BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Public Key LWE Cipher

Recall Private Key LWE Cipher

Private Key \vec{k}. Both Alice and Bob have this.
Public Info p, the mod. All math is mod p. Params γ, n.

Recall Private Key LWE Cipher

Private Key \vec{k}. Both Alice and Bob have this.
Public Info p, the mod. All math is mod p. Params γ, n.
Alice Wants to Send $\boldsymbol{b} \in\{0,1\}$.

Recall Private Key LWE Cipher

Private Key \vec{k}. Both Alice and Bob have this.
Public Info p, the mod. All math is mod p. Params γ, n.
Alice Wants to Send $\boldsymbol{b} \in\{0,1\}$.

1. Alice picks random set \vec{r}.

Recall Private Key LWE Cipher

Private Key \vec{k}. Both Alice and Bob have this.
Public Info p, the mod. All math is mod p. Params γ, n.
Alice Wants to Send $\boldsymbol{b} \in\{0,1\}$.

1. Alice picks random set \vec{r}.
2. Alice computes $C \equiv \vec{r} \cdot \vec{k}$ and $e \in^{r}\{-\gamma, \ldots, \gamma\}$.

Recall Private Key LWE Cipher

Private Key \vec{k}. Both Alice and Bob have this.
Public Info p, the mod. All math is mod p. Params γ, n.
Alice Wants to Send $\boldsymbol{b} \in\{0,1\}$.

1. Alice picks random set \vec{r}.
2. Alice computes $C \equiv \vec{r} \cdot \vec{k}$ and $e \in^{r}\{-\gamma, \ldots, \gamma\}$.
3. To send b Alice sends $(\vec{r} ; D)$ where $D \equiv C+e+\frac{b p}{4}$.

Recall Private Key LWE Cipher

Private Key \vec{k}. Both Alice and Bob have this.
Public Info p, the mod. All math is mod p. Params γ, n.
Alice Wants to Send $\boldsymbol{b} \in\{0,1\}$.

1. Alice picks random set \vec{r}.
2. Alice computes $C \equiv \vec{r} \cdot \vec{k}$ and $e \in^{r}\{-\gamma, \ldots, \gamma\}$.
3. To send b Alice sends $(\vec{r} ; D)$ where $D \equiv C+e+\frac{b p}{4}$.
4. Bob computes $\vec{r} \cdot \vec{k} \equiv C$. If $D \sim C, b=0$, else $b=1$.

Thoughts on a Public Key LWE Cipher

Thoughts on a Public Key LWE Cipher

- In private key, both Alice and Bob have \vec{k}.

Thoughts on a Public Key LWE Cipher

- In private key, both Alice and Bob have \vec{k}.

In public key, only Alice has the key \vec{k}.

Thoughts on a Public Key LWE Cipher

- In private key, both Alice and Bob have \vec{k}. In public key, only Alice has the key \vec{k}.
- Alice Cannot publish key \vec{k}.

Thoughts on a Public Key LWE Cipher

- In private key, both Alice and Bob have \vec{k}. In public key, only Alice has the key \vec{k}.
- Alice Cannot publish key \vec{k}.

Alice Can publishes noisy equations that \vec{k} satisfies.

Thoughts on a Public Key LWE Cipher

- In private key, both Alice and Bob have \vec{k}.

In public key, only Alice has the key \vec{k}.

- Alice Cannot publish key \vec{k}.

Alice Can publishes noisy equations that \vec{k} satisfies.
Eve won't be able to use the noisy equations to find key.

Thoughts on a Public Key LWE Cipher

- In private key, both Alice and Bob have \vec{k}. In public key, only Alice has the key \vec{k}.
- Alice Cannot publish key \vec{k}.

Alice Can publishes noisy equations that \vec{k} satisfies.
Eve won't be able to use the noisy equations to find key. How can Bob use the noisy equations to encode a bit?

Recall: Noisy Equations

Everything is $\bmod p$, some prime p.

