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Quadratic Sieve
Factoring



Notation Reminder
1) GCD(x, y) is the Greatest Common Divisor of x , y .

2) Sums and Products

n∑
i=1

ai = a1 + a2 + · · ·+ an.

n∏
i=1

ai = a1 × a2 × · · · × an.

3) More Sums and Products We summed or producted over
{1, . . . , n}. Can use other sets.
If A = {1, 4, 9} then ∑

i∈A
ai = a1 + a4 + a9.

∏
i∈A

ai = a1 × a4 × a9.
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More Notation Reminder

4) a1, . . . , an could be vectors.∑
i∈A

~ai = ~a1 + ~a4 + ~a9.

Addition is component-wise.

We will not be using any notion of a product of vectors.

5) We extend mod notation to vectors of integers. Example:

(8, 1, 0, 9) (mod 2) = (0, 1, 0, 1).
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Back from our Aside on
Sieves



Time Analysis of Sieve of E
The Sieve of E can find all primes ≤ N in time

≤ N
∑
p≤N

1

p
∼ N ln(ln(N))

How long would finding all primes ≤ N be the stupid way?

Testing if a number is prime takes (log n)3 steps (we did not do
this in class) So testing all numbers n ≤ N for primality takes time:∑

n≤N
(log n)3 ∼ N(logN)3

I Time diff not impressive. When we modify the Sieve to
actually factor, it will be much more impressive.

I The key to the speed of The Sieve of E is that when it marks
it DOES NOT look at (say) 3 and say Oh, thats not even .
It literally does not look at all!
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The B-Factoring Sieve of E: Example

The Sieve of E marked all evens.
Better Divide by 2 knowing it will work. Then divide by 2 again
(it might not work) until factor out all powers of 2.

The Sieve of E marked all numbers ≡ 0 (mod 3)
Better Divide by 3 knowing it will work. Then divide by 3 again
(it might not work) until factor out all powers of 3.

Do this for the first B primes and you will have B-factored many
numbers.



B-factoring all N ≤ 48, the Smart Way

Write down numbers ≤ 48. We 2-factor them, so divide by 2,3.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48

First unmarked is 2. DIVIDE mults of 2 by 2.
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Divide by 2, Repeatedly

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 ∗ 1 2 ∗ 2 2 ∗ 3 23 2 ∗ 5 22 ∗ 3 2 ∗ 7

16 17 18 19 20 21 22 23 24 25 26 27

24 2 ∗ 9 22 ∗ 5 2 ∗ 11 23 ∗ 3 2 ∗ 13

28 29 30 31 32 33 34 35 36 37 38 39

22 ∗ 7 2 ∗ 15 25 2 ∗ 17 22 ∗ 9 2 ∗ 19

40 41 42 43 44 45 46 47 48

23 ∗ 5 2 ∗ 21 22 ∗ 11 2 ∗ 23 24 ∗ 3

First unmarked is 2. DIVIDE mults of 3 by 3.



Divide by 3, Repeatedly

We only show the last row (for reasons of space).

40 41 42 43 44 45 46 47 48

23 ∗ 5 2 ∗ 3 ∗ 7 22 ∗ 11 32 ∗ 5 2 ∗ 23 24 ∗ 3

I 48 was 2-factored

I Nothing else was.



The B-Factoring Sieve of E: Algorithm

1. Input(N,B)

2. Write down 2, 3, . . . ,N. All are blank in box.

3. (BOX STEP) Goto the first blank box, p. (When have visited
this step B times then stop).

4. Factor out p from p, 2p, . . .,
⌊
N
p

⌋
p.

Factor out p from p2, 2p2, . . .,
⌊
N
p2

⌋
p2

Factor out . . ..

5. GOTO BOX STEP.

Time: ∑
p≤B

N

p
+
∑
p≤B

N

p2
+
∑
p≤B

N

p3
+
∑
p≤B

N

p4
· · ·

= N

(∑
p≤B

1

p
+
∑
p≤B

1

p2
+
∑
p≤B

1

p3
+
∑
p≤B

1

p4
+ · · ·

)



The B-Factoring Sieve of E: Analysis

= N

(∑
p≤B

1

p
+
∑
p≤B

1

p2
+
∑
p≤B

1

p3
+
∑
p≤B

1

p4
+ · · ·

)

N
∑
p≤B

1

p
+ N

∑
p≤B

1

p2
+ N

∑
p≤B

1

p3
+ N

∑
p≤B

1

p4
+ · · ·

= N ln(ln(B)) + N
∞∑
a=2

∑
p≤B

1

pa

Next slide shows that N
∑∞

a=2

∑
p≤B

1
pa ≤ (0.5)N, so time is

≤ N ln(ln(B)) + (0.5)N.

