
BILL START
RECORDING



Quadratic Sieve
Factoring



Notation Reminder
1) GCD(x, y) is the Greatest Common Divisor of x , y .

2) Sums and Products

n∑
i=1

ai = a1 + a2 + · · ·+ an.

n∏
i=1

ai = a1 × a2 × · · · × an.

3) More Sums and Products We summed or producted over
{1, . . . , n}. Can use other sets.
If A = {1, 4, 9} then ∑

i∈A
ai = a1 + a4 + a9.

∏
i∈A

ai = a1 × a4 × a9.



Notation Reminder
1) GCD(x, y) is the Greatest Common Divisor of x , y .

2) Sums and Products

n∑
i=1

ai = a1 + a2 + · · ·+ an.

n∏
i=1

ai = a1 × a2 × · · · × an.

3) More Sums and Products We summed or producted over
{1, . . . , n}. Can use other sets.
If A = {1, 4, 9} then ∑

i∈A
ai = a1 + a4 + a9.

∏
i∈A

ai = a1 × a4 × a9.



Notation Reminder
1) GCD(x, y) is the Greatest Common Divisor of x , y .

2) Sums and Products

n∑
i=1

ai = a1 + a2 + · · ·+ an.

n∏
i=1

ai = a1 × a2 × · · · × an.

3) More Sums and Products We summed or producted over
{1, . . . , n}. Can use other sets.

If A = {1, 4, 9} then ∑
i∈A

ai = a1 + a4 + a9.

∏
i∈A

ai = a1 × a4 × a9.



Notation Reminder
1) GCD(x, y) is the Greatest Common Divisor of x , y .

2) Sums and Products

n∑
i=1

ai = a1 + a2 + · · ·+ an.

n∏
i=1

ai = a1 × a2 × · · · × an.

3) More Sums and Products We summed or producted over
{1, . . . , n}. Can use other sets.
If A = {1, 4, 9} then ∑

i∈A
ai = a1 + a4 + a9.

∏
i∈A

ai = a1 × a4 × a9.



More Notation Reminder

4) a1, . . . , an could be vectors.∑
i∈A

~ai = ~a1 + ~a4 + ~a9.

Addition is component-wise.

We will not be using any notion of a product of vectors.

5) We extend mod notation to vectors of integers. Example:

(8, 1, 0, 9) (mod 2) = (0, 1, 0, 1).



More Notation Reminder

4) a1, . . . , an could be vectors.∑
i∈A

~ai = ~a1 + ~a4 + ~a9.

Addition is component-wise.
We will not be using any notion of a product of vectors.

5) We extend mod notation to vectors of integers. Example:

(8, 1, 0, 9) (mod 2) = (0, 1, 0, 1).



More Notation Reminder

4) a1, . . . , an could be vectors.∑
i∈A

~ai = ~a1 + ~a4 + ~a9.

Addition is component-wise.
We will not be using any notion of a product of vectors.

5) We extend mod notation to vectors of integers. Example:

(8, 1, 0, 9) (mod 2) = (0, 1, 0, 1).



Back from our Aside on
Sieves



Time Analysis of Sieve of E
The Sieve of E can find all primes ≤ N in time

≤ N
∑
p≤N

1

p
∼ N ln(ln(N))

How long would finding all primes ≤ N be the stupid way?

Testing if a number is prime takes (log n)3 steps (we did not do
this in class) So testing all numbers n ≤ N for primality takes time:∑

n≤N
(log n)3 ∼ N(logN)3

I Time diff not impressive. When we modify the Sieve to
actually factor, it will be much more impressive.

I The key to the speed of The Sieve of E is that when it marks
it DOES NOT look at (say) 3 and say Oh, thats not even .
It literally does not look at all!



Time Analysis of Sieve of E
The Sieve of E can find all primes ≤ N in time

≤ N
∑
p≤N

1

p
∼ N ln(ln(N))

How long would finding all primes ≤ N be the stupid way?

Testing if a number is prime takes (log n)3 steps (we did not do
this in class) So testing all numbers n ≤ N for primality takes time:∑

n≤N
(log n)3 ∼ N(logN)3

I Time diff not impressive. When we modify the Sieve to
actually factor, it will be much more impressive.

I The key to the speed of The Sieve of E is that when it marks
it DOES NOT look at (say) 3 and say Oh, thats not even .
It literally does not look at all!



Time Analysis of Sieve of E
The Sieve of E can find all primes ≤ N in time

≤ N
∑
p≤N

1

p
∼ N ln(ln(N))

How long would finding all primes ≤ N be the stupid way?

Testing if a number is prime takes (log n)3 steps (we did not do
this in class) So testing all numbers n ≤ N for primality takes time:∑

n≤N
(log n)3 ∼ N(logN)3

I Time diff not impressive. When we modify the Sieve to
actually factor, it will be much more impressive.

I The key to the speed of The Sieve of E is that when it marks
it DOES NOT look at (say) 3 and say Oh, thats not even .
It literally does not look at all!



Time Analysis of Sieve of E
The Sieve of E can find all primes ≤ N in time

≤ N
∑
p≤N

1

p
∼ N ln(ln(N))

How long would finding all primes ≤ N be the stupid way?

Testing if a number is prime takes (log n)3 steps (we did not do
this in class) So testing all numbers n ≤ N for primality takes time:∑

n≤N
(log n)3 ∼ N(logN)3

I Time diff not impressive. When we modify the Sieve to
actually factor, it will be much more impressive.

I The key to the speed of The Sieve of E is that when it marks
it DOES NOT look at (say) 3 and say Oh, thats not even .
It literally does not look at all!



The B-Factoring Sieve of E: Example

The Sieve of E marked all evens.
Better Divide by 2 knowing it will work. Then divide by 2 again
(it might not work) until factor out all powers of 2.

The Sieve of E marked all numbers ≡ 0 (mod 3)
Better Divide by 3 knowing it will work. Then divide by 3 again
(it might not work) until factor out all powers of 3.

Do this for the first B primes and you will have B-factored many
numbers.



B-factoring all N ≤ 48, the Smart Way

Write down numbers ≤ 48. We 2-factor them, so divide by 2,3.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48

First unmarked is 2. DIVIDE mults of 2 by 2.



B-factoring all N ≤ 48, the Smart Way

Write down numbers ≤ 48. We 2-factor them, so divide by 2,3.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48

First unmarked is 2. DIVIDE mults of 2 by 2.



Divide by 2, Repeatedly

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 ∗ 1 2 ∗ 2 2 ∗ 3 23 2 ∗ 5 22 ∗ 3 2 ∗ 7

16 17 18 19 20 21 22 23 24 25 26 27

24 2 ∗ 9 22 ∗ 5 2 ∗ 11 23 ∗ 3 2 ∗ 13

28 29 30 31 32 33 34 35 36 37 38 39

22 ∗ 7 2 ∗ 15 25 2 ∗ 17 22 ∗ 9 2 ∗ 19

40 41 42 43 44 45 46 47 48

23 ∗ 5 2 ∗ 21 22 ∗ 11 2 ∗ 23 24 ∗ 3

First unmarked is 2. DIVIDE mults of 3 by 3.



Divide by 3, Repeatedly

We only show the last row (for reasons of space).

40 41 42 43 44 45 46 47 48

23 ∗ 5 2 ∗ 3 ∗ 7 22 ∗ 11 32 ∗ 5 2 ∗ 23 24 ∗ 3

I 48 was 2-factored

I Nothing else was.



