
BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!



Go Over Problems 4 and
6 from HW 01

October 10, 2020



The One-Time Pad and
Trying to Fake It—and

Failing to

October 10, 2020



The One-Time Pad

October 10, 2020



One-Time Pad

I Let M = {0, 1}n, the set of all messages.

I Gen: choose a uniform key k ∈ {0, 1}n.

I Enck(m) = k ⊕m.

I Deck(c) = k ⊕ c .

I Correctness:

Deck(Enck(m)) = k ⊕ (k ⊕m)

= (k ⊕ k)⊕m

= m



One-Time Pad

I Let M = {0, 1}n, the set of all messages.

I Gen: choose a uniform key k ∈ {0, 1}n.

I Enck(m) = k ⊕m.

I Deck(c) = k ⊕ c .

I Correctness:

Deck(Enck(m)) = k ⊕ (k ⊕m)

= (k ⊕ k)⊕m

= m



One-Time Pad

I Let M = {0, 1}n, the set of all messages.

I Gen: choose a uniform key k ∈ {0, 1}n.

I Enck(m) = k ⊕m.

I Deck(c) = k ⊕ c .

I Correctness:

Deck(Enck(m)) = k ⊕ (k ⊕m)

= (k ⊕ k)⊕m

= m



One-Time Pad

I Let M = {0, 1}n, the set of all messages.

I Gen: choose a uniform key k ∈ {0, 1}n.

I Enck(m) = k ⊕m.

I Deck(c) = k ⊕ c .

I Correctness:

Deck(Enck(m)) = k ⊕ (k ⊕m)

= (k ⊕ k)⊕m

= m



One-Time Pad

I Let M = {0, 1}n, the set of all messages.

I Gen: choose a uniform key k ∈ {0, 1}n.

I Enck(m) = k ⊕m.

I Deck(c) = k ⊕ c .

I Correctness:

Deck(Enck(m)) = k ⊕ (k ⊕m)

= (k ⊕ k)⊕m

= m



One-Time Pad

I Let M = {0, 1}n, the set of all messages.

I Gen: choose a uniform key k ∈ {0, 1}n.

I Enck(m) = k ⊕m.

I Deck(c) = k ⊕ c .

I Correctness:

Deck(Enck(m)) = k ⊕ (k ⊕m)

= (k ⊕ k)⊕m

= m



Example Of One-Time Pad

Key is 100010100010001111101111100

Alice wants to send Bob 1110.

She sends 1110⊕ 1000 = 0110.

Then Bob wants to send Alice 00111.

He sends 00111⊕ 10100 = 10011.

1. PRO ⊕ is FAST!

2. CON If Key is N bits long can only send N bits.

Is the one-time pad uncrackable:
VOTE: Yes, No, or Other.
Yes. Really!
Caveat: Generating truly random bits is hard.



Example Of One-Time Pad

Key is 100010100010001111101111100

Alice wants to send Bob 1110.

She sends 1110⊕ 1000 = 0110.

Then Bob wants to send Alice 00111.

He sends 00111⊕ 10100 = 10011.

1. PRO ⊕ is FAST!

2. CON If Key is N bits long can only send N bits.

Is the one-time pad uncrackable:
VOTE: Yes, No, or Other.
Yes. Really!
Caveat: Generating truly random bits is hard.



Example Of One-Time Pad

Key is 100010100010001111101111100

Alice wants to send Bob 1110.

She sends 1110⊕ 1000 = 0110.

Then Bob wants to send Alice 00111.

He sends 00111⊕ 10100 = 10011.

1. PRO ⊕ is FAST!

2. CON If Key is N bits long can only send N bits.

Is the one-time pad uncrackable:
VOTE: Yes, No, or Other.
Yes. Really!
Caveat: Generating truly random bits is hard.



Example Of One-Time Pad

Key is 100010100010001111101111100

Alice wants to send Bob 1110.

She sends 1110⊕ 1000 = 0110.

Then Bob wants to send Alice 00111.

He sends 00111⊕ 10100 = 10011.

1. PRO ⊕ is FAST!

2. CON If Key is N bits long can only send N bits.

Is the one-time pad uncrackable:
VOTE: Yes, No, or Other.
Yes. Really!
Caveat: Generating truly random bits is hard.



Example Of One-Time Pad

Key is 100010100010001111101111100

Alice wants to send Bob 1110.

She sends 1110⊕ 1000 = 0110.

Then Bob wants to send Alice 00111.

He sends 00111⊕ 10100 = 10011.

1. PRO ⊕ is FAST!

2. CON If Key is N bits long can only send N bits.

Is the one-time pad uncrackable:
VOTE: Yes, No, or Other.
Yes. Really!
Caveat: Generating truly random bits is hard.



Example Of One-Time Pad

Key is 100010100010001111101111100

Alice wants to send Bob 1110.

She sends 1110⊕ 1000 = 0110.

Then Bob wants to send Alice 00111.

He sends 00111⊕ 10100 = 10011.

1. PRO ⊕ is FAST!

2. CON If Key is N bits long can only send N bits.

Is the one-time pad uncrackable:
VOTE: Yes, No, or Other.
Yes. Really!
Caveat: Generating truly random bits is hard.



Example Of One-Time Pad

Key is 100010100010001111101111100

Alice wants to send Bob 1110.

She sends 1110⊕ 1000 = 0110.

Then Bob wants to send Alice 00111.

He sends 00111⊕ 10100 = 10011.

1. PRO ⊕ is FAST!

2. CON If Key is N bits long can only send N bits.

Is the one-time pad uncrackable:
VOTE: Yes, No, or Other.
Yes. Really!
Caveat: Generating truly random bits is hard.



Example Of One-Time Pad

Key is 100010100010001111101111100

Alice wants to send Bob 1110.

She sends 1110⊕ 1000 = 0110.

Then Bob wants to send Alice 00111.

He sends 00111⊕ 10100 = 10011.

1. PRO ⊕ is FAST!

2. CON If Key is N bits long can only send N bits.

Is the one-time pad uncrackable:
VOTE: Yes, No, or Other.

Yes. Really!
Caveat: Generating truly random bits is hard.



Example Of One-Time Pad

Key is 100010100010001111101111100

Alice wants to send Bob 1110.

She sends 1110⊕ 1000 = 0110.

Then Bob wants to send Alice 00111.

He sends 00111⊕ 10100 = 10011.

1. PRO ⊕ is FAST!

2. CON If Key is N bits long can only send N bits.

Is the one-time pad uncrackable:
VOTE: Yes, No, or Other.
Yes. Really!

Caveat: Generating truly random bits is hard.



Example Of One-Time Pad

Key is 100010100010001111101111100

Alice wants to send Bob 1110.

