BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Gen 2-letter Sub and Matrix Codes

September 28, 2020

Shift, Affine, Vig, Gen Sub, Easy to Crack

Shift, Affine, Vig all 1-letter substitutions. Freq cracked them.

Shift, Affine, Vig, Gen Sub, Easy to Crack

Shift, Affine, Vig all 1-letter substitutions. Freq cracked them. Idea: Lets substitute two letters at a time.

Shift, Affine, Vig, Gen Sub, Easy to Crack

Shift, Affine, Vig all 1-letter substitutions. Freq cracked them.
Idea: Lets substitute two letters at a time.
An Idea Which History Passed By:
Def Gen Sub 2-Cipher with perm f on $\{0, \ldots, 25\}^{2}$.

1. Encrypt via $x y \rightarrow f(x y)$.
2. Decrypt via $x y \rightarrow f^{-1}(x y)$.

Shift, Affine, Vig, Gen Sub, Easy to Crack

Shift, Affine, Vig all 1-letter substitutions. Freq cracked them.
Idea: Lets substitute two letters at a time.
An Idea Which History Passed By:
Def Gen Sub 2-Cipher with perm f on $\{0, \ldots, 25\}^{2}$.

1. Encrypt via $x y \rightarrow f(x y)$.
2. Decrypt via $x y \rightarrow f^{-1}(x y)$.

Why never used?

1. It was used but they kept it hidden and still not known!
2. The key length is roughly $26^{2} \times 10=6760$ bits.
3. Old days: hard to use. Now: easy to crack.

Shift, Affine, Vig, Gen Sub, Easy to Crack

Shift, Affine, Vig all 1-letter substitutions. Freq cracked them.
Idea: Lets substitute two letters at a time.
An Idea Which History Passed By:
Def Gen Sub 2-Cipher with perm f on $\{0, \ldots, 25\}^{2}$.

1. Encrypt via $x y \rightarrow f(x y)$.
2. Decrypt via $x y \rightarrow f^{-1}(x y)$.

Why never used?

1. It was used but they kept it hidden and still not known!
2. The key length is roughly $26^{2} \times 10=6760$ bits.
3. Old days: hard to use. Now: easy to crack.

Need bijection of $\{0, \ldots, 25\} \times\{0, \ldots, 25\}$ that is easy to use.

The Matrix Cipher

Def Matrix Cipher. Pick M a 2×2 matrix.

1. Encrypt via $x y \rightarrow M(x y)$.
2. Decrypt via $x y \rightarrow M^{-1}(x y)$.

Encode: Break text T into blocks of 2, apply M to each pair.
Decode: Do the same only with M^{-1}.

The Matrix Cipher

Def Matrix Cipher. Pick M a 2×2 matrix.

1. Encrypt via $x y \rightarrow M(x y)$.
2. Decrypt via $x y \rightarrow M^{-1}(x y)$.

Encode: Break text T into blocks of 2, apply M to each pair.
Decode: Do the same only with M^{-1}.
OH !

The Matrix Cipher

Def Matrix Cipher. Pick M a 2×2 matrix.

1. Encrypt via $x y \rightarrow M(x y)$.
2. Decrypt via $x y \rightarrow M^{-1}(x y)$.

Encode: Break text T into blocks of 2, apply M to each pair.
Decode: Do the same only with M^{-1}.
OH ! is it easy to see if M^{-1} exists? To find M^{-1} ?

The Matrix Cipher

Def Matrix Cipher. Pick M a 2×2 matrix.

1. Encrypt via $x y \rightarrow M(x y)$.
2. Decrypt via $x y \rightarrow M^{-1}(x y)$.

Encode: Break text T into blocks of 2, apply M to each pair.
Decode: Do the same only with M^{-1}.
OH ! is it easy to see if M^{-1} exists? To find M^{-1} ?

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Then

The Matrix Cipher

Def Matrix Cipher. Pick M a 2×2 matrix.