The B-Factoring Sieve of E: Algorithm

1. Input(N,B)

2. Write down 2, 3, . . . ,N. All are blank in box.

3. (BOX STEP) Goto the first blank box, p. (When have visited
this step B times then stop).

4. Factor out p from p, 2p, . . .,
⌊
N
p

⌋
p.

Factor out p from p2, 2p2, . . .,
⌊
N
p2

⌋
p2

Factor out . . ..

5. GOTO BOX STEP.

Time: ∑
p≤B

N

p
+
∑
p≤B

N

p2
+
∑
p≤B

N

p3
+
∑
p≤B

N

p4
· · ·

= N

(∑
p≤B

1

p
+
∑
p≤B

1

p2
+
∑
p≤B

1

p3
+
∑
p≤B

1

p4
+ · · ·

)



The B-Factoring Sieve of E: Analysis

= N

(∑
p≤B

1

p
+
∑
p≤B

1

p2
+
∑
p≤B

1

p3
+
∑
p≤B

1

p4
+ · · ·

)

N
∑
p≤B

1

p
+ N

∑
p≤B

1

p2
+ N

∑
p≤B

1

p3
+ N

∑
p≤B

1

p4
+ · · ·

= N ln(ln(B)) + N
∞∑
a=2

∑
p≤B

1

pa

Next slide shows that N
∑∞

a=2

∑
p≤B

1
pa ≤ (0.5)N, so time is

≤ N ln(ln(B)) + (0.5)N.

Note: The mult constants really are ≤ 1 and it does matter for
real world performance.



The B-Factoring Sieve of E: Analysis

= N

(∑
p≤B

1

p
+
∑
p≤B

1

p2
+
∑
p≤B

1

p3
+
∑
p≤B

1

p4
+ · · ·

)

N
∑
p≤B

1

p
+ N

∑
p≤B

1

p2
+ N

∑
p≤B

1

p3
+ N

∑
p≤B

1

p4
+ · · ·

= N ln(ln(B)) + N
∞∑
a=2

∑
p≤B

1

pa

Next slide shows that N
∑∞

a=2

∑
p≤B

1
pa ≤ (0.5)N, so time is

≤ N ln(ln(B)) + (0.5)N.

Note: The mult constants really are ≤ 1 and it does matter for
real world performance.



The B-Factoring The Sieve of E: Last term is ≤ N

= N
∞∑
a=2

∑
p≤B

1

pa
= N

∑
p≤B

∞∑
a=2

1

pa

= N
∑
p≤B

1/p2

1− (1/p)

= N
∑
p≤B

1

p2 − p
∼ N

∑
p≤B

1

p2

How big is
∑

p≤B
1
p2

?

1.
∑∞

n=1
1
n2

cvg. Do you know to what? π2

6 ∼ 1.644

2.
∑∞

p=1
1
p2

cvg. Do you know to what? ∼ 0.45.



The B-Factoring The Sieve of E: Last term is ≤ N

= N
∞∑
a=2

∑
p≤B

1

pa
= N

∑
p≤B

∞∑
a=2

1

pa

= N
∑
p≤B

1/p2

1− (1/p)

= N
∑
p≤B

1

p2 − p
∼ N

∑
p≤B

1

p2

How big is
∑

p≤B
1
p2

?

1.
∑∞

n=1
1
n2

cvg. Do you know to what? π2

6 ∼ 1.644

2.
∑∞

p=1
1
p2

cvg. Do you know to what? ∼ 0.45.



The B-Factoring The Sieve of E: Last term is ≤ N

= N
∞∑
a=2

∑
p≤B

1

pa
= N

∑
p≤B

∞∑
a=2

1

pa

= N
∑
p≤B

1/p2

1− (1/p)

= N
∑
p≤B

1

p2 − p
∼ N

∑
p≤B

1

p2

How big is
∑

p≤B
1
p2

?

1.
∑∞

n=1
1
n2

cvg. Do you know to what?

π2

6 ∼ 1.644

2.
∑∞

p=1
1
p2

cvg. Do you know to what? ∼ 0.45.



The B-Factoring The Sieve of E: Last term is ≤ N

= N
∞∑
a=2

∑
p≤B

1

pa
= N

∑
p≤B

∞∑
a=2

1

pa

= N
∑
p≤B

1/p2

1− (1/p)

= N
∑
p≤B

1

p2 − p
∼ N

∑
p≤B

1

p2

How big is
∑

p≤B
1
p2

?

1.
∑∞

n=1
1
n2

cvg. Do you know to what? π2

6 ∼ 1.644

2.
∑∞

p=1
1
p2

cvg. Do you know to what? ∼ 0.45.



The B-Factoring The Sieve of E: Last term is ≤ N

= N
∞∑
a=2

∑
p≤B

1

pa
= N

∑
p≤B

∞∑
a=2

1

pa

= N
∑
p≤B

1/p2

1− (1/p)

= N
∑
p≤B

1

p2 − p
∼ N

∑
p≤B

1

p2

How big is
∑

p≤B
1
p2

?

1.
∑∞

n=1
1
n2

cvg. Do you know to what? π2

6 ∼ 1.644

2.
∑∞

p=1
1
p2

cvg. Do you know to what?

∼ 0.45.



The B-Factoring The Sieve of E: Last term is ≤ N

= N
∞∑
a=2

∑
p≤B

1

pa
= N

∑
p≤B

∞∑
a=2

1

pa

= N
∑
p≤B

1/p2

1− (1/p)

= N
∑
p≤B

1

p2 − p
∼ N

∑
p≤B

1

p2

How big is
∑

p≤B
1
p2

?

1.
∑∞

n=1
1
n2

cvg. Do you know to what? π2

6 ∼ 1.644

2.
∑∞

p=1
1
p2

cvg. Do you know to what? ∼ 0.45.



Time For The Factoring Sieve of E VS Naive Alg

Given N,B want to B-factor {2, . . . ,N}.

Naive Algorithm B-factor 2, B-factor 3, . . ., B-factor N. To
B-factor x takes ∼ B. So this takes time:

O(NB).

The B-Factoring Sieve of E takes time:

≤ N ln(ln(B)) + 0.5N

This is much better since often B ∼ Na for some 0 < a < 1.
Can easily modify to get a fast algorithm for B-factoring
N1, . . . ,N1 + N.



Time For The Factoring Sieve of E VS Naive Alg

Given N,B want to B-factor {2, . . . ,N}.
Naive Algorithm B-factor 2, B-factor 3, . . ., B-factor N. To
B-factor x takes ∼ B. So this takes time:

O(NB).

The B-Factoring Sieve of E takes time:

≤ N ln(ln(B)) + 0.5N

This is much better since often B ∼ Na for some 0 < a < 1.
Can easily modify to get a fast algorithm for B-factoring
N1, . . . ,N1 + N.



Time For The Factoring Sieve of E VS Naive Alg

Given N,B want to B-factor {2, . . . ,N}.
Naive Algorithm B-factor 2, B-factor 3, . . ., B-factor N. To
B-factor x takes ∼ B. So this takes time:

O(NB).

The B-Factoring Sieve of E takes time:

≤ N ln(ln(B)) + 0.5N

This is much better since often B ∼ Na for some 0 < a < 1.
Can easily modify to get a fast algorithm for B-factoring
N1, . . . ,N1 + N.



Time For The Factoring Sieve of E VS Naive Alg

Given N,B want to B-factor {2, . . . ,N}.
Naive Algorithm B-factor 2, B-factor 3, . . ., B-factor N. To
B-factor x takes ∼ B. So this takes time:

O(NB).