She sends 1110⊕ 1000 = 0110.

Then Bob wants to send Alice 00111.

He sends 00111⊕ 10100 = 10011.

1. PRO ⊕ is FAST!

2. CON If Key is N bits long can only send N bits.

Is the one-time pad uncrackable:
VOTE: Yes, No, or Other.
Yes. Really!
Caveat: Generating truly random bits is hard.



One-time pad



One-time pad (OTP)

I The OTP was patented in 1917 by Vernam.

I Historical research indicates the OTP was invented at least 35
years earlier.

I The OTP was Proven perfectly secret by Shannon in 1949.



One-time pad (OTP)

I The OTP was patented in 1917 by Vernam.

I Historical research indicates the OTP was invented at least 35
years earlier.

I The OTP was Proven perfectly secret by Shannon in 1949.



One-time pad (OTP)

I The OTP was patented in 1917 by Vernam.

I Historical research indicates the OTP was invented at least 35
years earlier.

I The OTP was Proven perfectly secret by Shannon in 1949.



One-time pad (OTP)

I The OTP was patented in 1917 by Vernam.

I Historical research indicates the OTP was invented at least 35
years earlier.

I The OTP was Proven perfectly secret by Shannon in 1949.



Linear Cong. Generators



How Hard is it to Generate Truly Random Bits?

Paraphrase of a Recent Piazza conversation
Student You said that generating Random Bits is hard. Why?

Bill Truly Rand Bits are hard. How would you do it?

Student Just use the Random function in Java!

Bill Okay. How does Java do it? Is it Truly Random?

Student Oh. Okay, you tell me– how does Java do it?

Bill I will show what Java does and why it bytes.



How Hard is it to Generate Truly Random Bits?

Paraphrase of a Recent Piazza conversation
Student You said that generating Random Bits is hard. Why?

Bill Truly Rand Bits are hard. How would you do it?

Student Just use the Random function in Java!

Bill Okay. How does Java do it? Is it Truly Random?

Student Oh. Okay, you tell me– how does Java do it?

Bill I will show what Java does and why it bytes.



How Hard is it to Generate Truly Random Bits?

Paraphrase of a Recent Piazza conversation
Student You said that generating Random Bits is hard. Why?

Bill Truly Rand Bits are hard. How would you do it?

Student Just use the Random function in Java!

Bill Okay. How does Java do it? Is it Truly Random?

Student Oh. Okay, you tell me– how does Java do it?

Bill I will show what Java does and why it bytes.



How Hard is it to Generate Truly Random Bits?

Paraphrase of a Recent Piazza conversation
Student You said that generating Random Bits is hard. Why?

Bill Truly Rand Bits are hard. How would you do it?

Student Just use the Random function in Java!

Bill Okay. How does Java do it? Is it Truly Random?

Student Oh. Okay, you tell me– how does Java do it?

Bill I will show what Java does and why it bytes.



How Hard is it to Generate Truly Random Bits?

Paraphrase of a Recent Piazza conversation
Student You said that generating Random Bits is hard. Why?

Bill Truly Rand Bits are hard. How would you do it?

Student Just use the Random function in Java!

Bill Okay. How does Java do it? Is it Truly Random?

Student Oh.

Okay, you tell me– how does Java do it?

Bill I will show what Java does and why it bytes.



How Hard is it to Generate Truly Random Bits?

Paraphrase of a Recent Piazza conversation
Student You said that generating Random Bits is hard. Why?

Bill Truly Rand Bits are hard. How would you do it?

Student Just use the Random function in Java!

Bill Okay. How does Java do it? Is it Truly Random?

Student Oh. Okay, you tell me– how does Java do it?

Bill I will show what Java does and why it bytes.



How Hard is it to Generate Truly Random Bits?

Paraphrase of a Recent Piazza conversation
Student You said that generating Random Bits is hard. Why?

Bill Truly Rand Bits are hard. How would you do it?

Student Just use the Random function in Java!

Bill Okay. How does Java do it? Is it Truly Random?

Student Oh. Okay, you tell me– how does Java do it?

Bill I will show what Java does and why it bytes.



How Does Java Produce Random Numbers

Java (and most languages) uses a Linear Cong. Generator.
When the computer is turned on (and once a month after that):

1. Pick M large. A power of 2 makes life easier for Alice and
Bob, but might not want to do that— we’ll see why later.

2. A,B, x0 are random-looking. E.g. the number of nanoseconds
mod M since last time reboot.

3. The computer has the recurrence

xi+1 = Axi + B (mod M)

4. The ith time a random number is chosen, use xi .

5. Computer need only keep xi ,A,B,M in memory.

Depending on A,B, x0 this can look random. . . or not.



How Does Java Produce Random Numbers

Java (and most languages) uses a Linear Cong. Generator.
When the computer is turned on (and once a month after that):

1. Pick M large. A power of 2 makes life easier for Alice and
Bob, but might not want to do that— we’ll see why later.

2. A,B, x0 are random-looking. E.g. the number of nanoseconds
mod M since last time reboot.

3. The computer has the recurrence

xi+1 = Axi + B (mod M)

4. The ith time a random number is chosen, use xi .

5. Computer need only keep xi ,A,B,M in memory.

Depending on A,B, x0 this can look random. . . or not.



How Does Java Produce Random Numbers

Java (and most languages) uses a Linear Cong. Generator.
When the computer is turned on (and once a month after that):

1. Pick M large. A power of 2 makes life easier for Alice and
Bob, but might not want to do that— we’ll see why later.

2. A,B, x0 are random-looking. E.g. the number of nanoseconds
mod M since last time reboot.

3. The computer has the recurrence

xi+1 = Axi + B (mod M)

4. The ith time a random number is chosen, use xi .

5. Computer need only keep xi ,A,B,M in memory.

Depending on A,B, x0 this can look random. . . or not.



How Does Java Produce Random Numbers

Java (and most languages) uses a Linear Cong. Generator.
When the computer is turned on (and once a month after that):

1. Pick M large. A power of 2 makes life easier for Alice and
Bob, but might not want to do that— we’ll see why later.

2. A,B, x0 are random-looking. E.g. the number of nanoseconds
mod M since last time reboot.

3. The computer has the recurrence

xi+1 = Axi + B (mod M)

4. The ith time a random number is chosen, use xi .

5. Computer need only keep xi ,A,B,M in memory.

Depending on A,B, x0 this can look random. . . or not.