Note: The mult constants really are ≤ 1 and it does matter for
real world performance.
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The B-Factoring The Sieve of E: Last term is ≤ N

= N
∞∑
a=2

∑
p≤B

1

pa
= N

∑
p≤B

∞∑
a=2

1

pa

= N
∑
p≤B

1/p2

1− (1/p)

= N
∑
p≤B

1

p2 − p
∼ N

∑
p≤B

1

p2

How big is
∑

p≤B
1
p2

?

1.
∑∞

n=1
1
n2

cvg. Do you know to what? π2

6 ∼ 1.644

2.
∑∞

p=1
1
p2

cvg. Do you know to what? ∼ 0.45.
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Time For The Factoring Sieve of E VS Naive Alg

Given N,B want to B-factor {2, . . . ,N}.

Naive Algorithm B-factor 2, B-factor 3, . . ., B-factor N. To
B-factor x takes ∼ B. So this takes time:

O(NB).

The B-Factoring Sieve of E takes time:

≤ N ln(ln(B)) + 0.5N

This is much better since often B ∼ Na for some 0 < a < 1.
Can easily modify to get a fast algorithm for B-factoring
N1, . . . ,N1 + N.
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Variants of The B-Factoring Sieve of E

Can easily modify to get a fast algorithm for the following:
Given N1,B,N, B-factoring N1,N1 + 1, . . . ,N1 + N.

Time will still be ≤ N ln(ln(B)) + 0.5N.

This is not the problem we originally needed to solve, though it’s
close. We now go back to our original problem.
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Back to Quadratic Sieve
Factoring Algorithm



Recall Quad Sieve Alg: First Attempt

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

STOP

1. We just spend a long aside on B-factoring, in bulk,

N1,N1 + 1, . . . ,N1 + N.

2. The problem we need solved is similar: B-factor, in bulk.

(x+0)2 (mod N), (x+1)2 (mod N), . . . , (x+M)2 (mod N).

But before we do that, lets go back to the algorithm and remind
ourselves what it does.
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Recall Quad Sieve Alg: First Attempt (Again)
Given N let x =

⌈√
N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

I ⊆ {0, . . . ,M} s.t. (∀i ∈ I ), yi is B-factored. Find J ⊆ I such
that

∑
i∈J ~vi = ~0, so

∏
i∈J yi has even exponents, so:∏

i∈J
yi = Y 2

(
∏
i∈J

(x + i))2 ≡
∏
i∈J

yi = Y 2 (mod N)

Let X =
∏

i∈J(x + i) (mod N) and Y =
∏B

i=1 q
ei
i (mod N).

X 2 − Y 2 ≡ 0 (mod N).

GCD(X − Y ,N), GCD(X + Y ,N) should yield factors.
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Given N let x =

⌈√
N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

I ⊆ {0, . . . ,M} s.t. (∀i ∈ I ), yi is B-factored. Find J ⊆ I such
that

∑
i∈J ~vi = ~0, so

∏
i∈J yi has even exponents, so:∏

i∈J
yi = Y 2

(
∏
i∈J

(x + i))2 ≡
∏
i∈J

yi = Y 2 (mod N)

Let X =
∏

i∈J(x + i) (mod N) and Y =
∏B

i=1 q
ei
i (mod N).

X 2 − Y 2 ≡ 0 (mod N).

GCD(X − Y ,N), GCD(X + Y ,N) should yield factors.



Recall Quad Sieve Alg: First Attempt, First Step

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

How do we B-factor all of those numbers?

Modified Sieve of E B-factored N1 + 1, . . . ,N1 + N.
We need to B-factor y0, y1, . . . , yM .

Plan It was more efficient to B-factor 2, . . . ,N all at once then
one at at time. Same will be true for y0, . . . , yM .



Recall Quad Sieve Alg: First Attempt, First Step

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

How do we B-factor all of those numbers?
Modified Sieve of E B-factored N1 + 1, . . . ,N1 + N.