Recall: Noisy Equations

Everything is $\bmod p$, some prime p.
Let $\vec{k}=\left(k_{1}, \ldots, k_{n}\right), \vec{r}=\left(r_{1}, \ldots, r_{n}\right)$, and C be such that

$$
r_{1} k_{1}+\cdots+r_{n} k_{n}=C
$$

Recall: Noisy Equations

Everything is $\bmod p$, some prime p.
Let $\vec{k}=\left(k_{1}, \ldots, k_{n}\right), \vec{r}=\left(r_{1}, \ldots, r_{n}\right)$, and C be such that

$$
r_{1} k_{1}+\cdots+r_{n} k_{n}=C
$$

$r_{1} x_{1}+\cdots+r_{n} x_{n}=C$ is an equation that \vec{k} satisfies.

Recall: Noisy Equations

Everything is $\bmod p$, some prime p.
Let $\vec{k}=\left(k_{1}, \ldots, k_{n}\right), \vec{r}=\left(r_{1}, \ldots, r_{n}\right)$, and C be such that

$$
r_{1} k_{1}+\cdots+r_{n} k_{n}=C
$$

$r_{1} x_{1}+\cdots+r_{n} x_{n}=C$ is an equation that \vec{k} satisfies.
Pick $e \in^{r}\{-\gamma, \ldots, \gamma\}$. Think of γ as small.

$$
r_{1} x_{1}+\cdots+r_{n} x_{n} \sim C+e \text { is noisy eq that } \vec{k} \text { satisfies. }
$$

Recall: Noisy Equations

Everything is $\bmod p$, some prime p.
Let $\vec{k}=\left(k_{1}, \ldots, k_{n}\right), \vec{r}=\left(r_{1}, \ldots, r_{n}\right)$, and C be such that

$$
r_{1} k_{1}+\cdots+r_{n} k_{n}=C
$$

$r_{1} x_{1}+\cdots+r_{n} x_{n}=C$ is an equation that \vec{k} satisfies.
Pick $e \in^{r}\{-\gamma, \ldots, \gamma\}$. Think of γ as small.

$$
r_{1} x_{1}+\cdots+r_{n} x_{n} \sim C+e \text { is noisy eq that } \vec{k} \text { satisfies. }
$$

Say \vec{k} satisfies the noisy equations

$$
\begin{aligned}
& r_{1} x_{1}+\cdots+r_{n} x_{n} \sim C_{1}+e_{1} \\
& s_{1} x_{1}+\cdots+s_{n} x_{n} \sim C_{2}+e_{2}
\end{aligned}
$$

Recall: Noisy Equations

Everything is $\bmod p$, some prime p.
Let $\vec{k}=\left(k_{1}, \ldots, k_{n}\right), \vec{r}=\left(r_{1}, \ldots, r_{n}\right)$, and C be such that

$$
r_{1} k_{1}+\cdots+r_{n} k_{n}=C
$$

$r_{1} x_{1}+\cdots+r_{n} x_{n}=C$ is an equation that \vec{k} satisfies.
Pick $e \in^{r}\{-\gamma, \ldots, \gamma\}$. Think of γ as small.

$$
r_{1} x_{1}+\cdots+r_{n} x_{n} \sim C+e \text { is noisy eq that } \vec{k} \text { satisfies. }
$$

Say \vec{k} satisfies the noisy equations

$$
\begin{aligned}
& r_{1} x_{1}+\cdots+r_{n} x_{n} \sim C_{1}+e_{1} \\
& s_{1} x_{1}+\cdots+s_{n} x_{n} \sim C_{2}+e_{2}
\end{aligned}
$$

Does \vec{k} satisfy the sum?

$$
\left(r_{1}+s_{1}\right) x_{1}+\cdots+\left(r_{k}+s_{k}\right) x_{k} \sim C_{1}+C_{2}+e_{1}+e_{2}
$$

Sums of Noisy Equations

Everything is $\bmod p$, some prime p.