How Does Java Produce Random Numbers

Java (and most languages) uses a Linear Cong. Generator.
When the computer is turned on (and once a month after that):

1. Pick M large. A power of 2 makes life easier for Alice and
Bob, but might not want to do that— we’ll see why later.

2. A,B, x0 are random-looking. E.g. the number of nanoseconds
mod M since last time reboot.

3. The computer has the recurrence

xi+1 = Axi + B (mod M)

4. The ith time a random number is chosen, use xi .

5. Computer need only keep xi ,A,B,M in memory.

Depending on A,B, x0 this can look random. . . or not.



How Does Java Produce Random Numbers

Java (and most languages) uses a Linear Cong. Generator.
When the computer is turned on (and once a month after that):

1. Pick M large. A power of 2 makes life easier for Alice and
Bob, but might not want to do that— we’ll see why later.

2. A,B, x0 are random-looking. E.g. the number of nanoseconds
mod M since last time reboot.

3. The computer has the recurrence

xi+1 = Axi + B (mod M)

4. The ith time a random number is chosen, use xi .

5. Computer need only keep xi ,A,B,M in memory.

Depending on A,B, x0 this can look random. . . or not.



How Does Java Produce Random Numbers

Java (and most languages) uses a Linear Cong. Generator.
When the computer is turned on (and once a month after that):

1. Pick M large. A power of 2 makes life easier for Alice and
Bob, but might not want to do that— we’ll see why later.

2. A,B, x0 are random-looking. E.g. the number of nanoseconds
mod M since last time reboot.

3. The computer has the recurrence

xi+1 = Axi + B (mod M)

4. The ith time a random number is chosen, use xi .

5. Computer need only keep xi ,A,B,M in memory.

Depending on A,B, x0 this can look random. . . or not.



Restrictions on A,B,M

What if M and A share a factor?

Example
x0 = 5
xn+1 ≡ 2xn + 5 (mod 8)

x1 = 2 ∗ 5 + 5 = 15 ≡ 7
x2 = 2 ∗ 7 + 5 = 19 ≡ 3
x3 = 2 ∗ 3 + 5 = 11 ≡ 3
(∀i ≥ 2)[xi = 3].

This is typical. If A is not rel prime to M then the numbers
obtained will be only a small part of {0, . . . ,M − 1}.
Eve will assume that A and M are rel prime.



Restrictions on A,B,M

What if M and A share a factor?
Example
x0 = 5
xn+1 ≡ 2xn + 5 (mod 8)

x1 = 2 ∗ 5 + 5 = 15 ≡ 7
x2 = 2 ∗ 7 + 5 = 19 ≡ 3
x3 = 2 ∗ 3 + 5 = 11 ≡ 3
(∀i ≥ 2)[xi = 3].

This is typical. If A is not rel prime to M then the numbers
obtained will be only a small part of {0, . . . ,M − 1}.
Eve will assume that A and M are rel prime.



Restrictions on A,B,M

What if M and A share a factor?
Example
x0 = 5
xn+1 ≡ 2xn + 5 (mod 8)

x1 = 2 ∗ 5 + 5 = 15 ≡ 7

x2 = 2 ∗ 7 + 5 = 19 ≡ 3
x3 = 2 ∗ 3 + 5 = 11 ≡ 3
(∀i ≥ 2)[xi = 3].

This is typical. If A is not rel prime to M then the numbers
obtained will be only a small part of {0, . . . ,M − 1}.
Eve will assume that A and M are rel prime.



Restrictions on A,B,M

What if M and A share a factor?
Example
x0 = 5
xn+1 ≡ 2xn + 5 (mod 8)

x1 = 2 ∗ 5 + 5 = 15 ≡ 7
x2 = 2 ∗ 7 + 5 = 19 ≡ 3

x3 = 2 ∗ 3 + 5 = 11 ≡ 3
(∀i ≥ 2)[xi = 3].

This is typical. If A is not rel prime to M then the numbers
obtained will be only a small part of {0, . . . ,M − 1}.
Eve will assume that A and M are rel prime.



Restrictions on A,B,M

What if M and A share a factor?
Example
x0 = 5
xn+1 ≡ 2xn + 5 (mod 8)

x1 = 2 ∗ 5 + 5 = 15 ≡ 7
x2 = 2 ∗ 7 + 5 = 19 ≡ 3
x3 = 2 ∗ 3 + 5 = 11 ≡ 3

(∀i ≥ 2)[xi = 3].

This is typical. If A is not rel prime to M then the numbers
obtained will be only a small part of {0, . . . ,M − 1}.
Eve will assume that A and M are rel prime.



Restrictions on A,B,M

What if M and A share a factor?
Example
x0 = 5
xn+1 ≡ 2xn + 5 (mod 8)

x1 = 2 ∗ 5 + 5 = 15 ≡ 7
x2 = 2 ∗ 7 + 5 = 19 ≡ 3
x3 = 2 ∗ 3 + 5 = 11 ≡ 3
(∀i ≥ 2)[xi = 3].

This is typical. If A is not rel prime to M then the numbers
obtained will be only a small part of {0, . . . ,M − 1}.
Eve will assume that A and M are rel prime.



Restrictions on A,B,M

What if M and A share a factor?
Example
x0 = 5
xn+1 ≡ 2xn + 5 (mod 8)

x1 = 2 ∗ 5 + 5 = 15 ≡ 7
x2 = 2 ∗ 7 + 5 = 19 ≡ 3
x3 = 2 ∗ 3 + 5 = 11 ≡ 3
(∀i ≥ 2)[xi = 3].

This is typical. If A is not rel prime to M then the numbers
obtained will be only a small part of {0, . . . ,M − 1}.

Eve will assume that A and M are rel prime.



Restrictions on A,B,M

What if M and A share a factor?
Example
x0 = 5
xn+1 ≡ 2xn + 5 (mod 8)

x1 = 2 ∗ 5 + 5 = 15 ≡ 7
x2 = 2 ∗ 7 + 5 = 19 ≡ 3
x3 = 2 ∗ 3 + 5 = 11 ≡ 3
(∀i ≥ 2)[xi = 3].

This is typical. If A is not rel prime to M then the numbers
obtained will be only a small part of {0, . . . ,M − 1}.
Eve will assume that A and M are rel prime.



Example of Linear Cong. Gen

x0 = 21, A = 19, B = 30, M = 91
x0 = 21
x1 = 19 ∗ 21 + 30 (mod 91) = 65
x2 = 19 ∗ 65 + 30 (mod 91) = 82
x3 = 19 ∗ 82 + 30 (mod 91) = 41
x4 = 19 ∗ 41 + 30 (mod 91) = 81
x5 = 19 ∗ 81 + 30 (mod 91) = 22
x6 = 19 ∗ 22 + 30 (mod 91) = 84
x7 = 19 ∗ 84 + 30 (mod 91) = 79
x8 = 19 ∗ 79 + 30 (mod 91) = 75

Does this sequence look random? Hard to say.