1. Encrypt via $x y \rightarrow M(x y)$.
2. Decrypt via $x y \rightarrow M^{-1}(x y)$.

Encode: Break text T into blocks of 2, apply M to each pair.
Decode: Do the same only with M^{-1}.
OH ! is it easy to see if M^{-1} exists? To find M^{-1} ?

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Then

$$
M^{-1}=\frac{1}{a d-b c} \times\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

The Matrix Cipher

Def Matrix Cipher. Pick M a 2×2 matrix.

1. Encrypt via $x y \rightarrow M(x y)$.
2. Decrypt via $x y \rightarrow M^{-1}(x y)$.

Encode: Break text T into blocks of 2, apply M to each pair.
Decode: Do the same only with M^{-1}.
OH ! is it easy to see if M^{-1} exists? To find M^{-1} ?

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Then

$$
M^{-1}=\frac{1}{a d-b c} \times\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Do you recognize the expression $a d-b c$?

The Matrix Cipher

Def Matrix Cipher. Pick M a 2×2 matrix.

1. Encrypt via $x y \rightarrow M(x y)$.
2. Decrypt via $x y \rightarrow M^{-1}(x y)$.

Encode: Break text T into blocks of 2, apply M to each pair.
Decode: Do the same only with M^{-1}.
OH ! is it easy to see if M^{-1} exists? To find M^{-1} ?

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Then

$$
M^{-1}=\frac{1}{a d-b c} \times\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Do you recognize the expression ad -bc? Determinant!

Inverse Matrix in \mathbb{C} and in Mods

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

1. Matrix M over \mathbb{C} has an inverse iff $a d-b c \neq 0$.
2. Matrix M over Mod n has an inverse iff $a d-b c$ is rel prime to n iff $a d-b c$ has an inverse in Mod n.
3. Matrix M over Mod 26 has an inverse iff $a d-b c$ is rel prime to 26 iff $a d-b c$ has no factors of 2 or 13 iff has an inverse in Mod 26.

The Matrix Cipher

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Good News:

The Matrix Cipher

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Good News:

1. Can test if M^{-1} exists, and if so find it, easily.

The Matrix Cipher

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Good News:

1. Can test if M^{-1} exists, and if so find it, easily.
2. M small, so Key small.

The Matrix Cipher

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Good News:

1. Can test if M^{-1} exists, and if so find it, easily.
2. M small, so Key small.
3. Applying M or M^{-1} to a vector is easy computationally.

The Matrix Cipher

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Good News:

1. Can test if M^{-1} exists, and if so find it, easily.
2. M small, so Key small.
3. Applying M or M^{-1} to a vector is easy computationally.

Bad News:

The Matrix Cipher

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Good News:

1. Can test if M^{-1} exists, and if so find it, easily.
2. M small, so Key small.
3. Applying M or M^{-1} to a vector is easy computationally.

Bad News:

1. Eve CAN crack using frequencies of pairs of letters.

The Matrix Cipher

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Good News:

1. Can test if M^{-1} exists, and if so find it, easily.
2. M small, so Key small.
3. Applying M or M^{-1} to a vector is easy computationally.

Bad News:

1. Eve CAN crack using frequencies of pairs of letters.
2. Eve CAN crack - Key space has $<26^{4}=456976$. Small.

The Matrix Cipher

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Good News:

1. Can test if M^{-1} exists, and if so find it, easily.
2. M small, so Key small.
3. Applying M or M^{-1} to a vector is easy computationally.

Bad News:

1. Eve CAN crack using frequencies of pairs of letters.
2. Eve CAN crack - Key space has $<26^{4}=456976$. Small.

So what to do?

The Matrix Cipher

Def Pick $n \in \mathbb{N}$ and M an $\mathbf{n} \times \mathbf{n}$ matrix with det rel prime to 26 .

1. Encrypt via $\vec{x} \rightarrow M(\vec{x})$.
2. Decrypt via $\vec{y} \rightarrow M^{-1}(\vec{y})$

We'll take $n=8$.

The Matrix Cipher

Def Pick $n \in \mathbb{N}$ and M an $\mathbf{n} \times \mathbf{n}$ matrix with det rel prime to 26 .