Sums of Noisy Equations

Everything is mod p, some prime p.
Say \vec{k} satisfies the noisy equations

$$
\begin{aligned}
& r_{1} x_{1}+\cdots r_{k} x_{k} \sim C_{1}+e_{1} \\
& s_{1} x_{1}+\cdots s_{k} x_{k} \sim C_{2}+e_{2}
\end{aligned}
$$

Sums of Noisy Equations

Everything is mod p, some prime p.
Say \vec{k} satisfies the noisy equations

$$
\begin{aligned}
& r_{1} x_{1}+\cdots r_{k} x_{k} \sim C_{1}+e_{1} \\
& s_{1} x_{1}+\cdots s_{k} x_{k} \sim C_{2}+e_{2}
\end{aligned}
$$

Does \vec{k} satisfy the sum?

$$
\left(r_{1}+s_{1}\right) x_{1}+\cdots\left(r_{k}+s_{k}\right) x_{k} \sim C_{1}+C_{2}+e_{1}+e_{2}
$$

Sums of Noisy Equations

Everything is mod p, some prime p.
Say \vec{k} satisfies the noisy equations

$$
\begin{aligned}
& r_{1} x_{1}+\cdots r_{k} x_{k} \sim C_{1}+e_{1} \\
& s_{1} x_{1}+\cdots s_{k} x_{k} \sim C_{2}+e_{2}
\end{aligned}
$$

Does \vec{k} satisfy the sum?

$$
\left(r_{1}+s_{1}\right) x_{1}+\cdots\left(r_{k}+s_{k}\right) x_{k} \sim C_{1}+C_{2}+e_{1}+e_{2}
$$

The error is in $\{-2 \gamma, \ldots, 2 \gamma\}$.
We take γ small so that \vec{k} still satisfies the noisy equation.

Sums of Noisy Equations

Everything is mod p, some prime p.
Say \vec{k} satisfies the noisy equations

$$
\begin{aligned}
& r_{1} x_{1}+\cdots r_{k} x_{k} \sim C_{1}+e_{1} \\
& s_{1} x_{1}+\cdots s_{k} x_{k} \sim C_{2}+e_{2}
\end{aligned}
$$

Does \vec{k} satisfy the sum?

$$
\left(r_{1}+s_{1}\right) x_{1}+\cdots\left(r_{k}+s_{k}\right) x_{k} \sim C_{1}+C_{2}+e_{1}+e_{2}
$$

The error is in $\{-2 \gamma, \ldots, 2 \gamma\}$.
We take γ small so that \vec{k} still satisfies the noisy equation.
We add lots of equations, so γ very small.

Example of Setting Up The LWE-Public Cipher

Public Info Prime: 191. Length of Vector: 4. Error: $\{-1,0,1\}$.

Example of Setting Up The LWE-Public Cipher

Public Info Prime: 191. Length of Vector: 4. Error: $\{-1,0,1\}$. Alice Wants to Enable Bob to Send $b \in\{0,1\}$.

Example of Setting Up The LWE-Public Cipher

Public Info Prime: 191. Length of Vector: 4. Error: $\{-1,0,1\}$. Alice Wants to Enable Bob to Send $\boldsymbol{b} \in\{0,1\}$.

1. She picks rand: $(1,10,21,89)$.

Example of Setting Up The LWE-Public Cipher

Public Info Prime: 191. Length of Vector: 4. Error: $\{-1,0,1\}$. Alice Wants to Enable Bob to Send $\boldsymbol{b} \in\{0,1\}$.

1. She picks rand: $(1,10,21,89)$. She picks 4 rand \vec{r}. $(4,9,1,89),(9,98,8,1),(44,55,10,8),(9,3,11,99)$.

Example of Setting Up The LWE-Public Cipher

Public Info Prime: 191. Length of Vector: 4. Error: $\{-1,0,1\}$. Alice Wants to Enable Bob to Send $\boldsymbol{b} \in\{0,1\}$.

1. She picks rand: $(1,10,21,89)$. She picks 4 rand \vec{r}. $(4,9,1,89),(9,98,8,1),(44,55,10,8),(9,3,11,99)$. She picks 4 random $e \in\{-1,0,1\}: 1,-1,0,1$.

Example of Setting Up The LWE-Public Cipher

Public Info Prime: 191. Length of Vector: 4. Error: $\{-1,0,1\}$.
Alice Wants to Enable Bob to Send $\boldsymbol{b} \in\{0,1\}$.

1. She picks rand: $(1,10,21,89)$. She picks 4 rand \vec{r}. $(4,9,1,89),(9,98,8,1),(44,55,10,8),(9,3,11,99)$.
She picks 4 random $e \in\{-1,0,1\}: 1,-1,0,1$.
She forms 4 noisy eqs which have $(1,10,21,89)$ as "answer."