Example of Linear Cong. Gen

x0 = 21, A = 19, B = 30, M = 91
x0 = 21
x1 = 19 ∗ 21 + 30 (mod 91) = 65
x2 = 19 ∗ 65 + 30 (mod 91) = 82
x3 = 19 ∗ 82 + 30 (mod 91) = 41
x4 = 19 ∗ 41 + 30 (mod 91) = 81
x5 = 19 ∗ 81 + 30 (mod 91) = 22
x6 = 19 ∗ 22 + 30 (mod 91) = 84
x7 = 19 ∗ 84 + 30 (mod 91) = 79
x8 = 19 ∗ 79 + 30 (mod 91) = 75
Does this sequence look random?

Hard to say.



Example of Linear Cong. Gen

x0 = 21, A = 19, B = 30, M = 91
x0 = 21
x1 = 19 ∗ 21 + 30 (mod 91) = 65
x2 = 19 ∗ 65 + 30 (mod 91) = 82
x3 = 19 ∗ 82 + 30 (mod 91) = 41
x4 = 19 ∗ 41 + 30 (mod 91) = 81
x5 = 19 ∗ 81 + 30 (mod 91) = 22
x6 = 19 ∗ 22 + 30 (mod 91) = 84
x7 = 19 ∗ 84 + 30 (mod 91) = 79
x8 = 19 ∗ 79 + 30 (mod 91) = 75
Does this sequence look random? Hard to say.



Our Running Example

x0 = 2134, A = 4381, B = 7364, M = 8397.

x0 = 2134 view as 21, 34
xn+1 = 4381xn + 7364 (mod 8397)

We use this to gen rand-looking bits, so 1-time-pad with
psuedo-random bits.

We will then crack it.

We will assume Eve knows that the random numbers are gen by a
recurrence of the form

xi+1 = Axi + B (mod M)

but that Eve do not know x0,A,B,M. Does know A,B rel prime.



Our Running Example

x0 = 2134, A = 4381, B = 7364, M = 8397.

x0 = 2134 view as 21, 34
xn+1 = 4381xn + 7364 (mod 8397)

We use this to gen rand-looking bits, so 1-time-pad with
psuedo-random bits.

We will then crack it.

We will assume Eve knows that the random numbers are gen by a
recurrence of the form

xi+1 = Axi + B (mod M)

but that Eve do not know x0,A,B,M. Does know A,B rel prime.



Our Running Example

x0 = 2134, A = 4381, B = 7364, M = 8397.

x0 = 2134 view as 21, 34
xn+1 = 4381xn + 7364 (mod 8397)

We use this to gen rand-looking bits, so 1-time-pad with
psuedo-random bits.

We will then crack it.

We will assume Eve knows that the random numbers are gen by a
recurrence of the form

xi+1 = Axi + B (mod M)

but that Eve do not know x0,A,B,M. Does know A,B rel prime.



Our Running Example

x0 = 2134, A = 4381, B = 7364, M = 8397.

x0 = 2134 view as 21, 34
xn+1 = 4381xn + 7364 (mod 8397)

We use this to gen rand-looking bits, so 1-time-pad with
psuedo-random bits.

We will then crack it.

We will assume Eve knows that the random numbers are gen by a
recurrence of the form

xi+1 = Axi + B (mod M)

but that Eve do not know x0,A,B,M. Does know A,B rel prime.



Psuedo One-Time Pad

A = 01, B = 02, · · · Z = 26 (Not our usual since A = 01. )
View each letter as a two-digit number mod 26.

Want a LONG sequence of 2-digit numbers k1, k2, . . .

1. Will code m1,m2, . . . by, by adding mod 10 to each digit
Example If key is 12 38 and message is 29 23 then send

12 38
29 23

31 51

So send 31 51 (these do not correspond to letters, thats fine).

2. View as One-time pad with psuedo-random sequence.

How to get a long random (looking?) sequence? Next slide.



Psuedo One-Time Pad

A = 01, B = 02, · · · Z = 26 (Not our usual since A = 01. )
View each letter as a two-digit number mod 26.
Want a LONG sequence of 2-digit numbers k1, k2, . . .

1. Will code m1,m2, . . . by, by adding mod 10 to each digit
Example If key is 12 38 and message is 29 23 then send

12 38
29 23

31 51

So send 31 51 (these do not correspond to letters, thats fine).

2. View as One-time pad with psuedo-random sequence.

How to get a long random (looking?) sequence? Next slide.



Psuedo One-Time Pad

A = 01, B = 02, · · · Z = 26 (Not our usual since A = 01. )
View each letter as a two-digit number mod 26.
Want a LONG sequence of 2-digit numbers k1, k2, . . .

1. Will code m1,m2, . . . by, by adding mod 10 to each digit
Example If key is 12 38 and message is 29 23 then send

12 38
29 23

31 51

So send 31 51 (these do not correspond to letters, thats fine).

2. View as One-time pad with psuedo-random sequence.

How to get a long random (looking?) sequence? Next slide.



Psuedo One-Time Pad

A = 01, B = 02, · · · Z = 26 (Not our usual since A = 01. )
View each letter as a two-digit number mod 26.
Want a LONG sequence of 2-digit numbers k1, k2, . . .

1. Will code m1,m2, . . . by, by adding mod 10 to each digit
Example If key is 12 38 and message is 29 23 then send

12 38
29 23

31 51

So send 31 51 (these do not correspond to letters, thats fine).

2. View as One-time pad with psuedo-random sequence.

How to get a long random (looking?) sequence? Next slide.



Psuedo One-Time Pad

A = 01, B = 02, · · · Z = 26 (Not our usual since A = 01. )
View each letter as a two-digit number mod 26.
Want a LONG sequence of 2-digit numbers k1, k2, . . .

1. Will code m1,m2, . . . by, by adding mod 10 to each digit
Example If key is 12 38 and message is 29 23 then send

12 38
29 23

31 51

So send 31 51 (these do not correspond to letters, thats fine).

2. View as One-time pad with psuedo-random sequence.

How to get a long random (looking?) sequence? Next slide.



Use Rec. x0,A,B,M is Short Private Key

(Example from ”Cracking” a Random Number Generator by James
Reed. Paper on Course Website.)

x0 = 2134, A = 4381, B = 7364, M = 8397.

x0 = 2134 view as 21, 34
xn+1 = 4381xn + 7364 (mod 8397)

We show that this random-looking sequence is NOT that random
and, if used for a psuedo-one-time-pad, can be cracked.