1. Encrypt via $\vec{x} \rightarrow M(\vec{x})$.
2. Decrypt via $\vec{y} \rightarrow M^{-1}(\vec{y})$

We'll take $n=8$.

1. M still small, so Key small.

The Matrix Cipher

Def Pick $n \in \mathbb{N}$ and M an $\mathbf{n} \times \mathbf{n}$ matrix with det rel prime to 26 .

1. Encrypt via $\vec{x} \rightarrow M(\vec{x})$.
2. Decrypt via $\vec{y} \rightarrow M^{-1}(\vec{y})$

We'll take $n=8$.

1. M still small, so Key small.
2. Finding M^{-1}, mult by M or M^{-1} fast.

The Matrix Cipher

Def Pick $n \in \mathbb{N}$ and M an $\mathbf{n} \times \mathbf{n}$ matrix with det rel prime to 26 .

1. Encrypt via $\vec{x} \rightarrow M(\vec{x})$.
2. Decrypt via $\vec{y} \rightarrow M^{-1}(\vec{y})$

We'll take $n=8$.

1. M still small, so Key small.
2. Finding M^{-1}, mult by M or M^{-1} fast.
3. Eve cannot use brute force. Key Space is $\sim 26^{64} \sim 10^{90}$, Number of protons is $\sim 10^{79}$. (the number of non-invertible matrices is very small so 26^{64} is a good approximation).

Lets Try Brute Force Even if Slow

1. Input T, a coded text.
2. For EVERY 8×8 invertible matrix M over \mathbb{Z}_{26},
2.1 Decode T into T^{\prime} using M.
2.2 IF LOOKS-LIKE-ENGLISH $\left(T^{\prime}\right)=$ YES then STOP and output T^{\prime}, else goto next matrix M.
Takes roughly 26^{64} steps.

Can We Do Better?

Takes roughly 26^{64} steps.

Can We Do Better?

Takes roughly 26^{64} steps.
Can we do better?

Can We Do Better?

Takes roughly 26^{64} steps.
Can we do better?
Need to refine the question.

Can We Do Better?

Takes roughly 26^{64} steps.
Can we do better?
Need to refine the question.
Assume T is long and in normal English.

Can We Do Better?

Takes roughly 26^{64} steps.
Can we do better?
Need to refine the question.
Assume T is long and in normal English.
Assume Eve only has access to the ciphertext. VOTE:

Can We Do Better?

Takes roughly 26^{64} steps.
Can we do better?
Need to refine the question.
Assume T is long and in normal English.
Assume Eve only has access to the ciphertext. VOTE:

1. YES - There is a clever way to do much better than 26^{64}.

Can We Do Better?

Takes roughly 26^{64} steps.
Can we do better?
Need to refine the question.
Assume T is long and in normal English.
Assume Eve only has access to the ciphertext. VOTE:

1. YES - There is a clever way to do much better than 26^{64}.
2. NO - and we can PROVE we can't do better with ciphertext-only.

Can We Do Better?

Takes roughly 26^{64} steps.
Can we do better?
Need to refine the question.
Assume T is long and in normal English.
Assume Eve only has access to the ciphertext. VOTE:

1. YES - There is a clever way to do much better than 26^{64}.
2. NO - and we can PROVE we can't do better with ciphertext-only.
3. UNKNOWN TO SCIENCE if we can do better with ciphertext-only.

Can We Do Better?

Takes roughly 26^{64} steps.
Can we do better?
Need to refine the question.
Assume T is long and in normal English.
Assume Eve only has access to the ciphertext. VOTE:

1. YES - There is a clever way to do much better than 26^{64}.
2. NO - and we can PROVE we can't do better with ciphertext-only.
3. UNKNOWN TO SCIENCE if we can do better with ciphertext-only.
YES- we can do 8×26^{8}.

Can Crack in 8×26^{8}

The attack in the last slide went through every Matrix.