The B-Factoring Sieve of E takes time:

≤ N ln(ln(B)) + 0.5N

This is much better since often B ∼ Na for some 0 < a < 1.
Can easily modify to get a fast algorithm for B-factoring
N1, . . . ,N1 + N.



Variants of The B-Factoring Sieve of E

Can easily modify to get a fast algorithm for the following:
Given N1,B,N, B-factoring N1,N1 + 1, . . . ,N1 + N.

Time will still be ≤ N ln(ln(B)) + 0.5N.

This is not the problem we originally needed to solve, though it’s
close. We now go back to our original problem.



Variants of The B-Factoring Sieve of E

Can easily modify to get a fast algorithm for the following:
Given N1,B,N, B-factoring N1,N1 + 1, . . . ,N1 + N.

Time will still be ≤ N ln(ln(B)) + 0.5N.

This is not the problem we originally needed to solve, though it’s
close. We now go back to our original problem.



Back to Quadratic Sieve
Factoring Algorithm



Recall Quad Sieve Alg: First Attempt

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

STOP

1. We just spend a long aside on B-factoring, in bulk,

N1,N1 + 1, . . . ,N1 + N.

2. The problem we need solved is similar: B-factor, in bulk.

(x+0)2 (mod N), (x+1)2 (mod N), . . . , (x+M)2 (mod N).

But before we do that, lets go back to the algorithm and remind
ourselves what it does.



Recall Quad Sieve Alg: First Attempt

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

STOP

1. We just spend a long aside on B-factoring, in bulk,

N1,N1 + 1, . . . ,N1 + N.

2. The problem we need solved is similar: B-factor, in bulk.

(x+0)2 (mod N), (x+1)2 (mod N), . . . , (x+M)2 (mod N).

But before we do that, lets go back to the algorithm and remind
ourselves what it does.



Recall Quad Sieve Alg: First Attempt

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

STOP

1. We just spend a long aside on B-factoring, in bulk,

N1,N1 + 1, . . . ,N1 + N.

2. The problem we need solved is similar: B-factor, in bulk.

(x+0)2 (mod N), (x+1)2 (mod N), . . . , (x+M)2 (mod N).

But before we do that, lets go back to the algorithm and remind
ourselves what it does.



Recall Quad Sieve Alg: First Attempt

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

STOP

1. We just spend a long aside on B-factoring, in bulk,

N1,N1 + 1, . . . ,N1 + N.

2. The problem we need solved is similar: B-factor, in bulk.

(x+0)2 (mod N), (x+1)2 (mod N), . . . , (x+M)2 (mod N).

But before we do that, lets go back to the algorithm and remind
ourselves what it does.



Recall Quad Sieve Alg: First Attempt

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

STOP

1. We just spend a long aside on B-factoring, in bulk,

N1,N1 + 1, . . . ,N1 + N.

2. The problem we need solved is similar: B-factor, in bulk.

(x+0)2 (mod N), (x+1)2 (mod N), . . . , (x+M)2 (mod N).

But before we do that, lets go back to the algorithm and remind
ourselves what it does.



Recall Quad Sieve Alg: First Attempt (Again)
Given N let x =

⌈√
N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

I ⊆ {0, . . . ,M} s.t. (∀i ∈ I ), yi is B-factored. Find J ⊆ I such
that

∑
i∈J ~vi = ~0, so

∏
i∈J yi has even exponents, so:∏

i∈J
yi = Y 2

(
∏
i∈J

(x + i))2 ≡
∏
i∈J

yi = Y 2 (mod N)

Let X =
∏

i∈J(x + i) (mod N) and Y =
∏B

i=1 q
ei
i (mod N).

X 2 − Y 2 ≡ 0 (mod N).

GCD(X − Y ,N), GCD(X + Y ,N) should yield factors.



Recall Quad Sieve Alg: First Attempt (Again)
Given N let x =

⌈√
N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

I ⊆ {0, . . . ,M} s.t. (∀i ∈ I ), yi is B-factored. Find J ⊆ I such
that

∑
i∈J ~vi = ~0, so

∏
i∈J yi has even exponents, so:

∏
i∈J

yi = Y 2

(
∏
i∈J

(x + i))2 ≡
∏
i∈J

yi = Y 2 (mod N)

Let X =
∏

i∈J(x + i) (mod N) and Y =
∏B

i=1 q
ei
i (mod N).

X 2 − Y 2 ≡ 0 (mod N).

GCD(X − Y ,N), GCD(X + Y ,N) should yield factors.



Recall Quad Sieve Alg: First Attempt (Again)
Given N let x =

⌈√
N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

I ⊆ {0, . . . ,M} s.t. (∀i ∈ I ), yi is B-factored. Find J ⊆ I such
that

∑
i∈J ~vi = ~0, so

∏
i∈J yi has even exponents, so:∏

i∈J
yi = Y 2

(
∏
i∈J

(x + i))2 ≡
∏
i∈J

yi = Y 2 (mod N)

Let X =
∏

i∈J(x + i) (mod N) and Y =
∏B

i=1 q
ei
i (mod N).

X 2 − Y 2 ≡ 0 (mod N).

GCD(X − Y ,N), GCD(X + Y ,N) should yield factors.



Recall Quad Sieve Alg: First Attempt (Again)
Given N let x =

⌈√
N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

I ⊆ {0, . . . ,M} s.t. (∀i ∈ I ), yi is B-factored. Find J ⊆ I such
that

∑
i∈J ~vi = ~0, so

∏
i∈J yi has even exponents, so:∏

i∈J
yi = Y 2

(
∏
i∈J

(x + i))2 ≡
∏
i∈J

yi = Y 2 (mod N)

Let X =
∏

i∈J(x + i) (mod N) and Y =
∏B

i=1 q
ei
i (mod N).

X 2 − Y 2 ≡ 0 (mod N).

GCD(X − Y ,N), GCD(X + Y ,N) should yield factors.



Recall Quad Sieve Alg: First Attempt, First Step

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

How do we B-factor all of those numbers?

Modified Sieve of E B-factored N1 + 1, . . . ,N1 + N.
We need to B-factor y0, y1, . . . , yM .

Plan It was more efficient to B-factor 2, . . . ,N all at once then
one at at time. Same will be true for y0, . . . , yM .



Recall Quad Sieve Alg: First Attempt, First Step

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

How do we B-factor all of those numbers?
Modified Sieve of E B-factored N1 + 1, . . . ,N1 + N.

We need to B-factor y0, y1, . . . , yM .

Plan It was more efficient to B-factor 2, . . . ,N all at once then
one at at time. Same will be true for y0, . . . , yM .



Recall Quad Sieve Alg: First Attempt, First Step

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

How do we B-factor all of those numbers?
Modified Sieve of E B-factored N1 + 1, . . . ,N1 + N.
We need to B-factor y0, y1, . . . , yM .

Plan It was more efficient to B-factor 2, . . . ,N all at once then
one at at time. Same will be true for y0, . . . , yM .



Recall Quad Sieve Alg: First Attempt, First Step

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

How do we B-factor all of those numbers?
Modified Sieve of E B-factored N1 + 1, . . . ,N1 + N.
We need to B-factor y0, y1, . . . , yM .

Plan It was more efficient to B-factor 2, . . . ,N all at once then
one at at time. Same will be true for y0, . . . , yM .



The Quadratic Sieve: The Problem

New Problem Given N,B,M, x , want to B-factor
(x + 0)2 (mod N)
(x + 1)2 (mod N)

...
...

(x + M)2 (mod N)
We do an example on the next slide.



The Quadratic Sieve: Example

N = 1147, B = 2, M = 10, x = 34.
Want to 2-factor (so all powers of 2 and 3)
(34 + 0)2 (mod 1147)

...
...