Use Rec. x0,A,B,M is Short Private Key

(Example from ”Cracking” a Random Number Generator by James
Reed. Paper on Course Website.)

x0 = 2134, A = 4381, B = 7364, M = 8397.

x0 = 2134 view as 21, 34
xn+1 = 4381xn + 7364 (mod 8397)

We show that this random-looking sequence is NOT that random
and, if used for a psuedo-one-time-pad, can be cracked.



Use Rec. x0,A,B,M is Short Private Key

(Example from ”Cracking” a Random Number Generator by James
Reed. Paper on Course Website.)

x0 = 2134, A = 4381, B = 7364, M = 8397.

x0 = 2134 view as 21, 34
xn+1 = 4381xn + 7364 (mod 8397)

We show that this random-looking sequence is NOT that random
and, if used for a psuedo-one-time-pad, can be cracked.



Use Rec. x0,A,B,M is Short Private Key

(Example from ”Cracking” a Random Number Generator by James
Reed. Paper on Course Website.)

x0 = 2134, A = 4381, B = 7364, M = 8397.

x0 = 2134 view as 21, 34
xn+1 = 4381xn + 7364 (mod 8397)

We show that this random-looking sequence is NOT that random
and, if used for a psuedo-one-time-pad, can be cracked.



Example 1

x0 = 2134
x1 = 2160
x2 = 6905
x3 = 3778
They start with x1.
If the document began with the word secret then encode by
adding columns base 10:

Text-Letter S E C R E T
Text-Digits 19 05 03 18 05 20
Key–Digits 21 60 69 05 37 78

Ciphertext 30 65 62 13 32 98
Note E is coded as 65 and then later as 32. Recall that the whole
point of OTP is that a letter won’t always be coded the same way.



Example 1

x0 = 2134
x1 = 2160
x2 = 6905
x3 = 3778
They start with x1.

If the document began with the word secret then encode by
adding columns base 10:

Text-Letter S E C R E T
Text-Digits 19 05 03 18 05 20
Key–Digits 21 60 69 05 37 78

Ciphertext 30 65 62 13 32 98
Note E is coded as 65 and then later as 32. Recall that the whole
point of OTP is that a letter won’t always be coded the same way.



Example 1

x0 = 2134
x1 = 2160
x2 = 6905
x3 = 3778
They start with x1.
If the document began with the word secret then encode by
adding columns base 10:

Text-Letter S E C R E T
Text-Digits 19 05 03 18 05 20
Key–Digits 21 60 69 05 37 78

Ciphertext 30 65 62 13 32 98
Note E is coded as 65 and then later as 32. Recall that the whole
point of OTP is that a letter won’t always be coded the same way.



Example 1

x0 = 2134
x1 = 2160
x2 = 6905
x3 = 3778
They start with x1.
If the document began with the word secret then encode by
adding columns base 10:

Text-Letter S E C R E T
Text-Digits 19 05 03 18 05 20
Key–Digits 21 60 69 05 37 78

Ciphertext 30 65 62 13 32 98
Note E is coded as 65 and then later as 32. Recall that the whole
point of OTP is that a letter won’t always be coded the same way.



Example 2

Alice sends Bob a document using the xi as a two chars at a time.

Eve knows rec of form xn+1 = Axn + B (mod M).

Eve knows that A,B,M are all 4-digits. If she fails she may try
again with 6-digits.

Eve knows that the document is about India and Pakistan.

Eve thinks Pakistan will be in the document.
Eve thinks M is 4-digits.

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14



Example 2

Alice sends Bob a document using the xi as a two chars at a time.

Eve knows rec of form xn+1 = Axn + B (mod M).

Eve knows that A,B,M are all 4-digits. If she fails she may try
again with 6-digits.

Eve knows that the document is about India and Pakistan.

Eve thinks Pakistan will be in the document.
Eve thinks M is 4-digits.

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14



Example 2

Alice sends Bob a document using the xi as a two chars at a time.

Eve knows rec of form xn+1 = Axn + B (mod M).

Eve knows that A,B,M are all 4-digits. If she fails she may try
again with 6-digits.

Eve knows that the document is about India and Pakistan.

Eve thinks Pakistan will be in the document.
Eve thinks M is 4-digits.

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14



Example 2

Alice sends Bob a document using the xi as a two chars at a time.

Eve knows rec of form xn+1 = Axn + B (mod M).

Eve knows that A,B,M are all 4-digits. If she fails she may try
again with 6-digits.

Eve knows that the document is about India and Pakistan.

Eve thinks Pakistan will be in the document.
Eve thinks M is 4-digits.

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14



Example 2

Alice sends Bob a document using the xi as a two chars at a time.

Eve knows rec of form xn+1 = Axn + B (mod M).

Eve knows that A,B,M are all 4-digits. If she fails she may try
again with 6-digits.

Eve knows that the document is about India and Pakistan.

Eve thinks Pakistan will be in the document.
Eve thinks M is 4-digits.

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14



Example 2

Alice sends Bob a document using the xi as a two chars at a time.

Eve knows rec of form xn+1 = Axn + B (mod M).

Eve knows that A,B,M are all 4-digits. If she fails she may try
again with 6-digits.

Eve knows that the document is about India and Pakistan.

Eve thinks Pakistan will be in the document.
Eve thinks M is 4-digits.

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14



Eve Can Crack It!—Looks at ALL 8-letter Seq

For every 8-long sequence of letters, Eve spectates that its
PAKISTAN

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Ciphertext 24 66 87 47 17 45 26 96

If Eve’s guess is correct then:
Key–Digits 18 65 76 48 08 25 25 82

Since xn+1 ≡ Axn + B (mod M)

7648 ≡ 1865A + B (mod M)

825 ≡ 7648A + B (mod M)

2582 ≡ 825A + B (mod M)

Can we solve these? (The title Eve Can Crack It! gives it away!)



Eve Can Crack It!—Looks at ALL 8-letter Seq

For every 8-long sequence of letters, Eve spectates that its
PAKISTAN

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Ciphertext 24 66 87 47 17 45 26 96

If Eve’s guess is correct then:
Key–Digits 18 65 76 48 08 25 25 82

Since xn+1 ≡ Axn + B (mod M)

7648 ≡ 1865A + B (mod M)

825 ≡ 7648A + B (mod M)

2582 ≡ 825A + B (mod M)

Can we solve these? (The title Eve Can Crack It! gives it away!)



Eve Can Crack It!—Looks at ALL 8-letter Seq

For every 8-long sequence of letters, Eve spectates that its
PAKISTAN

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Ciphertext 24 66 87 47 17 45 26 96

If Eve’s guess is correct then:
Key–Digits 18 65 76 48 08 25 25 82

Since xn+1 ≡ Axn + B (mod M)

7648 ≡ 1865A + B (mod M)

825 ≡ 7648A + B (mod M)

2582 ≡ 825A + B (mod M)

Can we solve these? (The title Eve Can Crack It! gives it away!)