We need to B-factor y0, y1, . . . , yM .

Plan It was more efficient to B-factor 2, . . . ,N all at once then
one at at time. Same will be true for y0, . . . , yM .



Recall Quad Sieve Alg: First Attempt, First Step

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

How do we B-factor all of those numbers?
Modified Sieve of E B-factored N1 + 1, . . . ,N1 + N.
We need to B-factor y0, y1, . . . , yM .

Plan It was more efficient to B-factor 2, . . . ,N all at once then
one at at time. Same will be true for y0, . . . , yM .



Recall Quad Sieve Alg: First Attempt, First Step

Given N let x =
⌈√

N
⌉

. All ≡ are mod N. B,M are params.

(x + 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x + M)2 ≡ yM Try to B-Factor yM to get parity ~vM

How do we B-factor all of those numbers?
Modified Sieve of E B-factored N1 + 1, . . . ,N1 + N.
We need to B-factor y0, y1, . . . , yM .

Plan It was more efficient to B-factor 2, . . . ,N all at once then
one at at time. Same will be true for y0, . . . , yM .



The Quadratic Sieve: The Problem

New Problem Given N,B,M, x , want to B-factor
(x + 0)2 (mod N)
(x + 1)2 (mod N)

...
...

(x + M)2 (mod N)
We do an example on the next slide.



The Quadratic Sieve: Example

N = 1147, B = 2, M = 10, x = 34.
Want to 2-factor (so all powers of 2 and 3)
(34 + 0)2 (mod 1147)

...
...

...
(34 + 10)2 (mod 1147)

For the Sieve of E when we wanted to divide by p we looked at
every pth element. Is there an analog here?

For which 0 ≤ i ≤ 10 does 2 divide (34 + i)2 (mod 1147)?
Next Slide
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The Quadratic Sieve: Example of Dividing by 2

Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147)).

What is (34 + i)2 (mod 1147)? Since 0 ≤ i ≤ 10,

(34 + 0)2 ≤ (34 + i)2 ≤ (34 + 10)2

1156 ≤ (34 + i)2 ≤ 1936

1147 + 9 ≤ (34 + i)2 ≤ 1147 + 789.

So (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i is

(34 + i)2 − 1147 ≡ 0 (mod 2).
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The Quadratic Sieve: Example of Dividing by 2, cont
Need to know the set of 0 ≤ i ≤ 10 such that 2 divides

((34 + i)2 (mod 1147)).

We know that

(34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i is

(34 + i)2 − 1147 ≡ 0 (mod 2)

i2 − 1 ≡ 0 (mod 2)

i ≡ 1 (mod 2).

Great!- just need to divide the yi where i ≡ 1 (mod 2).
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Great!- just need to divide the yi where i ≡ 1 (mod 2).



The Quadratic Sieve: Example of Dividing by 3

For which 0 ≤ i ≤ 10 does 3 divide (34 + i)2 (mod 1147)?

We know that (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i is

(34 + i)2 − 1147 ≡ 0 (mod 3)

(1 + i)2 − 1 ≡ 0 (mod 3)

(i + 1)2 ≡ 1 (mod 3)

i ≡ 0, 1 (mod 3).

Great!- just need to divide the yi where i ≡ 0, 1 (mod 3).



The Quadratic Sieve: Example of Dividing by 3

For which 0 ≤ i ≤ 10 does 3 divide (34 + i)2 (mod 1147)?
We know that (34 + i)2 (mod 1147) = (34 + i)2 − 1147.

Our question is, for which i is

(34 + i)2 − 1147 ≡ 0 (mod 3)

(1 + i)2 − 1 ≡ 0 (mod 3)

(i + 1)2 ≡ 1 (mod 3)

i ≡ 0, 1 (mod 3).

Great!- just need to divide the yi where i ≡ 0, 1 (mod 3).