...
(34 + 10)2 (mod 1147)

For the Sieve of E when we wanted to divide by p we looked at
every pth element. Is there an analog here?

For which 0 ≤ i ≤ 10 does 2 divide (34 + i)2 (mod 1147)?
Next Slide



The Quadratic Sieve: Example

N = 1147, B = 2, M = 10, x = 34.
Want to 2-factor (so all powers of 2 and 3)
(34 + 0)2 (mod 1147)

...
...

...
(34 + 10)2 (mod 1147)
For the Sieve of E when we wanted to divide by p we looked at
every pth element. Is there an analog here?

For which 0 ≤ i ≤ 10 does 2 divide (34 + i)2 (mod 1147)?
Next Slide



The Quadratic Sieve: Example

N = 1147, B = 2, M = 10, x = 34.
Want to 2-factor (so all powers of 2 and 3)
(34 + 0)2 (mod 1147)

...
...

...
(34 + 10)2 (mod 1147)
For the Sieve of E when we wanted to divide by p we looked at
every pth element. Is there an analog here?

For which 0 ≤ i ≤ 10 does 2 divide (34 + i)2 (mod 1147)?

Next Slide



The Quadratic Sieve: Example

N = 1147, B = 2, M = 10, x = 34.
Want to 2-factor (so all powers of 2 and 3)
(34 + 0)2 (mod 1147)

...
...

...
(34 + 10)2 (mod 1147)
For the Sieve of E when we wanted to divide by p we looked at
every pth element. Is there an analog here?

For which 0 ≤ i ≤ 10 does 2 divide (34 + i)2 (mod 1147)?
Next Slide



The Quadratic Sieve: Example of Dividing by 2

Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147)).

What is (34 + i)2 (mod 1147)? Since 0 ≤ i ≤ 10,

(34 + 0)2 ≤ (34 + i)2 ≤ (34 + 10)2

1156 ≤ (34 + i)2 ≤ 1936

1147 + 9 ≤ (34 + i)2 ≤ 1147 + 789.

So (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i is

(34 + i)2 − 1147 ≡ 0 (mod 2).



The Quadratic Sieve: Example of Dividing by 2

Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147)).

What is (34 + i)2 (mod 1147)?

Since 0 ≤ i ≤ 10,

(34 + 0)2 ≤ (34 + i)2 ≤ (34 + 10)2

1156 ≤ (34 + i)2 ≤ 1936

1147 + 9 ≤ (34 + i)2 ≤ 1147 + 789.

So (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i is

(34 + i)2 − 1147 ≡ 0 (mod 2).



The Quadratic Sieve: Example of Dividing by 2

Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147)).

What is (34 + i)2 (mod 1147)? Since 0 ≤ i ≤ 10,

(34 + 0)2 ≤ (34 + i)2 ≤ (34 + 10)2

1156 ≤ (34 + i)2 ≤ 1936

1147 + 9 ≤ (34 + i)2 ≤ 1147 + 789.

So (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i is

(34 + i)2 − 1147 ≡ 0 (mod 2).



The Quadratic Sieve: Example of Dividing by 2

Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147)).

What is (34 + i)2 (mod 1147)? Since 0 ≤ i ≤ 10,

(34 + 0)2 ≤ (34 + i)2 ≤ (34 + 10)2

1156 ≤ (34 + i)2 ≤ 1936

1147 + 9 ≤ (34 + i)2 ≤ 1147 + 789.

So (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i is

(34 + i)2 − 1147 ≡ 0 (mod 2).



The Quadratic Sieve: Example of Dividing by 2

Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147)).

What is (34 + i)2 (mod 1147)? Since 0 ≤ i ≤ 10,

(34 + 0)2 ≤ (34 + i)2 ≤ (34 + 10)2

1156 ≤ (34 + i)2 ≤ 1936

1147 + 9 ≤ (34 + i)2 ≤ 1147 + 789.

So (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i is

(34 + i)2 − 1147 ≡ 0 (mod 2).



The Quadratic Sieve: Example of Dividing by 2

Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147)).

What is (34 + i)2 (mod 1147)? Since 0 ≤ i ≤ 10,

(34 + 0)2 ≤ (34 + i)2 ≤ (34 + 10)2

1156 ≤ (34 + i)2 ≤ 1936

1147 + 9 ≤ (34 + i)2 ≤ 1147 + 789.

So (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i is

(34 + i)2 − 1147 ≡ 0 (mod 2).



The Quadratic Sieve: Example of Dividing by 2

Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147)).

What is (34 + i)2 (mod 1147)? Since 0 ≤ i ≤ 10,

(34 + 0)2 ≤ (34 + i)2 ≤ (34 + 10)2

1156 ≤ (34 + i)2 ≤ 1936

1147 + 9 ≤ (34 + i)2 ≤ 1147 + 789.

So (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i is

(34 + i)2 − 1147 ≡ 0 (mod 2).



The Quadratic Sieve: Example of Dividing by 2, cont
Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147)).

We know that

(34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i is

(34 + i)2 − 1147 ≡ 0 (mod 2)

i2 − 1 ≡ 0 (mod 2)

i ≡ 1 (mod 2).

Great!- just need to divide the yi where i ≡ 1 (mod 2).



The Quadratic Sieve: Example of Dividing by 2, cont
Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147)).

We know that

(34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i is

(34 + i)2 − 1147 ≡ 0 (mod 2)

i2 − 1 ≡ 0 (mod 2)

i ≡ 1 (mod 2).

Great!- just need to divide the yi where i ≡ 1 (mod 2).



The Quadratic Sieve: Example of Dividing by 2, cont
Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147)).

We know that

(34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i is

(34 + i)2 − 1147 ≡ 0 (mod 2)

i2 − 1 ≡ 0 (mod 2)

i ≡ 1 (mod 2).

Great!- just need to divide the yi where i ≡ 1 (mod 2).



The Quadratic Sieve: Example of Dividing by 2, cont
Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147)).

We know that

(34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i is

(34 + i)2 − 1147 ≡ 0 (mod 2)

i2 − 1 ≡ 0 (mod 2)

i ≡ 1 (mod 2).

Great!- just need to divide the yi where i ≡ 1 (mod 2).



The Quadratic Sieve: Example of Dividing by 2, cont
Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147)).

We know that

(34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i is

(34 + i)2 − 1147 ≡ 0 (mod 2)

i2 − 1 ≡ 0 (mod 2)

i ≡ 1 (mod 2).

Great!- just need to divide the yi where i ≡ 1 (mod 2).



The Quadratic Sieve: Example of Dividing by 3

For which 0 ≤ i ≤ 10 does 3 divide (34 + i)2 (mod 1147)?

We know that (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i is

(34 + i)2 − 1147 ≡ 0 (mod 3)

(1 + i)2 − 1 ≡ 0 (mod 3)

(i + 1)2 ≡ 1 (mod 3)

i ≡ 0, 1 (mod 3).

Great!- just need to divide the yi where i ≡ 0, 1 (mod 3).



The Quadratic Sieve: Example of Dividing by 3

For which 0 ≤ i ≤ 10 does 3 divide (34 + i)2 (mod 1147)?
We know that (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i is

(34 + i)2 − 1147 ≡ 0 (mod 3)

(1 + i)2 − 1 ≡ 0 (mod 3)

(i + 1)2 ≡ 1 (mod 3)

i ≡ 0, 1 (mod 3).

Great!- just need to divide the yi where i ≡ 0, 1 (mod 3).