Example of Setting Up The LWE-Public Cipher

Public Info Prime: 191. Length of Vector: 4. Error: $\{-1,0,1\}$.
Alice Wants to Enable Bob to Send $\boldsymbol{b} \in\{0,1\}$.

1. She picks rand: $(1,10,21,89)$. She picks 4 rand \vec{r}. $(4,9,1,89),(9,98,8,1),(44,55,10,8),(9,3,11,99)$.
She picks 4 random $e \in\{-1,0,1\}: 1,-1,0,1$. She forms 4 noisy eqs which have $(1,10,21,89)$ as "answer."

$$
\begin{gathered}
4 k_{1}+9 k_{2}+21 k_{3}+89 k_{4} \equiv 84 \\
9 k_{1}+98 k_{2}+8 k_{3}+k_{4} \equiv 99 \\
44 k_{1}+558 k_{2}+10 k_{3}+8 k_{4} \equiv 179 \\
9 k_{1}+3 k_{2}+11 k_{3}+99 k_{4} \equiv 105
\end{gathered}
$$

Example of Setting Up The LWE-Public Cipher

Public Info Prime: 191. Length of Vector: 4. Error: $\{-1,0,1\}$. Alice Wants to Enable Bob to Send $\boldsymbol{b} \in\{0,1\}$.

1. She picks rand: $(1,10,21,89)$. She picks 4 rand \vec{r}. $(4,9,1,89),(9,98,8,1),(44,55,10,8),(9,3,11,99)$.
She picks 4 random $e \in\{-1,0,1\}: 1,-1,0,1$. She forms 4 noisy eqs which have $(1,10,21,89)$ as "answer."

$$
\begin{gathered}
4 k_{1}+9 k_{2}+21 k_{3}+89 k_{4} \equiv 84 \\
9 k_{1}+98 k_{2}+8 k_{3}+k_{4} \equiv 99 \\
44 k_{1}+558 k_{2}+10 k_{3}+8 k_{4} \equiv 179 \\
9 k_{1}+3 k_{2}+11 k_{3}+99 k_{4} \equiv 105
\end{gathered}
$$

These equations are published.

Example of Setting Up The LWE-Public Cipher

Public Info Prime: 191. Length of Vector: 4. Error: $\{-1,0,1\}$.
Alice Wants to Enable Bob to Send $\boldsymbol{b} \in\{0,1\}$.

1. She picks rand: $(1,10,21,89)$. She picks 4 rand \vec{r}. $(4,9,1,89),(9,98,8,1),(44,55,10,8),(9,3,11,99)$.
She picks 4 random $e \in\{-1,0,1\}: 1,-1,0,1$.
She forms 4 noisy eqs which have $(1,10,21,89)$ as "answer."

$$
\begin{gathered}
4 k_{1}+9 k_{2}+21 k_{3}+89 k_{4} \equiv 84 \\
9 k_{1}+98 k_{2}+8 k_{3}+k_{4} \equiv 99 \\
44 k_{1}+558 k_{2}+10 k_{3}+8 k_{4} \equiv 179 \\
9 k_{1}+3 k_{2}+11 k_{3}+99 k_{4} \equiv 105
\end{gathered}
$$

These equations are published.
Note Any sum of the eqs also has $(1,10,21,89)$ as "answer."

Bob Wants to Send a Bit

Bob wants to send bit 0 .

Bob Wants to Send a Bit

Bob wants to send bit 0 . Pick two of the equations, add them, and sends publicly:

Bob Wants to Send a Bit

Bob wants to send bit 0 . Pick two of the equations, add them, and sends publicly:

$$
13 k_{1}+12 k_{2}+32 k_{3}+188 k_{4} \equiv 189
$$

Bob Wants to Send a Bit

Bob wants to send bit 0 . Pick two of the equations, add them, and sends publicly:

$$
13 k_{1}+12 k_{2}+32 k_{3}+188 k_{4} \equiv 189
$$

Eve She sees this equation but does not know which equations were added to form this one.