The Quad Sieve: Example of Dividing by 5,7,11,13

(34 + i)2 − 1147 ≡ 0 (mod 5)
(4 + i)2 − 2 ≡ 0 (mod 5)
NO SOLUTIONS

(34 + i)2 − 1147 ≡ 0 (mod 7)
(6 + i)2 ≡ 1 (mod 7)
i ≡ 0, 2 (mod 7)

(34 + i)2 − 1147 ≡ 0 (mod 11)
(1 + i)2 ≡ 3 (mod 11)
i ≡ 4, 5 (mod 11)

(34 + i)2 − 1147 ≡ 0 (mod 13)
(8 + i)2 + 10 ≡ 0 (mod 13)
i ≡ 1, 9 (mod 13)



The Quad Sieve: Example of Dividing by 17,19,23

(34 + i)2 − 1147 ≡ 0 (mod 17)
i2 + 9 ≡ 0 (mod 17)
i ≡ 5, 12 (mod 17)

(34 + i)2 − 1147 ≡ 0 (mod 19)
(15 + i)2 + 12 ≡ 0 (mod 19)
i ≡ 8, 15 (mod 19)

(34 + i)2 − 1147 ≡ 0 (mod 23)
(11 + i)2 + 3 ≡ 0 (mod 23)
NO SOLUTIONS



The B-Factor Step Using Quad Sieve: Program

Problem Given N,B,M, x , want to B-factor
(x + 0)2 (mod N)

...
...

(x + M)2 (mod N)

Algorithm
As p goes through the first B primes.

Find A ⊆ {0, . . . , p − 1}: i ∈ A iff (x + i)2 − N ≡ 0 (mod p)
for a ∈ A

for k = 0 to
⌈
M−a
p

⌉
divide (x + pk + a)2 by p (and then p again. . .)
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How Much Time?

Algorithm
As p goes through the first B primes.

Find A ⊆ {0, . . . , p − 1}: i ∈ A iff (x + i)2 − N ≡ 0 (mod p)

for a ∈ A
for k = 0 to

⌈
M−a
p

⌉
Time ≤

∑
p≤B(lg p + 2M−1

p ) =
∑

p≤B lg p + 2M
∑

p≤B
1
p .

= (
∑
p≤B

lg p) + 2M ln ln(B) ≤ B ln(B) + 2M ln(ln(B)).

The inequality
∑

p≤B lg p ≤ B ln(B) requires some hard math.
The sum is called Chebyshev’s Function .
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Names of Sieves

1. The Sieve of E is the Sieve that, given N, finds all of the
primes ≤ N. We may also use the name for finding all primes
between N1 and N2.

2. The B-Factoring Sieve of E is the Sieve that, given N, tries
to B-factors all of the numbers from 2 to N. We may also use
the name for B-factoring all numbers between N1 and N2.

3. The Quadratic Sieve is from the last slide. Given N,B,M, x
it tries to B-factor (x + 0)2 (mod N), . . ., (x + M)2

(mod N). Note that it is quite fast.



Quad Sieve Alg: Second Attempt, Algorithm
Given N let x =

⌈√
N
⌉

. All ≡ are mod N. B,M are params.

B-factor (x + 0)2 (mod N), . . ., (x + M)2 (mod N) by Quad S.

Let I ⊆ {0, . . . ,M} so that (∀i ∈ I ), yi is B-factored. Find J ⊆ I
such that

∑
i∈J ~vi = ~0. Hence

∏
i∈J yi has all even exponents, so

there exists Y ∏
i∈J

yi = Y 2

(
∏
i∈J

(x + i))2 ≡
∏
i∈J

yi = Y 2 (mod N)

Let X =
∏

i∈J(x + i) (mod N) and Y =
∏B

i=1 q
ei
i (mod N).

X 2 − Y 2 ≡ 0 (mod N).

GCD(X − Y ,N), GCD(X + Y ,N) should yield factors.



Analysis of Quadratic Sieve Factoring Algorithm

Time to B-factor:

2B + 2M ln(ln(B)).

Time to find J: B3.

Total Time:
2B + 2M ln(ln(B)) + B3

Intuitive but not rigorous arguments yield run time

e
√
lnN ln lnN ∼ e

√
8 lnN ∼ e2.8

√
lnN



Speed Up One

Recall:
(34 + i)2 − 1147 ≡ 0 (mod 23)
(11 + i)2 + 3 ≡ 0 (mod 23)
NO SOLUTIONS

If there is a prime p such that z2 ≡ 1147 (mod p) has NO
SOLUTION then we should not ever consider it.

There is a fast test to determine just if z2 ≡ 1147 (mod p) has a
solution (and more generally z2 ≡ N (mod p)). So can eliminate
some primes p ≤ B before you start.