The Quad Sieve: Example of Dividing by 5,7,11,13

(34 + i)2 − 1147 ≡ 0 (mod 5)
(4 + i)2 − 2 ≡ 0 (mod 5)
NO SOLUTIONS

(34 + i)2 − 1147 ≡ 0 (mod 7)
(6 + i)2 ≡ 1 (mod 7)
i ≡ 0, 2 (mod 7)

(34 + i)2 − 1147 ≡ 0 (mod 11)
(1 + i)2 ≡ 3 (mod 11)
i ≡ 4, 5 (mod 11)

(34 + i)2 − 1147 ≡ 0 (mod 13)
(8 + i)2 + 10 ≡ 0 (mod 13)
i ≡ 1, 9 (mod 13)



The Quad Sieve: Example of Dividing by 17,19,23

(34 + i)2 − 1147 ≡ 0 (mod 17)
i2 + 9 ≡ 0 (mod 17)
i ≡ 5, 12 (mod 17)

(34 + i)2 − 1147 ≡ 0 (mod 19)
(15 + i)2 + 12 ≡ 0 (mod 19)
i ≡ 8, 15 (mod 19)

(34 + i)2 − 1147 ≡ 0 (mod 23)
(11 + i)2 + 3 ≡ 0 (mod 23)
NO SOLUTIONS



The B-Factor Step Using Quad Sieve: Program

Problem Given N,B,M, x , want to B-factor
(x + 0)2 (mod N)

...
...

(x + M)2 (mod N)

Algorithm
As p goes through the first B primes.

Find A ⊆ {0, . . . , p − 1}: i ∈ A iff (x + i)2 − N ≡ 0 (mod p)
for a ∈ A

for k = 0 to
⌈
M−a
p

⌉
divide (x + pk + a)2 by p (and then p again. . .)



The B-Factor Step Using Quad Sieve: Program

Problem Given N,B,M, x , want to B-factor
(x + 0)2 (mod N)

...
...

(x + M)2 (mod N)
Algorithm
As p goes through the first B primes.

Find A ⊆ {0, . . . , p − 1}: i ∈ A iff (x + i)2 − N ≡ 0 (mod p)

for a ∈ A
for k = 0 to

⌈
M−a
p

⌉
divide (x + pk + a)2 by p (and then p again. . .)



The B-Factor Step Using Quad Sieve: Program

Problem Given N,B,M, x , want to B-factor
(x + 0)2 (mod N)

...
...

(x + M)2 (mod N)
Algorithm
As p goes through the first B primes.

Find A ⊆ {0, . . . , p − 1}: i ∈ A iff (x + i)2 − N ≡ 0 (mod p)
for a ∈ A

for k = 0 to
⌈
M−a
p

⌉

divide (x + pk + a)2 by p (and then p again. . .)



The B-Factor Step Using Quad Sieve: Program

Problem Given N,B,M, x , want to B-factor
(x + 0)2 (mod N)

...
...

(x + M)2 (mod N)
Algorithm
As p goes through the first B primes.

Find A ⊆ {0, . . . , p − 1}: i ∈ A iff (x + i)2 − N ≡ 0 (mod p)
for a ∈ A

for k = 0 to
⌈
M−a
p

⌉
divide (x + pk + a)2 by p (and then p again. . .)



How Much Time?

Algorithm
As p goes through the first B primes.

Find A ⊆ {0, . . . , p − 1}: i ∈ A iff (x + i)2 − N ≡ 0 (mod p)

for a ∈ A
for k = 0 to

⌈
M−a
p

⌉
Time ≤

∑
p≤B(lg p + 2M−1

p ) =
∑

p≤B lg p + 2M
∑

p≤B
1
p .

= (
∑
p≤B

lg p) + 2M ln ln(B) ≤ B ln(B) + 2M ln(ln(B)).

The inequality
∑

p≤B lg p ≤ B ln(B) requires some hard math.
The sum is called Chebyshev’s Function .



How Much Time?

Algorithm
As p goes through the first B primes.

Find A ⊆ {0, . . . , p − 1}: i ∈ A iff (x + i)2 − N ≡ 0 (mod p)
for a ∈ A

for k = 0 to
⌈
M−a
p

⌉
Time ≤

∑
p≤B(lg p + 2M−1

p ) =
∑

p≤B lg p + 2M
∑

p≤B
1
p .

= (
∑
p≤B

lg p) + 2M ln ln(B) ≤ B ln(B) + 2M ln(ln(B)).

The inequality
∑

p≤B lg p ≤ B ln(B) requires some hard math.
The sum is called Chebyshev’s Function .



How Much Time?

Algorithm
As p goes through the first B primes.

Find A ⊆ {0, . . . , p − 1}: i ∈ A iff (x + i)2 − N ≡ 0 (mod p)
for a ∈ A

for k = 0 to
⌈
M−a
p

⌉
Time ≤

∑
p≤B(lg p + 2M−1

p ) =
∑

p≤B lg p + 2M
∑

p≤B
1
p .

= (
∑
p≤B

lg p) + 2M ln ln(B) ≤ B ln(B) + 2M ln(ln(B)).

The inequality
∑

p≤B lg p ≤ B ln(B) requires some hard math.
The sum is called Chebyshev’s Function .



Names of Sieves

1. The Sieve of E is the Sieve that, given N, finds all of the
primes ≤ N. We may also use the name for finding all primes
between N1 and N2.

2. The B-Factoring Sieve of E is the Sieve that, given N, tries
to B-factors all of the numbers from 2 to N. We may also use
the name for B-factoring all numbers between N1 and N2.

3. The Quadratic Sieve is from the last slide. Given N,B,M, x
it tries to B-factor (x + 0)2 (mod N), . . ., (x + M)2

(mod N). Note that it is quite fast.



Quad Sieve Alg: Second Attempt, Algorithm
Given N let x =

⌈√
N
⌉

. All ≡ are mod N. B,M are params.

B-factor (x + 0)2 (mod N), . . ., (x + M)2 (mod N) by Quad S.

Let I ⊆ {0, . . . ,M} so that (∀i ∈ I ), yi is B-factored. Find J ⊆ I
such that

∑
i∈J ~vi = ~0. Hence

∏
i∈J yi has all even exponents, so

there exists Y ∏
i∈J

yi = Y 2

(
∏
i∈J

(x + i))2 ≡
∏
i∈J

yi = Y 2 (mod N)

Let X =
∏

i∈J(x + i) (mod N) and Y =
∏B

i=1 q
ei
i (mod N).

X 2 − Y 2 ≡ 0 (mod N).

GCD(X − Y ,N), GCD(X + Y ,N) should yield factors.



Analysis of Quadratic Sieve Factoring Algorithm

Time to B-factor:

2B + 2M ln(ln(B)).

Time to find J: B3.

Total Time:
2B + 2M ln(ln(B)) + B3

Intuitive but not rigorous arguments yield run time

e
√
lnN ln lnN ∼ e

√
8 lnN ∼ e2.8

√
lnN



Speed Up One

Recall:
(34 + i)2 − 1147 ≡ 0 (mod 23)
(11 + i)2 + 3 ≡ 0 (mod 23)
NO SOLUTIONS

If there is a prime p such that z2 ≡ 1147 (mod p) has NO
SOLUTION then we should not ever consider it.

There is a fast test to determine just if z2 ≡ 1147 (mod p) has a
solution (and more generally z2 ≡ N (mod p)). So can eliminate
some primes p ≤ B before you start.



Speed Up One

Recall:
(34 + i)2 − 1147 ≡ 0 (mod 23)
(11 + i)2 + 3 ≡ 0 (mod 23)
NO SOLUTIONS

If there is a prime p such that z2 ≡ 1147 (mod p) has NO
SOLUTION then we should not ever consider it.

