marked Multiples of 2

Now Have:

2	3	3	4		5	6		7	8	3	9	Τ	10		11		12		13		14	15	
X			X			X)	K			Χ				Χ				Χ		
1	6	1	.7	1	8	1	9	20)	2	1	2	2	2	3	24	4	2	5	2	6	27	
>	<			>	<			X	()	X			Χ)	<		
	_	_		-	_		_		_		<u> </u>	_		_		_	<u> </u>	_	_ 1	_	~		1
2	8	2	29	3	0	3	1	32	2	3	3	3	4	3	5	36	5	3	1	3	8	39	
	<			>	<			X	()	X			Χ	[)	<		
			4	0	4	$1 \mid$	4	2	4	3	44	4	4	5	46	5	4	7	4	8			
			>	()	Κ			Χ	(X	·			X	(

Now output first unmarked—3—and MARK all multiples of 3.

*ロト *昼 * * ミ * ミ * ミ * のへぐ

We Have Marked Multiples of 2 and 3

Now Have:

2	3	5	4	5	6	7	8	9)	10)	11	1	2	13	1	.4	15
X		(Χ		X		X)	<	X				<)	X	X
	16	1	7	18	19	2	0 2	21	2	2	2	3	24	2	5	26	2	27
Γ	Χ			Χ		X	(].	Χ)	K			Χ			Χ		X
_																		
Ľ	28	2	9	30	31	3	2 3	33	3	4	3	5	36	3	7	38	3	39
	Χ			Χ			(.	Χ)	K			Χ			Χ		X
				- 1 -												_	•	
			4() 4	1 4	12	43	4	4	4	5	46	4	7	48	3		
			X			Χ			<	X	(X			X	·		

(ロト (個) (E) (E) (E) (E) のへの

We Have Marked Multiples of 2 and 3

Now Have:

2	2 3	3	4	5	6	7	8	(9	10)	11	1	2	13	3	14	1 1	.5
$\left[\right. \right)$	$\langle \rangle$	(Χ		X		X	· >	X	X			X	<			X		X
	16	1	7	18	19	2	0	21	2	2	2	3 2	24	2	25	2	6	27	
	Χ			Χ		X	$\left(\right)$	Χ	>	X			Χ			>	<	Χ	
ſ		-	- 1				- 1			_		_				-	- 1		-
	28	2	9	30	31	32	2	33	3	4	3	5 3	36	3	87	3	8	39	
	Х			Χ				Χ	>	X			Χ			>	<	Χ	
																			_
			40) 4	1 4	2	43	4	4	4	5	46	4	7	4	8			
		Ī	X			X			X	λ	\langle	X				<			

Now output first unmarked—5—and MARK all multiples of 5.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

We Have Marked Multiples of 2,3 and 5

Now Have:

2	2 3		4	5	6	7	8		9	1	0	1	1	12	1	13		4	15
λ	(X		Χ	X	X				Χ	>	<			Χ			>	<	X
	16		.7	18	19	2	0	21	2	2	2	3	2	4 2	5	26		27	
ĺ	X			Χ		>	(X		K			X		Χ		$\langle \rangle$	Χ	7
, I														_					
ļ	28	2	29	30	31	3	2	33	3	4	3	35 3		6 37		7 3		39	
	X			Χ)	(Χ		X		X		(>	(Χ	
															_				
		40) 4			43	3 4		4 4		46	6	47	4	8			
			X	[]		Χ			X)	<	X	(X	(

(ロト (個) (E) (E) (E) (E) のへの

We Have Marked Multiples of 2,3 and 5

Now Have:

2	3	4	5	6 7		8	9	1	0	11	1	12		3	1	4	15		
X	(X	X	X	X		X	X)	K		2	X	$\langle $				X	<	X
														_					
	16	17	18	19	20	20 21		22	2	3	24	2	5	26		27			
	Χ		X		X	λ	$\langle $	X			Χ		$\langle $	Χ		X			
, I							- 1		-						- 1		-		
ļ	28	29 30 3		31	32	_		34	3		36	37		38	8	39			
	X		X		X		(X)	<	Χ			Х	(Χ			
-																			
	4		0 4			43	44	4	5	46	4	.7	4	8					
	X		<		X		Х		<	X			X	(

Now output first unmarked—7—and MARK all multiples of 7. You get the idea so we stop here.

