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McEliece Public Key Cryptosystem

The McEliece Public Key Cryptosystem is based on
error-correcting codes.

1. Named after its inventor, Robert McEliece.

2. McEliece public key cryptosystem was published in 1978 but
was thought to not be practical because the key is large.

3. McEliece public key cryptosystem is getting more attention
now since (1) it’s not based on factoring or other number
theory assumptions, (2) we are able to handle bigger keys now,
and (3) there are some applications where key size can be big,
for example, if you only generate the key once a month.

4. McEliece public key cryptosystem is a candidate for NIST’s
quantum-resistant public key challenge.
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Math Needed for Various Protocols

For this slide X,Y,Z are between 40 and 80.

Recall that with DH and RSA we
spent X slides on Number theory and 1 on the protocol.

Recall that with LWE we
spent Y slides on Linear Algebra and 1 on the protocol.

Similarly, for McEliece we will
spend Z slides on Error Corr. Codes and 1 on the protocol.

1. Modern Crypto is able to draw upon math already known.

2. Many protocols use elementary math since complicated math
might be harder to code up and may have larger constants.
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A Long Aside:
Error Correcting Codes



Intentional Error Detection in Real Life

In Sept I emailed my TA’s
Reminder: TA meeting Thursday Sept 16 at 8:30PM

Why did I include both the day of the week (Thursday) and the
date (Sept 16)?

This is an error check. If the date is NOT that day of the week
then they will recognize that I made an error and email me.

It worked Josh emailed me
Bill you moron, Sept 16 is not a Thursday
I then checked my calendar and emailed out the correct date.

This is a real-world example of intentional error detection.
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Unintentional Error Detection in Real Life

My landline number is (301) 781-XXXX. I have caller ID.

Spammers want me to pick up so they will call from a number that
begins (301) 781.

1. Spammers think Bill will pick up thinking it’s neighbor.

2. Bill thinks DO NOT pick up—it begins (301) 781, so it’s
a spammer.

Even stranger: they also do this trick on my cell phone, for which
the prefix has nothing to do with geography.

Unintentional Error Detection If the prefix is (301) 781 then I
detect that it’s a spam call. Unintentional on spammers part.

Another example: The term Urgent in the subject line of an email
means this is spam you can ignore.
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whp means with High Probability

whp means with high probability. High enough that we will not
worry about it not happening.



Scenario and Conventions

Alice and Bob are communicating over a noisy channel.
Alice wants to send Message m1 · · ·mk . She will send b1 · · · bn
where n > k.

The extra bits will help detect or correct errors.

This is not crypto. There is no Eve.

Error-correcting means Bob discovers there is an error and where it
is, so he can correct it.

Everything is mod 2.

A code is a map {0, 1}k to {0, 1}n for error corr. or det.
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Error Detecting Codes

Error is detected whp. Do not know where error is.

Example Parity Check.
To send b1b2b3b4 send b1b2b3b4(

∑4
i=1 bi (mod 2)).

Example Alice wants to send 0110. So she sends 01100.

1. Bob receives 01100, notes 0 + 1 + 1 + 0 ≡ 0. He is confident
he got the msg. He did.

2. Bob receives 01110, notes 0 + 1 + 1 + 1 6≡ 0. He knows there
is an error, but not where it is.

3. Bob receives 01101, notes 0 + 1 + 1 + 0 6≡ 1. He knows there
is an error, but not where it is.

4. Bob receives 00000, notes 0 + 0 + 0 + 0 ≡ 0. He is confident
he got the msg. He is wrong.

Parity check detects 1 error but not 2. Detect 2 errors: HW.
We will NOT use Error Detection for McEliece Cipher.
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Error Correction Codes

Error is detected whp. Do know where error is.

Example Repetition Code.
To send b1b2b3b4 send b1b1b1b2b2b2b3b3b3b4b4b4.
Example Alice wants to send 0110. So she sends 000111111000
What could happen?