There is a fast test to determine just if z2 ≡ 1147 (mod p) has a
solution (and more generally z2 ≡ N (mod p)). So can eliminate
some primes p ≤ B before you start.



Speed Up One

Recall:
(34 + i)2 − 1147 ≡ 0 (mod 23)
(11 + i)2 + 3 ≡ 0 (mod 23)
NO SOLUTIONS

If there is a prime p such that z2 ≡ 1147 (mod p) has NO
SOLUTION then we should not ever consider it.

There is a fast test to determine just if z2 ≡ 1147 (mod p) has a
solution (and more generally z2 ≡ N (mod p)). So can eliminate
some primes p ≤ B before you start.



Speed Up Two

Recall:
We started with x =

⌈√
N
⌉

and did (x + i)2 for 0 ≤ i ≤ M.

We can also (with some care) use (x + i)2 when i ≤ 0.

Advantage Smaller numbers more likely to be B-fact.



Speed Up Two

Recall:
We started with x =

⌈√
N
⌉

and did (x + i)2 for 0 ≤ i ≤ M.

We can also (with some care) use (x + i)2 when i ≤ 0.

Advantage Smaller numbers more likely to be B-fact.



Speed Up Three

Recall:
(34 + i)2 − 1147 ≡ 0 (mod 19)
(15 + i)2 + 12 ≡ 0 (mod 19)
i ≡ 8, 15 (mod 19)

We can have one more variable:
(34j + i)2 − 1147 ≡ 0 (mod 19)
(15j + i)2 + 12 ≡ 0 (mod 19)
15j + i ≡ 8, 15 (mod 19)
Many values of (i , j) work, hence we find the set of y ’s that
product to a square faster.



Speed Up Three

Recall:
(34 + i)2 − 1147 ≡ 0 (mod 19)
(15 + i)2 + 12 ≡ 0 (mod 19)
i ≡ 8, 15 (mod 19)

We can have one more variable:
(34j + i)2 − 1147 ≡ 0 (mod 19)
(15j + i)2 + 12 ≡ 0 (mod 19)
15j + i ≡ 8, 15 (mod 19)
Many values of (i , j) work, hence we find the set of y ’s that
product to a square faster.



Speed Up Four—Use some primes > B

1. Look at all of the non B-factored numbers. For each one test
if what is left is prime. Let P1 be the set of all of those
primes..

2. Look at all of the non B-factored numbers. For each of them
try a factoring algorithm (e.g, Pollards rho) for a limited
amount of time. Let P2 be the set of primes you come across.

3. Do Q. Sieve on all of the non B-factored numbers using the
primes in P1 ∪ P2.

This will increase the number of B-factored numbers.



Speed Up Five—Avoid Division

For this slide lg means dlg e which is very fast on a computer.

Using Divisions Primes q1, . . . , qm < B divide x . Divide x by all
the qi . Also q2i , q3i , etc until does not work. When you are done
you’ve B-factored the number or not.

Using Subtraction Primes q1, . . . , qm < B divide x . Do

d = lg(x)− lg(q1)− lg(q2)− · · · − lg(qm)

If d ∼ 0 then we think x IS B-fact, so B-factor x .
If far from 0 then DO NOT DIVIDE!



Speed Up Five—Avoid Division

For this slide lg means dlg e which is very fast on a computer.

Using Divisions Primes q1, . . . , qm < B divide x . Divide x by all
the qi . Also q2i , q3i , etc until does not work. When you are done
you’ve B-factored the number or not.
Using Subtraction Primes q1, . . . , qm < B divide x . Do

d = lg(x)− lg(q1)− lg(q2)− · · · − lg(qm)

If d ∼ 0 then we think x IS B-fact, so B-factor x .
If far from 0 then DO NOT DIVIDE!



Speed Up Five—Avoid Division

For this slide lg means dlg e which is very fast on a computer.

Using Divisions Primes q1, . . . , qm < B divide x . Divide x by all
the qi . Also q2i , q3i , etc until does not work. When you are done
you’ve B-factored the number or not.
Using Subtraction Primes q1, . . . , qm < B divide x . Do

d = lg(x)− lg(q1)− lg(q2)− · · · − lg(qm)

If d ∼ 0 then we think x IS B-fact, so B-factor x .
If far from 0 then DO NOT DIVIDE!



Speed Up Five—Avoid Division, Why Works
Why Does This Work? If x = q1q2q3 then

lg(x) = lg(q1) + lg(q2) + lg(q3)

lg(x)− lg(q1)− lg(q2)− lg(q3) = 0

So why not insist that

lg(x)− lg(q1)− lg(q2)− · · · − lg(qm) = 0

1. Using dlge may introduce approximations so you don’t get 0.

2. If x = q21q2q3 then

lg(x) = lg(q21) + lg(q2) + lg(q3) = 2 lg(q1) + lg(q2) + lg(q3)

lg(x)− lg(q1) + lg(q2) + lg(q3) = lg(q1) 6= 0

3. We need to define small carefully. Will still err.



Speed Up Five—Avoid Division, Why Works
Why Does This Work? If x = q1q2q3 then

lg(x) = lg(q1) + lg(q2) + lg(q3)

lg(x)− lg(q1)− lg(q2)− lg(q3) = 0

So why not insist that

lg(x)− lg(q1)− lg(q2)− · · · − lg(qm) = 0

1. Using dlge may introduce approximations so you don’t get 0.

2. If x = q21q2q3 then

lg(x) = lg(q21) + lg(q2) + lg(q3) = 2 lg(q1) + lg(q2) + lg(q3)

lg(x)− lg(q1) + lg(q2) + lg(q3) = lg(q1) 6= 0

3. We need to define small carefully. Will still err.



Speed Up Five—Avoid Division, Why Fast

Why is this fast?

1. Subtraction is much faster than division.

2. Most numbers are not B-fact, so don’t do divisions that
won’t help.



Speed Up Five—Avoid Division, Example One

B = 7 so we are looking at 2, 3, 5, 7, 11, 13, 17. Small is ≤ 10.

108290 7-fact? We find that 2,5,7,13,17 all divide it.

lg(108290)− lg(2)− lg(5)− lg(7)− lg(13)− lg(17) = 4 ≤ 10

So we think 108290 IS 7-fact. Is this correct? Yes:

108290 = 2× 5× 72 × 13× 17



Speed Up Five—Avoid Division, Example One

B = 7 so we are looking at 2, 3, 5, 7, 11, 13, 17. Small is ≤ 10.

108290 7-fact? We find that 2,5,7,13,17 all divide it.

lg(108290)− lg(2)− lg(5)− lg(7)− lg(13)− lg(17) = 4 ≤ 10

So we think 108290 IS 7-fact. Is this correct? Yes:

108290 = 2× 5× 72 × 13× 17



Speed Up Five—Avoid Division, Example One

B = 7 so we are looking at 2, 3, 5, 7, 11, 13, 17. Small is ≤ 10.

108290 7-fact? We find that 2,5,7,13,17 all divide it.

lg(108290)− lg(2)− lg(5)− lg(7)− lg(13)− lg(17) = 4 ≤ 10

So we think 108290 IS 7-fact. Is this correct? Yes:

108290 = 2× 5× 72 × 13× 17



Speed Up Five—Avoid Division, Example One

B = 7 so we are looking at 2, 3, 5, 7, 11, 13, 17. Small is ≤ 10.