Speed Up One

Recall:
(34 + i)2 − 1147 ≡ 0 (mod 23)
(11 + i)2 + 3 ≡ 0 (mod 23)
NO SOLUTIONS

If there is a prime p such that z2 ≡ 1147 (mod p) has NO
SOLUTION then we should not ever consider it.

There is a fast test to determine just if z2 ≡ 1147 (mod p) has a
solution (and more generally z2 ≡ N (mod p)). So can eliminate
some primes p ≤ B before you start.



Speed Up One

Recall:
(34 + i)2 − 1147 ≡ 0 (mod 23)
(11 + i)2 + 3 ≡ 0 (mod 23)
NO SOLUTIONS

If there is a prime p such that z2 ≡ 1147 (mod p) has NO
SOLUTION then we should not ever consider it.

There is a fast test to determine just if z2 ≡ 1147 (mod p) has a
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Speed Up Two

Recall:
We started with x =

⌈√
N
⌉

and did (x + i)2 for 0 ≤ i ≤ M.

We can also (with some care) use (x + i)2 when i ≤ 0.

Advantage Smaller numbers more likely to be B-fact.
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Speed Up Three

Recall:
(34 + i)2 − 1147 ≡ 0 (mod 19)
(15 + i)2 + 12 ≡ 0 (mod 19)
i ≡ 8, 15 (mod 19)

We can have one more variable:
(34j + i)2 − 1147 ≡ 0 (mod 19)
(15j + i)2 + 12 ≡ 0 (mod 19)
15j + i ≡ 8, 15 (mod 19)
Many values of (i , j) work, hence we find the set of y ’s that
product to a square faster.
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product to a square faster.



Speed Up Four—Use some primes > B

1. Look at all of the non B-factored numbers. For each one test
if what is left is prime. Let P1 be the set of all of those
primes..

2. Look at all of the non B-factored numbers. For each of them
try a factoring algorithm (e.g, Pollards rho) for a limited
amount of time. Let P2 be the set of primes you come across.

3. Do Q. Sieve on all of the non B-factored numbers using the
primes in P1 ∪ P2.

This will increase the number of B-factored numbers.



Speed Up Five—Avoid Division

For this slide lg means dlg e which is very fast on a computer.

Using Divisions Primes q1, . . . , qm < B divide x . Divide x by all
the qi . Also q2i , q3i , etc until does not work. When you are done
you’ve B-factored the number or not.

Using Subtraction Primes q1, . . . , qm < B divide x . Do

d = lg(x)− lg(q1)− lg(q2)− · · · − lg(qm)

If d ∼ 0 then we think x IS B-fact, so B-factor x .
If far from 0 then DO NOT DIVIDE!
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Speed Up Five—Avoid Division, Why Works
Why Does This Work? If x = q1q2q3 then

lg(x) = lg(q1) + lg(q2) + lg(q3)

lg(x)− lg(q1)− lg(q2)− lg(q3) = 0

So why not insist that

lg(x)− lg(q1)− lg(q2)− · · · − lg(qm) = 0

1. Using dlge may introduce approximations so you don’t get 0.

2. If x = q21q2q3 then

lg(x) = lg(q21) + lg(q2) + lg(q3) = 2 lg(q1) + lg(q2) + lg(q3)

lg(x)− lg(q1) + lg(q2) + lg(q3) = lg(q1) 6= 0

3. We need to define small carefully. Will still err.
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Speed Up Five—Avoid Division, Why Fast

Why is this fast?

1. Subtraction is much faster than division.

2. Most numbers are not B-fact, so don’t do divisions that
won’t help.



Speed Up Five—Avoid Division, Example One

B = 7 so we are looking at 2, 3, 5, 7, 11, 13, 17. Small is ≤ 10.

108290 7-fact? We find that 2,5,7,13,17 all divide it.

lg(108290)− lg(2)− lg(5)− lg(7)− lg(13)− lg(17) = 4 ≤ 10

So we think 108290 IS 7-fact. Is this correct? Yes:

108290 = 2× 5× 72 × 13× 17
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Speed Up Five—Avoid Division, Example Two
Is 78975897 7-fact? We find that 3,7,11,13,17 all divide it.

lg(78975897)− lg(3)− lg(7)− lg(11)− lg(13)− lg(17) = 11 > 10

So we think 78975897 is NOT 7-fact. Is this correct? No!