Can Crack in 8×26^{8}

The attack in the last slide went through every Matrix. Better Idea: We take life one row at a time.

Can Crack in 8×26^{8}

The attack in the last slide went through every Matrix.
Better Idea: We take life one row at a time.
Example: 3×3 matrix cipher. Decode Matrix M.

$$
T=t_{1} t_{2} \cdots t_{N} \text { each } t_{i} \text { is 3-long }
$$

Can Crack in 8×26^{8}

The attack in the last slide went through every Matrix.
Better Idea: We take life one row at a time.
Example: 3×3 matrix cipher. Decode Matrix M.

$$
T=t_{1} t_{2} \cdots t_{N} \text { each } t_{i} \text { is 3-long }
$$

Guess the first row of M. Say:

$$
\left(\begin{array}{ccc}
1 & 1 & 7 \\
* & * & * \\
* & * & *
\end{array}\right)
$$

Can Crack in 8×26^{8}

The attack in the last slide went through every Matrix.
Better Idea: We take life one row at a time.
Example: 3×3 matrix cipher. Decode Matrix M.

$$
T=t_{1} t_{2} \cdots t_{N} \text { each } t_{i} \text { is 3-long }
$$

Guess the first row of M. Say:

$$
\left(\begin{array}{lll}
1 & 1 & 7 \\
* & * & * \\
* & * & *
\end{array}\right)
$$

Let $M t_{i}=m_{i}$. Then $(1,1,7) \cdot t_{i}=m_{i}^{1}$ is first letter of m_{i}.

$$
\left(m_{1}^{1}, m_{2}^{1}, m_{3}^{1}, \ldots, m_{N}^{1}\right)
$$

is every third letter. Can do IS-ENGLISH on it.

Can Crack in 8×26^{8}

Eve knows that Alice and Bob decode with 8×8 Matrix M. Ciphertext is

$$
T=t_{1} t_{2} \cdots t_{N} \quad t_{i}=t_{i}^{1} \cdots t_{i}^{8}
$$

For $i=1$ to 8
For all $r \in \mathbb{Z}_{26}^{8}$ (guess that r is i th row of B).
$T^{\prime}=\left(r \cdot t_{1}, \ldots, r \cdot t_{N}\right)$ (Is every 8th letter.)
IF IS-ENGLISH $\left(T^{\prime}\right)=$ YES then $r_{i}=r$ and goto next i. Else goto the next r.
M is

$$
\left(\begin{array}{ccc}
\cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots \\
r_{1} & \cdots & r_{n} \\
\vdots & \vdots & \vdots \\
\cdots & \cdots & \cdots
\end{array}\right)
$$

Takes 8×26^{8} steps.

More General n

If M is $n \times n$ matrix.

More General n

If M is $n \times n$ matrix.
Brute force takes $O\left(26^{n^{2}}\right)$.

More General n

If M is $n \times n$ matrix.
Brute force takes $O\left(26^{n^{2}}\right)$.
The row-by-row method takes $O\left(n 26^{n}\right)$.

Important Lesson

Assume: 26^{64} time is big enough to thwart Eve.

1. If we think that best Eve can do is $O\left(26^{n^{2}}\right)$ then we take $n=8$, so Eve needs $O\left(26^{64}\right)$.
2. If we think that best Eve can do is $O\left(n 26^{n}\right)$ then we take $n=80$, so Eve needs $O\left(80 \times 26^{80}\right)$.
The $O\left(n \times 26^{n}\right)$ cracking does not show that Matrix Cipher is insecure, but it still is very important: Alice and Bob must increase their parameters. That is already a win since it makes life harder for Alice and Bob.

The History of Cryptography in One Slide

The History of Cryptography in One Slide

1. Alice and Bob come up with a Crypto system (e.g., Matrix Cipher with $n=8$).

The History of Cryptography in One Slide

1. Alice and Bob come up with a Crypto system (e.g., Matrix Cipher with $n=8$).
2. Alice and Bob think its uncrackable and have a "proof" that it is uncrackable (e.g., Eve HAS to go through all 26^{64} matrices).