A Few Points About this Process Speed

- This process is really fast since when (say) MARKING mults of 3: We DO NOT look at (say) 23 and say no . WE DO NOT look at (say) 23 at all.
- 2. The KEY to many Number Theory Algorithms is not looking

ション ふゆ アメリア メリア しょうくしゃ

3. Good number theory algs act on a need-to-know basis.

A Few Points About this Process

- Speed
 - This process is really fast since when (say) MARKING mults of 3: We DO NOT look at (say) 23 and say no . WE DO NOT look at (say) 23 at all.
 - 2. The KEY to many Number Theory Algorithms is not looking
 - 3. Good number theory algs act on a need-to-know basis.

Could we make it faster?

- 1. When MARKING mults of 3 we skip marking $3 + 3 \times 1$, $3 + 3 \times 3$ since mults of 2 are already MARKED.
- 2. When MARKING mults of 5 we skip marking $5 + 5 \times 1$, $5 + 5 \times 3$, $5 + 5 \times 5$, since mults of 2 are already MARKED. Hard to also avoid mults of 3, but could.
- 3. When MARKING mults of BLAH we could BLAHBLAH.
- 4. If our goal was to JUST get a list of primes, we might do this.
- 5. Our goal will be to FACTOR these numbers. As such we cannot use this shortcut. (Clear later.)

The Sieve of Eratosthenes

- 1. Input(N)
- 2. Write down 2, 3, ..., N. All are unmarked.
- (MARK STEP) Goto the first unmarked element of the list p. Output(p). Keep pointer there. (When pointer is at N or beyond then stop.)
- 4. Mark all multiples of p up to $\left|\frac{N}{p}\right| p$. (This takes $\frac{N}{p}$ steps.)
- 5. GOTO MARK STEP.

Time:

$$\sum_{p \le N} \frac{N}{p} = N \sum_{p \le N} \frac{1}{p}$$

New Question: What is $\sum_{p \le N} \frac{1}{p}$?

An Aside on $\sum_{p \le N} \frac{1}{p}$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Notation

$$\sum_{n \le N} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{N}$$
$$\sum_{n < \infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$
$$\sum_{p \le N} \frac{1}{p} = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots + \frac{1}{q}$$

where q is the largest prime $\leq N$.

$$\sum_{p < \infty} \frac{1}{p} = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$$

Notation

$$\sum_{n \le N} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{N}$$
$$\sum_{n < \infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$
$$\sum_{p \le N} \frac{1}{p} = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots + \frac{1}{q}$$

where q is the largest prime $\leq N$.

$$\sum_{p < \infty} \frac{1}{p} = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$$

Example

$$\sum_{p \le 14} \frac{1}{p} = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \frac{1}{13}$$

*ロト *昼 * * ミ * ミ * ミ * のへぐ

When I looked up $\sum_{p \le N} \frac{1}{p}$ on the web I found:

When I looked up $\sum_{p \le N} \frac{1}{p}$ on the web I found: 1. Proofs that $\sum_{p < \infty} \frac{1}{p}$ diverges.

When I looked up $\sum_{p \le N} \frac{1}{p}$ on the web I found:

1. Proofs that $\sum_{p < \infty} \frac{1}{p}$ diverges.

2. Some of those proofs show that $\sum_{p \le N} \frac{1}{p} \ge \ln(\ln(N)) + O(1)$.

When I looked up $\sum_{p \le N} \frac{1}{p}$ on the web I found:

- 1. Proofs that $\sum_{p < \infty} \frac{1}{p}$ diverges.
- 2. Some of those proofs show that $\sum_{p < N} \frac{1}{p} \ge \ln(\ln(N)) + O(1)$.
- 3. **Nothing** on upper bounds on the sum.
- 4. TA Erik, when proofreading these slides, was able to find the theorem, though it was difficult. It's Merten's Second Thm.