Bob Wants to Send a Bit

Bob wants to send bit 0 . Pick two of the equations, add them, and sends publicly:

$$
13 k_{1}+12 k_{2}+32 k_{3}+188 k_{4} \equiv 189
$$

Eve She sees this equation but does not know which equations were added to form this one.
Alice She finds that $(1,10,21,99)$ is close to solution, so $b=0$.

Bob Wants to Send a Bit

Bob wants to send bit 0 . Pick two of the equations, add them, and sends publicly:

$$
13 k_{1}+12 k_{2}+32 k_{3}+188 k_{4} \equiv 189
$$

Eve She sees this equation but does not know which equations were added to form this one.
Alice She finds that $(1,10,21,99)$ is close to solution, so $b=0$.
Bob want to send bit 1.

Bob Wants to Send a Bit

Bob wants to send bit 0 . Pick two of the equations, add them, and sends publicly:

$$
13 k_{1}+12 k_{2}+32 k_{3}+188 k_{4} \equiv 189
$$

Eve She sees this equation but does not know which equations were added to form this one.
Alice She finds that $(1,10,21,99)$ is close to solution, so $b=0$.
Bob want to send bit 1.
Pick two of the equations, add them, add 50, and sends publicly:

$$
13 k_{1}+12 k_{2}+32 k_{3}+188 k_{4} \equiv 49
$$

Bob Wants to Send a Bit

Bob wants to send bit 0 .
Pick two of the equations, add them, and sends publicly:

$$
13 k_{1}+12 k_{2}+32 k_{3}+188 k_{4} \equiv 189
$$

Eve She sees this equation but does not know which equations were added to form this one.
Alice She finds that $(1,10,21,99)$ is close to solution, so $b=0$.
Bob want to send bit 1.
Pick two of the equations, add them, add 50, and sends publicly:

$$
13 k_{1}+12 k_{2}+32 k_{3}+188 k_{4} \equiv 49
$$

Eve She sees this equation but does not know which equations were added to form this one.

Bob Wants to Send a Bit

Bob wants to send bit 0 .
Pick two of the equations, add them, and sends publicly:

$$
13 k_{1}+12 k_{2}+32 k_{3}+188 k_{4} \equiv 189
$$

Eve She sees this equation but does not know which equations were added to form this one.
Alice She finds that $(1,10,21,99)$ is close to solution, so $b=0$.
Bob want to send bit 1.
Pick two of the equations, add them, add 50, and sends publicly:

$$
13 k_{1}+12 k_{2}+32 k_{3}+188 k_{4} \equiv 49
$$

Eve She sees this equation but does not know which equations were added to form this one.
Alice She finds that $(1,10,21,99)$ is far from solution, so $b=1$.

Public Key LWE Cipher

Public Info p, the mod. Math is $\bmod p$. Param γ, n, m.

Public Key LWE Cipher

Public Info p, the mod. Math is $\bmod p$. Param γ, n, m. Alice Wants to Enable Bob to Send $b \in\{0,1\}$.

Public Key LWE Cipher

Public Info p, the mod. Math is $\bmod p$. Param γ, n, m. Alice Wants to Enable Bob to Send $\boldsymbol{b} \in\{0,1\}$.

1. Alice picks random \vec{k} of length n, her private key.

Public Key LWE Cipher

Public Info p, the mod. Math is $\bmod p$. Param γ, n, m. Alice Wants to Enable Bob to Send $\boldsymbol{b} \in\{0,1\}$.

1. Alice picks random \vec{k} of length n, her private key.
2. Alice picks m random \vec{r}. For each \vec{r} pick $e \in^{r}\{-\gamma, \ldots, \gamma\}$. Let $D=\vec{r} \cdot \vec{k}+e$.

Public Key LWE Cipher

Public Info p, the mod. Math is $\bmod p$. Param γ, n, m. Alice Wants to Enable Bob to Send $\boldsymbol{b} \in\{0,1\}$.

1. Alice picks random \vec{k} of length n, her private key.
2. Alice picks m random \vec{r}. For each \vec{r} pick $e \in^{r}\{-\gamma, \ldots, \gamma\}$. Let $D=\vec{r} \cdot \vec{k}+e$. Broadcast all $(\vec{r} ; D)$.