The History of Cryptography in One Slide

1. Alice and Bob come up with a Crypto system (e.g., Matrix Cipher with $n=8$).
2. Alice and Bob think its uncrackable and have a "proof" that it is uncrackable (e.g., Eve HAS to go through all 26^{64} matrices).
3. Eve Cracks it. (The trick above- only about 8×26^{8}.)

The History of Cryptography in One Slide

1. Alice and Bob come up with a Crypto system (e.g., Matrix Cipher with $n=8$).
2. Alice and Bob think its uncrackable and have a "proof" that it is uncrackable (e.g., Eve HAS to go through all 26^{64} matrices).
3. Eve Cracks it. (The trick above- only about 8×26^{8}.)
4. Lather, Rinse, Repeat.

The History of Cryptography in One Slide

1. Alice and Bob come up with a Crypto system (e.g., Matrix Cipher with $n=8$).
2. Alice and Bob think its uncrackable and have a "proof" that it is uncrackable (e.g., Eve HAS to go through all 26^{64} matrices).
3. Eve Cracks it. (The trick above- only about 8×26^{8}.)
4. Lather, Rinse, Repeat.

Above attack on Matrix Cipher is a microcosm of this history.

The History of Cryptography in One Slide

1. Alice and Bob come up with a Crypto system (e.g., Matrix Cipher with $n=8$).
2. Alice and Bob think its uncrackable and have a "proof" that it is uncrackable (e.g., Eve HAS to go through all 26^{64} matrices).
3. Eve Cracks it. (The trick above- only about 8×26^{8}.)
4. Lather, Rinse, Repeat.

Above attack on Matrix Cipher is a microcosm of this history.
Proofs rely on limiting what Eve can do, and hence do not work if Eve does something else.

Is Matrix Cipher with $n=80$ Secure?

Is Matrix Cipher with $n=80$ Secure?

1. If we have freq's for 80-long sequences then would that help crack it?

Is Matrix Cipher with $n=80$ Secure?

1. If we have freq's for 80-long sequences then would that help crack it?
I do not know.

Is Matrix Cipher with $n=80$ Secure?

1. If we have freq's for 80-long sequences then would that help crack it?
I do not know.
I want to have a student do this as a research project.

Is Matrix Cipher with $n=80$ Secure?

1. If we have freq's for 80-long sequences then would that help crack it?
I do not know.
I want to have a student do this as a research project.
2. If we know some phrase that will appear in the text, that might help, like it did for cracking LCGs

Is Matrix Cipher with $n=80$ Secure?

1. If we have freq's for 80-long sequences then would that help crack it?
I do not know.
I want to have a student do this as a research project.
2. If we know some phrase that will appear in the text, that might help, like it did for cracking LCGs
3. So this looks like a strong cipher. Is it crackable?

Is Matrix Cipher with n Large Crackable?

Is Matrix Cipher with n Large Crackable?

1. If Eve only has access to ciphertext then unknown

Is Matrix Cipher with n Large Crackable?

1. If Eve only has access to ciphertext then unknown to me.

Is Matrix Cipher with n Large Crackable?

1. If Eve only has access to ciphertext then unknown to me.
2. In reality Eve has much more information.

Is Matrix Cipher with n Large Crackable?

1. If Eve only has access to ciphertext then unknown to me.
2. In reality Eve has much more information.
3. Eve will have old messages and what they decoded to.

Example of What Eve Might Know

Scenario:

Example of What Eve Might Know

Scenario:

1. Eve knows that Alice is telling Bob the initials of the city she will be in next week.

Example of What Eve Might Know

Scenario:

1. Eve knows that Alice is telling Bob the initials of the city she will be in next week.
2. Eve intercepts the message. It is $(3,9)$.

Example of What Eve Might Know

Scenario:

1. Eve knows that Alice is telling Bob the initials of the city she will be in next week.
2. Eve intercepts the message. It is $(3,9)$.
3. Eve is NOT able to crack this.