1. Bob receives 000111111000, of the right form. Bob is
confident he got the msg, and he did.

2. Bob receives 000110111000. 2nd triple is 110. Bob corrects
to 111 and is confident he got msg. He did.

3. Bob receives 000110111001. 2nd, 4th triple corrected to 111,
000. He is confident he got msg He did.

4. Bob receives 110110111001. 1st triple corrected to 111. He is
confident he got the msg. He did not.
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Error Correction Codes

Error is detected whp. Do know where error is.

Example Repetition Code.
To send b1b2b3b4 send b1b1b1b2b2b2b3b3b3b4b4b4.
Example Alice wants to send 0110. So she sends 000111111000
What could happen?

1. Bob receives 000111111000, of the right form. Bob is
confident he got the msg, and he did.

2. Bob receives 000110111000. 2nd triple is 110. Bob corrects
to 111 and is confident he got msg. He did.

3. Bob receives 000110111001. 2nd, 4th triple corrected to 111,
000. He is confident he got msg He did.

4. Bob receives 110110111001. 1st triple corrected to 111. He is
confident he got the msg. He did not.



“Alice sends” With Generating Matrix

To send b Alice sends (b, b, b). Can express this as:

Alice sends b by sending

b(1, 1, 1) = (b, b, b)

(1, 1, 1) is called a Generating Matrix. Note that it is 1× 3.
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“Bob Sees” with Parity Check Matrices

Alice wants to send (b, b, b). There is noise so the msg Bob gets
received is ~b = (b1, b2, b3). Bob multiplies by matrix H below.

(
1 1 0
1 0 1

)b1
b2
b3

 =

(
b1 + b2
b1 + b3

)

1. If b1 = b2 = b3 then H~b = (0, 0). No errors.

2. If b1 6= b2 = b3 then H~b = (1, 1). Error in first bit.

3. If b2 6= b1 = b3 then H~b = (1, 0). Error in second bit.

4. If b3 6= b2 = b1 then H~b = (0, 1). Error in third bit.

So H~b tells Bob if there is an error, and if there is, where it is!



Recap and Generalize

(1, 1, 1) is Generating Matrix G.

(
1 1 0
1 0 1

)
is Parity Check Matrix H.

I Codes 1 bit as 3 bits, so rate is 1
3 .

I Error Correction: Will catch and correct 1 error.

I Error Correction: If ≥ 2 errors may not catch them.

I If see bG then can recover b. (Trivial but important for later.)
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The (7,4,1) Code Generator Matrix


1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

 is Generator Matrix G.

Let ~m = (m1,m2,m3,m4). ~mG is

(m1+m3+m4,m1+m2+m3,m2+m3+m4,m1,m2,m3,m4) = (b1, b2, b3, b4, b5, b6, b7)

Note that

b1 = b4 + b6 + b7
b2 = b4 + b5 + b6
b3 = b5 + b6 + b7
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The (7,4,1) Code Parity Check Matrix

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 is Parity Check Matrix H.

~b = (b1, b2, b3, b4, b5, b6, b7). H~b is
(b1 + b4 + b6 + b7, b2 + b4 + b5 + b6, b3 + b5 + b6 + b7)

I If all coordinates are 0, then no errors.

I There are 7 = 23 − 1 ways that h~b 6= ~0. Each one corresponds
to which bit is incorrect. (Not obvious.)

I This is an error-correcting code with rate 4
7 > 1

3 .

I This is a (7,4,1)-code. |~b| = 7, | ~m| = 4, corrects 1 error.

I If see ~mG can recover ~m easily: the last four bits.
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The (7,4,1) Code or A (7,4,1) Code?

Recall our (7,4,1) Code had a matrix G , and:
If ~m = (m1,m2,m3,m4) then ~mG is

(m1 + m3 + m4,m1 + m2 + m3,m2 + m3 + m4,m1,m2,m3,m4)

So the msg is in slots 4,5,6,7 and the error-correction takes place
in slots 1,2,3.