Eve Can Crack It!—Looks at ALL 8-letter Seq

For every 8-long sequence of letters, Eve spectates that its
PAKISTAN

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Ciphertext 24 66 87 47 17 45 26 96

If Eve’s guess is correct then:
Key–Digits 18 65 76 48 08 25 25 82

Since xn+1 ≡ Axn + B (mod M)

7648 ≡ 1865A + B (mod M)

825 ≡ 7648A + B (mod M)

2582 ≡ 825A + B (mod M)

Can we solve these? (The title Eve Can Crack It! gives it away!)



Eve Can Crack It!—Looks at ALL 8-letter Seq

For every 8-long sequence of letters, Eve spectates that its
PAKISTAN

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Ciphertext 24 66 87 47 17 45 26 96

If Eve’s guess is correct then:
Key–Digits 18 65 76 48 08 25 25 82

Since xn+1 ≡ Axn + B (mod M)

7648 ≡ 1865A + B (mod M)

825 ≡ 7648A + B (mod M)

2582 ≡ 825A + B (mod M)

Can we solve these? (The title Eve Can Crack It! gives it away!)



Eve Can Crack It!—Looks at ALL 8-letter Seq

For every 8-long sequence of letters, Eve spectates that its
PAKISTAN

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Ciphertext 24 66 87 47 17 45 26 96

If Eve’s guess is correct then:
Key–Digits 18 65 76 48 08 25 25 82

Since xn+1 ≡ Axn + B (mod M)

7648 ≡ 1865A + B (mod M)

825 ≡ 7648A + B (mod M)

2582 ≡ 825A + B (mod M)

Can we solve these? (The title Eve Can Crack It! gives it away!)



Eve Can Crack It!—Looks at ALL 8-letter Seq

For every 8-long sequence of letters, Eve spectates that its
PAKISTAN

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Ciphertext 24 66 87 47 17 45 26 96

If Eve’s guess is correct then:
Key–Digits 18 65 76 48 08 25 25 82

Since xn+1 ≡ Axn + B (mod M)

7648 ≡ 1865A + B (mod M)

825 ≡ 7648A + B (mod M)

2582 ≡ 825A + B (mod M)

Can we solve these? (The title Eve Can Crack It! gives it away!)



Fortunately PAKISTAN Has 8 Letters

8 letters lead to 3 equations.

More letters would lead to more equations. This is good since may
find they are unsolvable quickly.

Less letters would lead to less equations. This is bad since may
have to look at many false positives.

Leave as an exercise how many equations.



Fortunately PAKISTAN Has 8 Letters

8 letters lead to 3 equations.

More letters would lead to more equations. This is good since may
find they are unsolvable quickly.

Less letters would lead to less equations. This is bad since may
have to look at many false positives.

Leave as an exercise how many equations.



Fortunately PAKISTAN Has 8 Letters

8 letters lead to 3 equations.

More letters would lead to more equations. This is good since may
find they are unsolvable quickly.

Less letters would lead to less equations. This is bad since may
have to look at many false positives.

Leave as an exercise how many equations.



Fortunately PAKISTAN Has 8 Letters

8 letters lead to 3 equations.

More letters would lead to more equations. This is good since may
find they are unsolvable quickly.

Less letters would lead to less equations. This is bad since may
have to look at many false positives.

Leave as an exercise how many equations.



Eve Can Crack It!—Finding M (I)

EQ1: 7648 ≡ 1865A + B (mod M)
EQ2: 825 ≡ 7648A + B (mod M)
EQ3: 2582 ≡ 825A + B (mod M)

By looking at EQ2−EQ1 and EQ3−EQ1 get 2 equations and no B

EQ4: −6823 ≡ 5783A (mod M)
EQ5: −5066 ≡ −1040A (mod M)



Eve Can Crack It!—Finding M (I)

EQ1: 7648 ≡ 1865A + B (mod M)
EQ2: 825 ≡ 7648A + B (mod M)
EQ3: 2582 ≡ 825A + B (mod M)

By looking at EQ2−EQ1 and EQ3−EQ1 get 2 equations and no B

EQ4: −6823 ≡ 5783A (mod M)
EQ5: −5066 ≡ −1040A (mod M)



Eve Can Crack It!—Finding M (I)

EQ1: 7648 ≡ 1865A + B (mod M)
EQ2: 825 ≡ 7648A + B (mod M)
EQ3: 2582 ≡ 825A + B (mod M)

By looking at EQ2−EQ1 and EQ3−EQ1 get 2 equations and no B

EQ4: −6823 ≡ 5783A (mod M)
EQ5: −5066 ≡ −1040A (mod M)



Eve Can Crack It!—Finding M (II)

EQ4: −6823 ≡ 5783A (mod M)
EQ5: −5066 ≡ −1040A (mod M)

Mult EQ4 by 1040 and EQ5 by 5783 to get:

EQ4’: −6823× 1040 ≡ 5783× 1040× A (mod M)
EQ5’: −5066× 5783 ≡ −1040× 5783× A (mod M)

We rewrite a bit:

EQ4’: −7095920 ≡ 5783× 1040× A (mod M)
EQ5’: −29296678 ≡ −5783× 1040× A (mod M)

Add EQ4’ and EQ5’ to get: −36392598 ≡ 0 (mod M)
Can we use this? Yes We Can!



Eve Can Crack It!—Finding M (II)

EQ4: −6823 ≡ 5783A (mod M)
EQ5: −5066 ≡ −1040A (mod M)

Mult EQ4 by 1040 and EQ5 by 5783 to get:

EQ4’: −6823× 1040 ≡ 5783× 1040× A (mod M)
EQ5’: −5066× 5783 ≡ −1040× 5783× A (mod M)

We rewrite a bit:

EQ4’: −7095920 ≡ 5783× 1040× A (mod M)
EQ5’: −29296678 ≡ −5783× 1040× A (mod M)

Add EQ4’ and EQ5’ to get: −36392598 ≡ 0 (mod M)
Can we use this? Yes We Can!



Eve Can Crack It!—Finding M (II)

EQ4: −6823 ≡ 5783A (mod M)
EQ5: −5066 ≡ −1040A (mod M)

Mult EQ4 by 1040 and EQ5 by 5783 to get:

EQ4’: −6823× 1040 ≡ 5783× 1040× A (mod M)
EQ5’: −5066× 5783 ≡ −1040× 5783× A (mod M)

We rewrite a bit:

EQ4’: −7095920 ≡ 5783× 1040× A (mod M)
EQ5’: −29296678 ≡ −5783× 1040× A (mod M)

Add EQ4’ and EQ5’ to get: −36392598 ≡ 0 (mod M)
Can we use this? Yes We Can!