Example of What Eve Might Know

Scenario:

1. Eve knows that Alice is telling Bob the initials of the city she will be in next week.
2. Eve intercepts the message. It is $(3,9)$.
3. Eve is NOT able to crack this.
4. The next day Eve follows Alice and sees that she goes to New York. NY is $(13,24)$.

Example of What Eve Might Know

Scenario:

1. Eve knows that Alice is telling Bob the initials of the city she will be in next week.
2. Eve intercepts the message. It is $(3,9)$.
3. Eve is NOT able to crack this.
4. The next day Eve follows Alice and sees that she goes to New York. NY is $(13,24)$.
5. Eve knows that $(3,9)=M(13,24)$.

Cracking Matrix Cipher

Example using 2×2 Matrix Cipher. Eve learns that $(13,24)$ encrypts to $(3,9)$. Hence:

Cracking Matrix Cipher

Example using 2×2 Matrix Cipher.
Eve learns that $(13,24)$ encrypts to $(3,9)$. Hence:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{13}{24}=\binom{3}{9}
$$

Cracking Matrix Cipher

Example using 2×2 Matrix Cipher.
Eve learns that $(13,24)$ encrypts to $(3,9)$. Hence:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{13}{24}=\binom{3}{9}
$$

So

$$
\begin{aligned}
& 13 a+24 b=3 \\
& 13 c+24 d=9
\end{aligned}
$$

Two linear equations, Four variables

Cracking Matrix Cipher

Example using 2×2 Matrix Cipher.
Eve learns that $(13,24)$ encrypts to $(3,9)$. Hence:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{13}{24}=\binom{3}{9}
$$

So

$$
\begin{aligned}
& 13 a+24 b=3 \\
& 13 c+24 d=9
\end{aligned}
$$

Two linear equations, Four variables
If Eve learns one more 2-letter message decoding then she will have Four linear equations, Four variables
which she can solve!

Cracking Matrix Cipher

Example using 2×2 Matrix Cipher.
Eve learns that $(13,24)$ encrypts to $(3,9)$. Hence:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{13}{24}=\binom{3}{9}
$$

So

$$
\begin{aligned}
& 13 a+24 b=3 \\
& 13 c+24 d=9
\end{aligned}
$$

Two linear equations, Four variables
If Eve learns one more 2-letter message decoding then she will have Four linear equations, Four variables which she can solve! Yeah?

Cracking Matrix Cipher

Example using 2×2 Matrix Cipher.
Eve learns that $(13,24)$ encrypts to $(3,9)$. Hence:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{13}{24}=\binom{3}{9}
$$

So

$$
\begin{aligned}
& 13 a+24 b=3 \\
& 13 c+24 d=9
\end{aligned}
$$

Two linear equations, Four variables
If Eve learns one more 2-letter message decoding then she will have Four linear equations, Four variables which she can solve! Yeah?Boo?

Cracking Matrix Cipher

Example using 2×2 Matrix Cipher.
Eve learns that $(13,24)$ encrypts to $(3,9)$. Hence:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{13}{24}=\binom{3}{9}
$$

So

$$
\begin{aligned}
& 13 a+24 b=3 \\
& 13 c+24 d=9
\end{aligned}
$$

Two linear equations, Four variables
If Eve learns one more 2-letter message decoding then she will have Four linear equations, Four variables
which she can solve! Yeah?Boo?Depends whose side you are on.

Upshot

Upshot

1. Matrix Cipher with ciphertext only might be hard to crack.

Upshot

1. Matrix Cipher with ciphertext only might be hard to crack.
2. Matrix Cipher where Eve has access to prior messages is easy to crack.

Upshot

1. Matrix Cipher with ciphertext only might be hard to crack.
2. Matrix Cipher where Eve has access to prior messages is easy to crack.
3. We need to better refine our notion of attack.

Upshot

1. Matrix Cipher with ciphertext only might be hard to crack.
2. Matrix Cipher where Eve has access to prior messages is easy to crack.
3. We need to better refine our notion of attack.
4. We will do this in the next slide packet.