Is there another G such that ~mG is

(m3,m1 + m2 + m3,m1,m4,m1 + m3 + m4,m2 + m3 + m4,m2)

Yes. Any rearrangement is a (7,4,1) code.
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Alice Can Pick a Random (7,4,1) Code

In the protocol we will say:
Alice picks a Random (7,4,1) Code

This will mean that she randomly permutes the rows of G and the
columns of H so that (G ,H) is one version of the (7,4,1) code.

If she is given a 7-bit vector with at most one error

1. Using H she can correct the vector to the codeword intended.

2. Using G she can find the msg ~m by using table of what
generates what.

Actually we will use matrices much bigger than (7,4,1).
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1-Error Correcting Codes

We assume n + 1 is a power of 2.
Def An (n, k, 1)-Error Correcting Code is two matrices:

1. G is k × n. G : {0, 1}k → {0, 1}n.

2. H is n × lg2(n + 1) is parity check matrix. Output is
lg2(n + 1) bits, so n + 1 possibilities:

0 errors, 1 possibility.

1-error and where it is, n possibilities.

What about 2 errors?
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2-Error Correcting Codes

We assume
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is a power of 2.

Def An (n, k, 2)-Error Correcting Code is two matrices:
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2 errors and where they are,
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I leave the definition of t-Error Correcting Codes to you.

If (G ,H) is an error-correcting code then elements in the image of
G are codewords.
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Goppa Codes

1. They are based on Algebraic Geometry and are very good.

2. McEliece cipher works with any error correcting code;
however, in practice they use Goppa codes.

3. We will not have to learn Goppa codes to understand
McEliece Cipher.
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Goppa Codes Parameters

We will present parameters for Goppa Codes.
k is length of msg Alice wants to send
n is length of msg Alice sends.
t is how many errors the code can correct. We want this large.
R = k/n is the rate of the code. We want this large.

Here is a table of some known Goppa Code parameters.

n k t R = k/n

1024 524 50 0.512
2048 1751 27 0.854
1632 1269 34 0.778
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For the Rest of This Talk

For the rest of this talk:

1. n, k , t ∈ N with k , t < n.

2. (G ,H) is an (n, k , t) Error Corr. code. Alice picks
representation of (G ,H) at random. k is length of msg Alice
wants to send, n is length of what she sends, t is numb of errs
corrected.

3. ~e ∈ {0, 1}n will have weight t, meaning t ones.

4. The McEliece Public Key Cryptosystem usually uses Goppa
Codes. Not important for this talk.

5. Recall: Everything is mod 2.
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An Example of a Perm Matrix

Note that: 
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1



a
b
c
d

 =


c
a
b
d


The matrix permutes the input.



Perm Matrices

Def A Perm Matrix is a matrix where

1. Every row has one 1.

2. Every column has one 1.

3. Every row is distinct.

4. Every column is distinct (this follows from 1,2,3).

One can show that

I If P is a perm matrix then P computes a permutation.

I If P computes a permutation then P is a perm matrix.
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McEliece Public Key: Alice Preps

1. Alice picks a random invertible k × k matrix S .

2. Alice picks a random n × n Perm matrix P.

3. Alice picks at random some (G ,H) which works for the code.

4. Public The k × n matrix SGP.

5. Private The matrices S and P and the error correcting
(n, t, k) code (G ,H). (Note: It is known which (n, t, k) code
Alice is using, but not which (G ,H).)
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McEliece Public Key: Bob Sends

1. Bob (and Eve) have SGP which is a k × n matrix.

2. Bob wants to send k bits ~m = m1 · · ·mk .

3. Bob computes ~mSGP and random ~e of weight t.

4. Bob sends ~y = ~mSGP + ~e. Note that this is t-away from
~mSGP, but ~mSGP is not necc. a codeword.

5. Alice computes ~yP−1 = ~mSG + ~eP−1.

6. ~mSG is a codeword. ~eP−1 has weight t.
So ~mSG + ~eP−1 is t away from a codeword.