Eve Can Crack It!—Finding M (II)

EQ4: −6823 ≡ 5783A (mod M)
EQ5: −5066 ≡ −1040A (mod M)

Mult EQ4 by 1040 and EQ5 by 5783 to get:

EQ4’: −6823× 1040 ≡ 5783× 1040× A (mod M)
EQ5’: −5066× 5783 ≡ −1040× 5783× A (mod M)

We rewrite a bit:

EQ4’: −7095920 ≡ 5783× 1040× A (mod M)
EQ5’: −29296678 ≡ −5783× 1040× A (mod M)

Add EQ4’ and EQ5’ to get: −36392598 ≡ 0 (mod M)
Can we use this? Yes We Can!



Eve Can Crack It!—Finding M (II)

EQ4: −6823 ≡ 5783A (mod M)
EQ5: −5066 ≡ −1040A (mod M)

Mult EQ4 by 1040 and EQ5 by 5783 to get:

EQ4’: −6823× 1040 ≡ 5783× 1040× A (mod M)
EQ5’: −5066× 5783 ≡ −1040× 5783× A (mod M)

We rewrite a bit:

EQ4’: −7095920 ≡ 5783× 1040× A (mod M)
EQ5’: −29296678 ≡ −5783× 1040× A (mod M)

Add EQ4’ and EQ5’ to get: −36392598 ≡ 0 (mod M)
Can we use this?

Yes We Can!



Eve Can Crack It!—Finding M (II)

EQ4: −6823 ≡ 5783A (mod M)
EQ5: −5066 ≡ −1040A (mod M)

Mult EQ4 by 1040 and EQ5 by 5783 to get:

EQ4’: −6823× 1040 ≡ 5783× 1040× A (mod M)
EQ5’: −5066× 5783 ≡ −1040× 5783× A (mod M)

We rewrite a bit:

EQ4’: −7095920 ≡ 5783× 1040× A (mod M)
EQ5’: −29296678 ≡ −5783× 1040× A (mod M)

Add EQ4’ and EQ5’ to get: −36392598 ≡ 0 (mod M)
Can we use this? Yes We Can!



Eve Can Crack It!—Finding M (III)

36392598 ≡ 0 (mod M)

1. M divides 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648, hence
7649 ≤ M ≤ 9999.

Hence a SMALL number of possibilities for M.
Two ways to find possibilities for M on next few slides.



Eve Can Crack It!—Finding M (III)

36392598 ≡ 0 (mod M)

1. M divides 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648, hence
7649 ≤ M ≤ 9999.

Hence a SMALL number of possibilities for M.
Two ways to find possibilities for M on next few slides.



Eve Can Crack It!—Finding M (III)

36392598 ≡ 0 (mod M)

1. M divides 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648, hence
7649 ≤ M ≤ 9999.

Hence a SMALL number of possibilities for M.
Two ways to find possibilities for M on next few slides.



Eve Can Crack It!—Finding M (III)

36392598 ≡ 0 (mod M)

1. M divides 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648, hence
7649 ≤ M ≤ 9999.

Hence a SMALL number of possibilities for M.

Two ways to find possibilities for M on next few slides.



Eve Can Crack It!—Finding M (III)

36392598 ≡ 0 (mod M)

1. M divides 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648, hence
7649 ≤ M ≤ 9999.

Hence a SMALL number of possibilities for M.
Two ways to find possibilities for M on next few slides.



Eve Factors to Find M

Eve factors 36392598.

36392598 = 2× 33 × 11× 197× 311

Factoring? Really? Eve has to Factor?
(Sarcastic) does she have a quantum computer?
We will address this point later.

1. M is a divisor of 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648.



Eve Factors to Find M

Eve factors 36392598.

36392598 = 2× 33 × 11× 197× 311
Factoring? Really? Eve has to Factor?

(Sarcastic) does she have a quantum computer?
We will address this point later.

1. M is a divisor of 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648.



Eve Factors to Find M

Eve factors 36392598.

36392598 = 2× 33 × 11× 197× 311
Factoring? Really? Eve has to Factor?
(Sarcastic) does she have a quantum computer?

We will address this point later.

1. M is a divisor of 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648.



Eve Factors to Find M

Eve factors 36392598.

36392598 = 2× 33 × 11× 197× 311
Factoring? Really? Eve has to Factor?
(Sarcastic) does she have a quantum computer?
We will address this point later.

1. M is a divisor of 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648.



Eve Factors to Find M

Eve factors 36392598.

36392598 = 2× 33 × 11× 197× 311
Factoring? Really? Eve has to Factor?
(Sarcastic) does she have a quantum computer?
We will address this point later.

1. M is a divisor of 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648.



Eve Factors to Find M

Eve factors 36392598.

36392598 = 2× 33 × 11× 197× 311
Factoring? Really? Eve has to Factor?
(Sarcastic) does she have a quantum computer?
We will address this point later.

1. M is a divisor of 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648.



Eve Factors to Find M

Eve factors 36392598.

36392598 = 2× 33 × 11× 197× 311
Factoring? Really? Eve has to Factor?
(Sarcastic) does she have a quantum computer?
We will address this point later.

1. M is a divisor of 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648.



Eve Can Crack It!–Finding M
36392598 = 2× 33 × 11× 197× 311
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.
How many factors of 2× 33 × 11× 197× 311?

2× 4× 2× 2× 2 = 64.

1. Can’t use 197 AND 311: 197× 311 = 61267 > 9999.

2. If use 311 then need a 3: 2× 11× 311 = 6842 < 7648.

3. If use 311 and exactly one 3 does not work:
(a) Use 2 but not 11: 311× 3× 2 = 1866 < 7648
(b) Use 11: ≥ 311× 3× 11 = 10263 > 9999.

4. If use 311, at least two 3’s, and 11:
311× 11× 9 = 30789 > 9999.

5. If use 311 and 9 does not work: 311× 2× 9 = 5598 < 7648.

6. If use 311 and 27: 311× 27 = 8397. WORKS!

7. Leave it to you to show that using 197 does not work.

8. So M = 8397.



Eve Can Crack It!–Finding M
36392598 = 2× 33 × 11× 197× 311
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.
How many factors of 2× 33 × 11× 197× 311?
2× 4× 2× 2× 2 = 64.

1. Can’t use 197 AND 311: 197× 311 = 61267 > 9999.

2. If use 311 then need a 3: 2× 11× 311 = 6842 < 7648.

3. If use 311 and exactly one 3 does not work:
(a) Use 2 but not 11: 311× 3× 2 = 1866 < 7648
(b) Use 11: ≥ 311× 3× 11 = 10263 > 9999.