Public Key LWE Cipher

Public Info p, the mod. Math is $\bmod p$. Param γ, n, m. Alice Wants to Enable Bob to Send $\boldsymbol{b} \in\{0,1\}$.

1. Alice picks random \vec{k} of length n, her private key.
2. Alice picks m random \vec{r}. For each \vec{r} pick $e \in^{r}\{-\gamma, \ldots, \gamma\}$. Let $D=\vec{r} \cdot \vec{k}+e$. Broadcast all $(\vec{r} ; D)$.
Note \vec{k} satisfies the noisy equations and any sum of them.

Public Key LWE Cipher

Public Info p, the mod. Math is $\bmod p$. Param γ, n, m.
Alice Wants to Enable Bob to Send $\boldsymbol{b} \in\{0,1\}$.

1. Alice picks random \vec{k} of length n, her private key.
2. Alice picks m random \vec{r}. For each \vec{r} pick $e \in^{r}\{-\gamma, \ldots, \gamma\}$. Let $D=\vec{r} \cdot \vec{k}+e$. Broadcast all $(\vec{r} ; D)$.
Note \vec{k} satisfies the noisy equations and any sum of them.
3. Bob wants to send bit b. He picks a uniform random set of the public noisy equations and adds them, AND adds $\frac{b p}{2}$.

$$
s_{1} x_{1}+\cdots+s_{n} x_{n} \sim D^{\prime}+\frac{b p}{2} \text { iff } b=0
$$

D^{\prime} is sum of D s. Broadcasts $(\vec{s} ; F)$ where $F=D^{\prime}+\frac{b p}{2}$.

Public Key LWE Cipher (cont)

Where were we:

Public Key LWE Cipher (cont)

Where were we:

1. Alice has \vec{k}.

Public Key LWE Cipher (cont)

Where were we:

1. Alice has \vec{k}.
2. Bob send Alice (\vec{s}, F) where $F=D^{\prime}+\frac{b p}{2}$.

Public Key LWE Cipher (cont)

Where were we:

1. Alice has \vec{k}.
2. Bob send Alice (\vec{s}, F) where $F=D^{\prime}+\frac{b p}{2}$.
3. Alice computes $\vec{s} \cdot \vec{k}-F$.

Public Key LWE Cipher (cont)

Where were we:

1. Alice has \vec{k}.
2. Bob send Alice (\vec{s}, F) where $F=D^{\prime}+\frac{b p}{2}$.
3. Alice computes $\vec{s} \cdot \vec{k}-F$.

IF SMALL then $b=0$.
If LARGE then $b=1$.

Public Key LWE Cipher (cont)

Where were we:

1. Alice has \vec{k}.
2. Bob send Alice (\vec{s}, F) where $F=D^{\prime}+\frac{b p}{2}$.
3. Alice computes $\vec{s} \cdot \vec{k}-F$.

IF SMALL then $b=0$.
If LARGE then $b=1$.
Details omitted, but:

Public Key LWE Cipher (cont)

Where were we:

1. Alice has \vec{k}.
2. Bob send Alice (\vec{s}, F) where $F=D^{\prime}+\frac{b p}{2}$.
3. Alice computes $\vec{s} \cdot \vec{k}-F$.

IF SMALL then $b=0$.
If LARGE then $b=1$.
Details omitted, but:

- Will need to take $\gamma \leq \frac{p}{2 m}$.

Public Key LWE Cipher (cont)

Where were we:

1. Alice has \vec{k}.
2. Bob send Alice (\vec{s}, F) where $F=D^{\prime}+\frac{b p}{2}$.
3. Alice computes $\vec{s} \cdot \vec{k}-F$.

IF SMALL then $b=0$.
If LARGE then $b=1$.
Details omitted, but:

- Will need to take $\gamma \leq \frac{p}{2 m}$.
- Will need p large so that $\frac{p}{2 m}$ is large enough for a variety of error values for increased security.

LWE-Public: Security

What problem does Eve need to solve to find the key? (Same one as LWE-private.)

LWE-Public: Security

What problem does Eve need to solve to find the key? (Same one as LWE-private.)
Learning With Errors Problem (LWE) Eve is given p, n, γ and told there is a key \vec{k} of length n that she wants to find.