7. Alice has H so can recover the codeword ~mSG .

8. Alice has G so can recover ~mS . She knows which bits are ~m.

9. Multiply by S−1 to get ~m.
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Secure?

Eve has SGP.

1. There are many matrices whose product is the same as SGP.

2. Believed to be hard to find S ,G ,P.

Eve has ~mSGP + ~e.

1. Hard to error correct without H. This is real point.

2. Hard to find ~m without P and G .
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PROS and CONS

PRO Does not rely on factoring or discrete log or any other
problem in Number Theory being hard. Why is this good?

1. The usual reason given: Factoring might end up being easy
via Quantum or Erika-Guido-Natalyia.

2. We may find that McEliece or LWE might have properties
that make it better thatn RSA. This will require using it for a
while.

CON Since McEliece and LWE have not been out there much they
have not been truly tested.
CON RSA, even with the stuff you do to make it really work,
seems easier to code up then McEliece. For LWE its harder to say.
Especially if the NSA is listening in.
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My Real World Security
Issues



Email I got recently

Attention: Owner of the Fund, We are delegates of the IMF in
conjunction with the assistance of the UN of the AU, the EU and
the FBI to pay victims of fraud 3.7 million dollars each. In the
course of our investigation, The UN Commission against Crime
and the IMF ordered that the money recovered from the scammers
be distributed among 10 lucky people around the world. World for
compensation. This email / letter has been sent to you
because your email address was found in one of the scam
artists’ files and the computer is hard drive during our
investigation, maybe you were scammed or not, it is being
compensated with the sum of us $3,700,000. Reconfirm your
information as indicated below. 1,Full Names name 2,Contact
Address, 3. Nationality, 4. State of origin. Mr Victor Markson



Article I Read Recently

Detecting Phishing Attempts
dl.acm.org/doi/10.1145/3415231

Abstract To better understand the cognitive process that end
users can use to identify phishing msgs, I interviewed 21 IT experts
about instances where they successfully identified emails as
phishing in their own inboxes. IT experts naturally follow a
three-stage process for identifying phishing emails. (1) the email
recipient tries to make sense of the email (2) they notice
discrepancies: little things that are off about the email (3) some
feature of the email – usually, the presence of a link requesting an
action – triggers them to recognize that phishing is a possible
alternative explanation.

off about the email Offering me $3,700,000 seemed just a little
bit off.

dl.acm.org/doi/10.1145/3415231
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Another Email I Got (excepts)
Urgent - help me distribute my $12 million to humanitarian aid.
This mail might come to you as a surprise and the temptation to
ignore it as unserious could come into your mind but please
consider it a divine wish and accept it with a deep sense of
humility.
Since the loss of my husband and also because i had no child to
call my own, i have found a new desire to assist the helpless. I
have donated some money to orphans in Sudan, Ethiopia,
Cameroon, Spain, Austria, Germany and some Asian countries.
I have 12,000,000.00 u. S. Dollars which i deposited in a
security company in Cotonou Benin Republic that does not know
the real content to be money and i want you to assist me in
claiming the consignment & distributing the money to charity
organizations, i agree to reward you with part of the money for
your assistance, kindness and participation in this godly project.
i am in the hospital where i have been undergoing treatment for
oesophageal cancer and my doctors have told me that i have
only a few months to live.



Why is Spam Harmful?

1. Might fool some people.

2. Wastes the time of all

3. It makes it hard to tell who is legit. If I get a letter from a
charity I tend to throw it away assuming it is spam.

4. I can’t tell the real Nigerian billionairs who want to give me
$12,000,000 from the fake ones!
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STOP RECORDING
LECTURE