When I looked up $\sum_{p \le N} \frac{1}{p}$ on the web I found:

- 1. Proofs that $\sum_{p<\infty} \frac{1}{p}$ diverges.
- 2. Some of those proofs show that $\sum_{p < N} \frac{1}{p} \ge \ln(\ln(N)) + O(1)$.
- 3. **Nothing** on upper bounds on the sum.
- 4. TA Erik, when proofreading these slides, was able to find the theorem, though it was difficult. It's Merten's Second Thm.

A sequence of events:

When I looked up $\sum_{p \le N} \frac{1}{p}$ on the web I found:

- 1. Proofs that $\sum_{p < \infty} \frac{1}{p}$ diverges.
- 2. Some of those proofs show that $\sum_{p < N} \frac{1}{p} \ge \ln(\ln(N)) + O(1)$.

3. **Nothing** on upper bounds on the sum.

4. TA Erik, when proofreading these slides, was able to find the theorem, though it was difficult. It's Merten's Second Thm.

A sequence of events:

1. In 2010 Larry Washington showed Bill G a proof that

$$\sum_{p\leq N}\frac{1}{p}\leq \ln(\ln(N))+O(1).$$

When I looked up $\sum_{p \leq N} \frac{1}{p}$ on the web I found:

- 1. Proofs that $\sum_{p < \infty} \frac{1}{p}$ diverges.
- 2. Some of those proofs show that $\sum_{p < N} \frac{1}{p} \ge \ln(\ln(N)) + O(1)$.

3. **Nothing** on upper bounds on the sum.

4. TA Erik, when proofreading these slides, was able to find the theorem, though it was difficult. It's Merten's Second Thm.

A sequence of events:

1. In 2010 Larry Washington showed Bill G a proof that

$$\sum_{p\leq N}\frac{1}{p}\leq \ln(\ln(N))+O(1).$$

2. Larry says its a well known theorem but never written down. Bill suggests they write it down. It is now on arxiv.

When I looked up $\sum_{p \le N} \frac{1}{p}$ on the web I found:

- 1. Proofs that $\sum_{p < \infty} \frac{1}{p}$ diverges.
- 2. Some of those proofs show that $\sum_{p < N} \frac{1}{p} \ge \ln(\ln(N)) + O(1)$.

3. **Nothing** on upper bounds on the sum.

4. TA Erik, when proofreading these slides, was able to find the theorem, though it was difficult. It's Merten's Second Thm.

A sequence of events:

1. In 2010 Larry Washington showed Bill G a proof that

$$\sum_{p\leq N}\frac{1}{p}\leq \ln(\ln(N))+O(1).$$

- 2. Larry says its a well known theorem but never written down. Bill suggests they write it down. It is now on arxiv.
- Moral of the Story Google is not always enough.

More on $\sum_{p \le N} \frac{1}{p}$

- 1. $\sum_{n\leq N} \frac{1}{n} \sim \ln(n)$.
- 2. $\sum_{p \leq N} \frac{1}{p} \sim \ln(\ln(N)).$

How good is this approximation?

1) When $N \ge 286$,

$$\ln(\ln N) - \frac{1}{2(\ln N)^2} + C \le \sum_{p \le N} \frac{1}{p} \le \ln(\ln N) + \frac{1}{(2\ln N)^2} + C,$$

ション ふゆ アメリア メリア しょうくしゃ

where $C \sim 0.261497212847643$.

2)

$$\sum_{p \le 10} \frac{1}{p} = 1.176.$$

$$\sum_{p \le 10^9} \frac{1}{p} = 3.293.$$

$$\sum_{p \le 10^{100}} \frac{1}{p} \sim 5.7.$$

$$\sum_{p \le 10^{1000}} \frac{1}{p} \sim 7.8.$$

Take Away

$$\sum_{p\leq N}\frac{1}{p}\sim \ln(\ln N).$$

- This is a very good approximation.
- This is very small
- (Cheating to make math easier) The largest pq factored is around 170-digits. We assume a limit of 1000 digits. Hence we treat ln(ln(N)) as if it was

 $\ln(\ln(N)) \leq \ln(\ln(1000)) \sim 8.$

(Nobody else does this.)