78975897 = 3× 72 × 11× 132 × 174.

Cautionary Note
78975897 = 3× 72 × 11× 132 × 174. was thought to NOT be
7-fact. Erred because primes had large exponents. The large
exponents made

lg(78975897)

LARGER than

lg(3) + lg(7) + lg(11) + lg(13) + lg(17) + 10
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Speed Up Five—Avoid Division, Examples Three

Is 9699690 7-fact? We find that 2,3,5,7,11,13,17 all divide it.

lg(9699690)−lg(2)−lg(3)−lg(5)−lg(7)−lg(11)−lg(13)−lg(17) = 1 ≤ 10

So we think 9699690 is 7-fact. Is this correct? No!

lg(9699690)−lg(2)−lg(3)−lg(5)−lg(7)−lg(11)−lg(13)−lg(17) = 1 ≤ 10

Cautionary Note 78975897 = 2× 3× 5× 7× 11× 13× 17× 19.
was thought to NOT be 7-fact. Erred because it had low
exponents and only one a small prime over B.
Lemon to Lemonade Not B-fact, but still useful.
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Speed Up Five-extra—Avoid Division, One More
Trick

We are just approximating if

lg x − lg(q1)− · · · − lg(qm)

is small.

lg 2, lg 3, lg 5 are so tiny, don’t bother with those.

If B = 7 then use:

23, 32, 52, 7, 11, 13, 17, 19
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Speed Up Six

The Gaussian Elimination is over mod 2 and is for a sparse matrix
(most of the entries are 0).

There are special purpose algorithms for this.

1. Can be done in O(B2+ε) steps rather than O(B3).

2. Can’t store the entire matrix—too big.



Speed Up Seven

(This is a paragraph from a blog post about Quad Sieve
https://blogs.msdn.microsoft.com/devdev/2006/06/19/

factoring-large-numbers-with-quadratic-sieve/)

Is z B-fact? There is a light for each p ≤ B whose intensity is
proportional to the lg p. Each light turns on just two times every p
cycles, corresponding to the two square roots of N mod p. A
sensor senses the combined intensity of all the lights together, and
if this is close enough to the lg z then z is a B-fact number
candidate. Can do in parallel.

https://blogs.msdn.microsoft.com/devdev/2006/06/19/factoring-large-numbers-with-quadratic-sieve/
https://blogs.msdn.microsoft.com/devdev/2006/06/19/factoring-large-numbers-with-quadratic-sieve/


The Number Field Sieve

The Quad Sieve had run time:

e(lnN ln lnN)1/2 ∼ e2.8(lnN)1/2

The Number Field Sieve which uses some of the same ideas has
run time:

e1.9(lnN)1/3(ln lnN)2/3 ∼ e14(lnN)1/3
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Compare Run Times

Alg Run Time as Na/Lδ Run Time in terms of L

Naive N1/2 2L/2

Pollard Rho N1/4 2L/4

Linear Sieve N3.9/L1/2 21.95L
1/2

Quad Sieve N2.8/L1/2 21.4L
1/2

N.F. Sieve N14/L2/3 220L
1/3

1. Times are more conjectured than proven.

2. Quad S. is better than Linear Sieve by only a constant in the
exponent. Made a big difference IRL.

3. Quad Sieve is better than Pollard-Rho at about 1050.



Relevance for RSA

1. Carl Pomerance devised the Quad S. algorithm in 1982.

2. People did not think it would work that well; however, he had
friends at Sandia Labs who tried it out. Just for fun.

3. At the same time another group at Sandia Labs was working
on a serious RSA project that would use 100-digit N.

4. Quad Sieve could factor 100-digit numbers, so the RSA
project had to be scrapped.
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The Future of Factoring

I paraphrase The Joy of Factoring by Wagstaff:
The best factoring algorithms have time complexity of the
form

ec(lnN)t(ln lnN)1−t

with Q.Sieve using t = 1
2 and N.F.Sieve using t = 1

3 .
Moreover, any method that uses B-factoring must take this
long.

I No progress since N.F.Sieve in 1988.

I My opinion: ec(lnN)t(ln lnN)1−t
is the best you can do ever,

though t can be improved.
I Why hasn’t t been improved? Wagstaff told me:

I We’ve run out of parameters to optimize.
I Brandon, Solomon, Mark, and Ivan haven’t worked on it yet.
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