LWE-Public: Security

What problem does Eve need to solve to find the key? (Same one as LWE-private.)
Learning With Errors Problem (LWE) Eve is given p, n, γ and told there is a key \vec{k} of length n that she wants to find.

Eve is given a set of tuples (\vec{r}, D) and told that

$$
\vec{r} \cdot \vec{k}-D \in^{r}\{-\gamma, \ldots, \gamma\}
$$

LWE-Public: Security

What problem does Eve need to solve to find the key? (Same one as LWE-private.)
Learning With Errors Problem (LWE) Eve is given p, n, γ and told there is a key \vec{k} of length n that she wants to find.

Eve is given a set of tuples (\vec{r}, D) and told that

$$
\vec{r} \cdot \vec{k}-D \in^{r}\{-\gamma, \ldots, \gamma\}
$$

From these noisy equations she wants to learn \vec{k}.

LWE-Public: Security

What problem does Eve need to solve to find the key? (Same one as LWE-private.)
Learning With Errors Problem (LWE) Eve is given p, n, γ and told there is a key \vec{k} of length n that she wants to find.

Eve is given a set of tuples (\vec{r}, D) and told that

$$
\vec{r} \cdot \vec{k}-D \in^{r}\{-\gamma, \ldots, \gamma\} .
$$

From these noisy equations she wants to learn \vec{k}.
Hard? We discuss why this problem is thought to be hard.

LWE-Public: Security

What problem does Eve need to solve to find the key? (Same one as LWE-private.)
Learning With Errors Problem (LWE) Eve is given p, n, γ and told there is a key \vec{k} of length n that she wants to find.

Eve is given a set of tuples (\vec{r}, D) and told that

$$
\vec{r} \cdot \vec{k}-D \in^{r}\{-\gamma, \ldots, \gamma\}
$$

From these noisy equations she wants to learn \vec{k}.
Hard? We discuss why this problem is thought to be hard. Nice Bonus Avg Case LWE is easy implies Worst Case LWE is easy.

LWE-Public: Security (cont)

Theorem If Eve can crack the LWE-public cipher then Eve can solve the LWE-problem. Note that this is the direction you want.

LWE-Public: Security (cont)

Theorem If Eve can crack the LWE-public cipher then Eve can solve the LWE-problem. Note that this is the direction you want. Proof We won't prove this, but we note that it requires some work.

LWE-Public: Security (cont)

Theorem If Eve can crack the LWE-public cipher then Eve can solve the LWE-problem. Note that this is the direction you want. Proof We won't prove this, but we note that it requires some work.

When discussing LWE-Private we just said
LWE-problem is thought to be hard.

LWE-Public: Security (cont)

Theorem If Eve can crack the LWE-public cipher then Eve can solve the LWE-problem. Note that this is the direction you want. Proof We won't prove this, but we note that it requires some work.

When discussing LWE-Private we just said LWE-problem is thought to be hard.

We now go into that some more.

Shortest Vector Problem (SVP)

SVP Given a lattice, find the shortest Vector out of the origin.

(Picture by Sebastian Schmittner - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44488873)

Shortest Vector Problem (SVP)

SVP Given a lattice, find the shortest Vector out of the origin.

(Picture by Sebastian Schmittner - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44488873) Hardness Known to be NP-hard under randomized reductions.

Shortest Vector Problem (SVP)

SVP Given a lattice, find the shortest Vector out of the origin.

(Picture by Sebastian Schmittner - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44488873) Hardness Known to be NP-hard under randomized reductions. Want SVP \leq LWE \leq LWE-Public.

Shortest Vector Problem (SVP)

SVP Given a lattice, find the shortest Vector out of the origin.

(Picture by Sebastian Schmittner - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44488873) Hardness Known to be NP-hard under randomized reductions.
Want SVP \leq LWE \leq LWE-Public.
We don't have this but we have something similar.

Gap-Shortest Vector Problem (Gap-SVP)

SVP Given a lattice, find the shortest Vector out of the origin.

Gap-Shortest Vector Problem (Gap-SVP)

SVP Given a lattice, find the shortest Vector out of the origin.
Gap-SVP Given a lattice, find if the shortest Vector out of the origin is LONG or SHORT. If its neither, still give an answer, but it won't mean anything.