108290 7-fact? We find that 2,5,7,13,17 all divide it.

lg(108290)− lg(2)− lg(5)− lg(7)− lg(13)− lg(17) = 4 ≤ 10

So we think 108290 IS 7-fact. Is this correct? Yes:

108290 = 2× 5× 72 × 13× 17



Speed Up Five—Avoid Division, Example One

B = 7 so we are looking at 2, 3, 5, 7, 11, 13, 17. Small is ≤ 10.

108290 7-fact? We find that 2,5,7,13,17 all divide it.

lg(108290)− lg(2)− lg(5)− lg(7)− lg(13)− lg(17) = 4 ≤ 10

So we think 108290 IS 7-fact. Is this correct? Yes:

108290 = 2× 5× 72 × 13× 17



Speed Up Five—Avoid Division, Example Two
Is 78975897 7-fact? We find that 3,7,11,13,17 all divide it.

lg(78975897)− lg(3)− lg(7)− lg(11)− lg(13)− lg(17) = 11 > 10

So we think 78975897 is NOT 7-fact. Is this correct? No!

78975897 = 3× 72 × 11× 132 × 174.

Cautionary Note
78975897 = 3× 72 × 11× 132 × 174. was thought to NOT be
7-fact. Erred because primes had large exponents. The large
exponents made

lg(78975897)

LARGER than

lg(3) + lg(7) + lg(11) + lg(13) + lg(17) + 10



Speed Up Five—Avoid Division, Example Two
Is 78975897 7-fact? We find that 3,7,11,13,17 all divide it.

lg(78975897)− lg(3)− lg(7)− lg(11)− lg(13)− lg(17) = 11 > 10

So we think 78975897 is NOT 7-fact. Is this correct? No!

78975897 = 3× 72 × 11× 132 × 174.

Cautionary Note
78975897 = 3× 72 × 11× 132 × 174. was thought to NOT be
7-fact. Erred because primes had large exponents. The large
exponents made

lg(78975897)

LARGER than

lg(3) + lg(7) + lg(11) + lg(13) + lg(17) + 10



Speed Up Five—Avoid Division, Example Two
Is 78975897 7-fact? We find that 3,7,11,13,17 all divide it.

lg(78975897)− lg(3)− lg(7)− lg(11)− lg(13)− lg(17) = 11 > 10

So we think 78975897 is NOT 7-fact. Is this correct? No!

78975897 = 3× 72 × 11× 132 × 174.

Cautionary Note
78975897 = 3× 72 × 11× 132 × 174. was thought to NOT be
7-fact. Erred because primes had large exponents. The large
exponents made

lg(78975897)

LARGER than

lg(3) + lg(7) + lg(11) + lg(13) + lg(17) + 10



Speed Up Five—Avoid Division, Example Two
Is 78975897 7-fact? We find that 3,7,11,13,17 all divide it.

lg(78975897)− lg(3)− lg(7)− lg(11)− lg(13)− lg(17) = 11 > 10

So we think 78975897 is NOT 7-fact. Is this correct? No!

78975897 = 3× 72 × 11× 132 × 174.

Cautionary Note
78975897 = 3× 72 × 11× 132 × 174. was thought to NOT be
7-fact. Erred because primes had large exponents. The large
exponents made

lg(78975897)

LARGER than

lg(3) + lg(7) + lg(11) + lg(13) + lg(17) + 10



Speed Up Five—Avoid Division, Examples Three

Is 9699690 7-fact? We find that 2,3,5,7,11,13,17 all divide it.

lg(9699690)−lg(2)−lg(3)−lg(5)−lg(7)−lg(11)−lg(13)−lg(17) = 1 ≤ 10

So we think 9699690 is 7-fact. Is this correct? No!

lg(9699690)−lg(2)−lg(3)−lg(5)−lg(7)−lg(11)−lg(13)−lg(17) = 1 ≤ 10

Cautionary Note 78975897 = 2× 3× 5× 7× 11× 13× 17× 19.
was thought to NOT be 7-fact. Erred because it had low
exponents and only one a small prime over B.
Lemon to Lemonade Not B-fact, but still useful.



Speed Up Five—Avoid Division, Examples Three

Is 9699690 7-fact? We find that 2,3,5,7,11,13,17 all divide it.

lg(9699690)−lg(2)−lg(3)−lg(5)−lg(7)−lg(11)−lg(13)−lg(17) = 1 ≤ 10

So we think 9699690 is 7-fact. Is this correct? No!

lg(9699690)−lg(2)−lg(3)−lg(5)−lg(7)−lg(11)−lg(13)−lg(17) = 1 ≤ 10

Cautionary Note 78975897 = 2× 3× 5× 7× 11× 13× 17× 19.
was thought to NOT be 7-fact. Erred because it had low
exponents and only one a small prime over B.
Lemon to Lemonade Not B-fact, but still useful.



Speed Up Five—Avoid Division, Examples Three

Is 9699690 7-fact? We find that 2,3,5,7,11,13,17 all divide it.

lg(9699690)−lg(2)−lg(3)−lg(5)−lg(7)−lg(11)−lg(13)−lg(17) = 1 ≤ 10

So we think 9699690 is 7-fact. Is this correct? No!

lg(9699690)−lg(2)−lg(3)−lg(5)−lg(7)−lg(11)−lg(13)−lg(17) = 1 ≤ 10

Cautionary Note 78975897 = 2× 3× 5× 7× 11× 13× 17× 19.
was thought to NOT be 7-fact. Erred because it had low
exponents and only one a small prime over B.

Lemon to Lemonade Not B-fact, but still useful.



Speed Up Five—Avoid Division, Examples Three

Is 9699690 7-fact? We find that 2,3,5,7,11,13,17 all divide it.

lg(9699690)−lg(2)−lg(3)−lg(5)−lg(7)−lg(11)−lg(13)−lg(17) = 1 ≤ 10

So we think 9699690 is 7-fact. Is this correct? No!

lg(9699690)−lg(2)−lg(3)−lg(5)−lg(7)−lg(11)−lg(13)−lg(17) = 1 ≤ 10

Cautionary Note 78975897 = 2× 3× 5× 7× 11× 13× 17× 19.
was thought to NOT be 7-fact. Erred because it had low
exponents and only one a small prime over B.
Lemon to Lemonade Not B-fact, but still useful.



Speed Up Five-extra—Avoid Division, One More
Trick

We are just approximating if

lg x − lg(q1)− · · · − lg(qm)

is small.

lg 2, lg 3, lg 5 are so tiny, don’t bother with those.

If B = 7 then use:

23, 32, 52, 7, 11, 13, 17, 19



Speed Up Five-extra—Avoid Division, One More
Trick

We are just approximating if

lg x − lg(q1)− · · · − lg(qm)

is small.

lg 2, lg 3, lg 5 are so tiny, don’t bother with those.

If B = 7 then use:

23, 32, 52, 7, 11, 13, 17, 19



Speed Up Five-extra—Avoid Division, One More
Trick

We are just approximating if

lg x − lg(q1)− · · · − lg(qm)

is small.

lg 2, lg 3, lg 5 are so tiny, don’t bother with those.

If B = 7 then use:

23, 32, 52, 7, 11, 13, 17, 19



Speed Up Six

The Gaussian Elimination is over mod 2 and is for a sparse matrix
(most of the entries are 0).

There are special purpose algorithms for this.