Gap-Shortest Vector Problem (Gap-SVP)

SVP Given a lattice, find the shortest Vector out of the origin.
Gap-SVP Given a lattice, find if the shortest Vector out of the origin is LONG or SHORT. If its neither, still give an answer, but it won't mean anything.

Want Gap-SVP \leq LWE \leq LWE-Public.

Gap-Shortest Vector Problem (Gap-SVP)

SVP Given a lattice, find the shortest Vector out of the origin.
Gap-SVP Given a lattice, find if the shortest Vector out of the origin is LONG or SHORT. If its neither, still give an answer, but it won't mean anything.

Want Gap-SVP \leq LWE \leq LWE-Public. We do have this! Sort of.

LWE-Public. Hardness Assumption - A Caveat

Want:

$$
\text { Gap-SVP } \leq \text { LWE } \leq \text { LWE-Public }
$$

LWE-Public. Hardness Assumption - A Caveat

Want:

$$
\text { Gap-SVP } \leq \text { LWE } \leq \text { LWE-Public }
$$

This is true. Sort of.

LWE-Public. Hardness Assumption - A Caveat

Want:

$$
\text { Gap-SVP } \leq \text { LWE } \leq \text { LWE-Public }
$$

This is true. Sort of.
Gap-SVP \leq LWE is a Quantum Reduction
Quantum Reduction means the reduction works if you have a quantum computer.

LWE-Public. Hardness Assumption - A Caveat

Want:

$$
\text { Gap-SVP } \leq \text { LWE } \leq \text { LWE-Public }
$$

This is true. Sort of.
Gap-SVP \leq LWE is a Quantum Reduction
Quantum Reduction means the reduction works if you have a quantum computer.
Its a Win-Win!
QC means that Quantum Computing is Practical.

LWE-Public. Hardness Assumption - A Caveat

Want:

$$
\text { Gap-SVP } \leq \text { LWE } \leq \text { LWE-Public }
$$

This is true. Sort of.
Gap-SVP \leq LWE is a Quantum Reduction
Quantum Reduction means the reduction works if you have a quantum computer.
Its a Win-Win!
QC means that Quantum Computing is Practical.

1. $\neg Q C:$ RSA secure (against Quantum Factoring).

LWE-Public. Hardness Assumption - A Caveat

Want:

$$
\text { Gap-SVP } \leq \text { LWE } \leq \text { LWE-Public }
$$

This is true. Sort of.
Gap-SVP \leq LWE is a Quantum Reduction
Quantum Reduction means the reduction works if you have a quantum computer.
Its a Win-Win!
QC means that Quantum Computing is Practical.

1. $\neg Q C$: RSA secure (against Quantum Factoring).
2. $Q C$: LWE-Public is secure (assuming GAP-SVP is hard).

LWE-Public. Hardness Assumption - A Caveat

Want:

$$
\text { Gap-SVP } \leq \text { LWE } \leq \text { LWE-Public }
$$

This is true. Sort of.
Gap-SVP \leq LWE is a Quantum Reduction
Quantum Reduction means the reduction works if you have a quantum computer.
Its a Win-Win!
QC means that Quantum Computing is Practical.

1. $\neg Q C:$ RSA secure (against Quantum Factoring).
2. $Q C$: LWE-Public is secure (assuming GAP-SVP is hard).

Caveat Regev showed the quantum reduction in 2009. Peikert obtained a randomized reduction in 2014. The quantum reduction works for a wider range of parameters.

Is LWE-private Being Used?

NIST has initiated a process to solicit, evaluate, and standardize one or more quantum-resistant public-key cryptosystems:

Is LWE-private Being Used?

NIST has initiated a process to solicit, evaluate, and standardize one or more quantum-resistant public-key cryptosystems: Many of the finalists are LWE or similar to LWE.

Is LWE-private Being Used?

NIST has initiated a process to solicit, evaluate, and standardize one or more quantum-resistant public-key cryptosystems: Many of the finalists are LWE or similar to LWE.
Note that what I showed here were the IDEAS behind LWE-public. Getting it to actually work requires many modifications.

BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!