1. Can be done in O(B2+ε) steps rather than O(B3).

2. Can’t store the entire matrix—too big.



Speed Up Seven

(This is a paragraph from a blog post about Quad Sieve
https://blogs.msdn.microsoft.com/devdev/2006/06/19/

factoring-large-numbers-with-quadratic-sieve/)

Is z B-fact? There is a light for each p ≤ B whose intensity is
proportional to the lg p. Each light turns on just two times every p
cycles, corresponding to the two square roots of N mod p. A
sensor senses the combined intensity of all the lights together, and
if this is close enough to the lg z then z is a B-fact number
candidate. Can do in parallel.

https://blogs.msdn.microsoft.com/devdev/2006/06/19/factoring-large-numbers-with-quadratic-sieve/
https://blogs.msdn.microsoft.com/devdev/2006/06/19/factoring-large-numbers-with-quadratic-sieve/


The Number Field Sieve

The Quad Sieve had run time:

e(lnN ln lnN)1/2 ∼ e2.8(lnN)1/2

The Number Field Sieve which uses some of the same ideas has
run time:

e1.9(lnN)1/3(ln lnN)2/3 ∼ e14(lnN)1/3



The Number Field Sieve

The Quad Sieve had run time:

e(lnN ln lnN)1/2 ∼ e2.8(lnN)1/2

The Number Field Sieve which uses some of the same ideas has
run time:

e1.9(lnN)1/3(ln lnN)2/3 ∼ e14(lnN)1/3



Compare Run Times

Alg Run Time as Na/Lδ Run Time in terms of L

Naive N1/2 2L/2

Pollard Rho N1/4 2L/4

Linear Sieve N3.9/L1/2 21.95L
1/2

Quad Sieve N2.8/L1/2 21.4L
1/2

N.F. Sieve N14/L2/3 220L
1/3

1. Times are more conjectured than proven.

2. Quad S. is better than Linear Sieve by only a constant in the
exponent. Made a big difference IRL.

3. Quad Sieve is better than Pollard-Rho at about 1050.



Relevance for RSA

1. Carl Pomerance devised the Quad S. algorithm in 1982.

2. People did not think it would work that well; however, he had
friends at Sandia Labs who tried it out. Just for fun.

3. At the same time another group at Sandia Labs was working
on a serious RSA project that would use 100-digit N.

4. Quad Sieve could factor 100-digit numbers, so the RSA
project had to be scrapped.



Relevance for RSA

1. Carl Pomerance devised the Quad S. algorithm in 1982.

2. People did not think it would work that well; however, he had
friends at Sandia Labs who tried it out. Just for fun.

3. At the same time another group at Sandia Labs was working
on a serious RSA project that would use 100-digit N.

4. Quad Sieve could factor 100-digit numbers, so the RSA
project had to be scrapped.



Relevance for RSA

1. Carl Pomerance devised the Quad S. algorithm in 1982.

2. People did not think it would work that well; however, he had
friends at Sandia Labs who tried it out. Just for fun.

3. At the same time another group at Sandia Labs was working
on a serious RSA project that would use 100-digit N.

4. Quad Sieve could factor 100-digit numbers, so the RSA
project had to be scrapped.



Relevance for RSA

1. Carl Pomerance devised the Quad S. algorithm in 1982.

2. People did not think it would work that well; however, he had
friends at Sandia Labs who tried it out. Just for fun.

3. At the same time another group at Sandia Labs was working
on a serious RSA project that would use 100-digit N.

4. Quad Sieve could factor 100-digit numbers, so the RSA
project had to be scrapped.



Relevance for RSA

1. Carl Pomerance devised the Quad S. algorithm in 1982.

2. People did not think it would work that well; however, he had
friends at Sandia Labs who tried it out. Just for fun.

3. At the same time another group at Sandia Labs was working
on a serious RSA project that would use 100-digit N.

4. Quad Sieve could factor 100-digit numbers, so the RSA
project had to be scrapped.



The Future of Factoring

I paraphrase The Joy of Factoring by Wagstaff:
The best factoring algorithms have time complexity of the
form

ec(lnN)t(ln lnN)1−t

with Q.Sieve using t = 1
2 and N.F.Sieve using t = 1

3 .
Moreover, any method that uses B-factoring must take this
long.

I No progress since N.F.Sieve in 1988.

I My opinion: ec(lnN)t(ln lnN)1−t
is the best you can do ever,

though t can be improved.
I Why hasn’t t been improved? Wagstaff told me:

I We’ve run out of parameters to optimize.
I Brandon, Solomon, Mark, and Ivan haven’t worked on it yet.



The Future of Factoring

I paraphrase The Joy of Factoring by Wagstaff:
The best factoring algorithms have time complexity of the
form

ec(lnN)t(ln lnN)1−t

with Q.Sieve using t = 1
2 and N.F.Sieve using t = 1

3 .
Moreover, any method that uses B-factoring must take this
long.

I No progress since N.F.Sieve in 1988.

I My opinion: ec(lnN)t(ln lnN)1−t
is the best you can do ever,

though t can be improved.
I Why hasn’t t been improved? Wagstaff told me:

I We’ve run out of parameters to optimize.
I Brandon, Solomon, Mark, and Ivan haven’t worked on it yet.



The Future of Factoring

I paraphrase The Joy of Factoring by Wagstaff:
The best factoring algorithms have time complexity of the
form

ec(lnN)t(ln lnN)1−t

with Q.Sieve using t = 1
2 and N.F.Sieve using t = 1

3 .
Moreover, any method that uses B-factoring must take this
long.

I No progress since N.F.Sieve in 1988.

I My opinion: ec(lnN)t(ln lnN)1−t
is the best you can do ever,

though t can be improved.

I Why hasn’t t been improved? Wagstaff told me:
I We’ve run out of parameters to optimize.
I Brandon, Solomon, Mark, and Ivan haven’t worked on it yet.



The Future of Factoring

I paraphrase The Joy of Factoring by Wagstaff:
The best factoring algorithms have time complexity of the
form

ec(lnN)t(ln lnN)1−t

with Q.Sieve using t = 1
2 and N.F.Sieve using t = 1

3 .
Moreover, any method that uses B-factoring must take this
long.

I No progress since N.F.Sieve in 1988.

I My opinion: ec(lnN)t(ln lnN)1−t
is the best you can do ever,

though t can be improved.
I Why hasn’t t been improved? Wagstaff told me:

I We’ve run out of parameters to optimize.
I Brandon, Solomon, Mark, and Ivan haven’t worked on it yet.



The Future of Factoring

I paraphrase The Joy of Factoring by Wagstaff:
The best factoring algorithms have time complexity of the
form

ec(lnN)t(ln lnN)1−t

with Q.Sieve using t = 1
2 and N.F.Sieve using t = 1

3 .
Moreover, any method that uses B-factoring must take this
long.

I No progress since N.F.Sieve in 1988.

I My opinion: ec(lnN)t(ln lnN)1−t
is the best you can do ever,

though t can be improved.
I Why hasn’t t been improved? Wagstaff told me:

I We’ve run out of parameters to optimize.

I Brandon, Solomon, Mark, and Ivan haven’t worked on it yet.



The Future of Factoring

I paraphrase The Joy of Factoring by Wagstaff:
The best factoring algorithms have time complexity of the
form

ec(lnN)t(ln lnN)1−t

with Q.Sieve using t = 1
2 and N.F.Sieve using t = 1

3 .
Moreover, any method that uses B-factoring must take this
long.

I No progress since N.F.Sieve in 1988.

I My opinion: ec(lnN)t(ln lnN)1−t
is the best you can do ever,

though t can be improved.
I Why hasn’t t been improved? Wagstaff told me:

I We’ve run out of parameters to optimize.
I Brandon, Solomon, Mark, and Ivan haven’t worked on it yet.



BILL STOP
RECORDING