4. If use 311, at least two 3’s, and 11:
311× 11× 9 = 30789 > 9999.

5. If use 311 and 9 does not work: 311× 2× 9 = 5598 < 7648.

6. If use 311 and 27: 311× 27 = 8397. WORKS!

7. Leave it to you to show that using 197 does not work.

8. So M = 8397.



Eve Can Crack It!–Finding M
36392598 = 2× 33 × 11× 197× 311
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.
How many factors of 2× 33 × 11× 197× 311?
2× 4× 2× 2× 2 = 64.

1. Can’t use 197 AND 311: 197× 311 = 61267 > 9999.

2. If use 311 then need a 3: 2× 11× 311 = 6842 < 7648.

3. If use 311 and exactly one 3 does not work:
(a) Use 2 but not 11: 311× 3× 2 = 1866 < 7648
(b) Use 11: ≥ 311× 3× 11 = 10263 > 9999.

4. If use 311, at least two 3’s, and 11:
311× 11× 9 = 30789 > 9999.

5. If use 311 and 9 does not work: 311× 2× 9 = 5598 < 7648.

6. If use 311 and 27: 311× 27 = 8397. WORKS!

7. Leave it to you to show that using 197 does not work.

8. So M = 8397.



Eve Can Crack It!–Finding M
36392598 = 2× 33 × 11× 197× 311
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.
How many factors of 2× 33 × 11× 197× 311?
2× 4× 2× 2× 2 = 64.

1. Can’t use 197 AND 311: 197× 311 = 61267 > 9999.

2. If use 311 then need a 3: 2× 11× 311 = 6842 < 7648.

3. If use 311 and exactly one 3 does not work:
(a) Use 2 but not 11: 311× 3× 2 = 1866 < 7648
(b) Use 11: ≥ 311× 3× 11 = 10263 > 9999.

4. If use 311, at least two 3’s, and 11:
311× 11× 9 = 30789 > 9999.

5. If use 311 and 9 does not work: 311× 2× 9 = 5598 < 7648.

6. If use 311 and 27: 311× 27 = 8397. WORKS!

7. Leave it to you to show that using 197 does not work.

8. So M = 8397.



Eve Can Crack It!–Finding M
36392598 = 2× 33 × 11× 197× 311
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.
How many factors of 2× 33 × 11× 197× 311?
2× 4× 2× 2× 2 = 64.

1. Can’t use 197 AND 311: 197× 311 = 61267 > 9999.

2. If use 311 then need a 3: 2× 11× 311 = 6842 < 7648.

3. If use 311 and exactly one 3 does not work:
(a) Use 2 but not 11: 311× 3× 2 = 1866 < 7648
(b) Use 11: ≥ 311× 3× 11 = 10263 > 9999.

4. If use 311, at least two 3’s, and 11:
311× 11× 9 = 30789 > 9999.

5. If use 311 and 9 does not work: 311× 2× 9 = 5598 < 7648.

6. If use 311 and 27: 311× 27 = 8397. WORKS!

7. Leave it to you to show that using 197 does not work.

8. So M = 8397.



Eve Can Crack It!–Finding M
36392598 = 2× 33 × 11× 197× 311
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.
How many factors of 2× 33 × 11× 197× 311?
2× 4× 2× 2× 2 = 64.

1. Can’t use 197 AND 311: 197× 311 = 61267 > 9999.

2. If use 311 then need a 3: 2× 11× 311 = 6842 < 7648.

3. If use 311 and exactly one 3 does not work:
(a) Use 2 but not 11: 311× 3× 2 = 1866 < 7648
(b) Use 11: ≥ 311× 3× 11 = 10263 > 9999.

4. If use 311, at least two 3’s, and 11:
311× 11× 9 = 30789 > 9999.

5. If use 311 and 9 does not work: 311× 2× 9 = 5598 < 7648.

6. If use 311 and 27: 311× 27 = 8397. WORKS!

7. Leave it to you to show that using 197 does not work.

8. So M = 8397.



Eve Can Crack It!–Finding M
36392598 = 2× 33 × 11× 197× 311
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.
How many factors of 2× 33 × 11× 197× 311?
2× 4× 2× 2× 2 = 64.

1. Can’t use 197 AND 311: 197× 311 = 61267 > 9999.

2. If use 311 then need a 3: 2× 11× 311 = 6842 < 7648.

3. If use 311 and exactly one 3 does not work:
(a) Use 2 but not 11: 311× 3× 2 = 1866 < 7648
(b) Use 11: ≥ 311× 3× 11 = 10263 > 9999.

4. If use 311, at least two 3’s, and 11:
311× 11× 9 = 30789 > 9999.

5. If use 311 and 9 does not work: 311× 2× 9 = 5598 < 7648.

6. If use 311 and 27: 311× 27 = 8397. WORKS!

7. Leave it to you to show that using 197 does not work.

8. So M = 8397.



Eve Can Crack It!–Finding M
36392598 = 2× 33 × 11× 197× 311
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.
How many factors of 2× 33 × 11× 197× 311?
2× 4× 2× 2× 2 = 64.

1. Can’t use 197 AND 311: 197× 311 = 61267 > 9999.

2. If use 311 then need a 3: 2× 11× 311 = 6842 < 7648.

3. If use 311 and exactly one 3 does not work:
(a) Use 2 but not 11: 311× 3× 2 = 1866 < 7648
(b) Use 11: ≥ 311× 3× 11 = 10263 > 9999.

4. If use 311, at least two 3’s, and 11:
311× 11× 9 = 30789 > 9999.

5. If use 311 and 9 does not work: 311× 2× 9 = 5598 < 7648.

6. If use 311 and 27: 311× 27 = 8397. WORKS!

7. Leave it to you to show that using 197 does not work.

8. So M = 8397.



Eve Can Crack It!–Finding M
36392598 = 2× 33 × 11× 197× 311
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.
How many factors of 2× 33 × 11× 197× 311?
2× 4× 2× 2× 2 = 64.

1. Can’t use 197 AND 311: 197× 311 = 61267 > 9999.

2. If use 311 then need a 3: 2× 11× 311 = 6842 < 7648.

3. If use 311 and exactly one 3 does not work:
(a) Use 2 but not 11: 311× 3× 2 = 1866 < 7648
(b) Use 11: ≥ 311× 3× 11 = 10263 > 9999.

4. If use 311, at least two 3’s, and 11:
311× 11× 9 = 30789 > 9999.

5. If use 311 and 9 does not work: 311× 2× 9 = 5598 < 7648.

6. If use 311 and 27: 311× 27 = 8397. WORKS!

7. Leave it to you to show that using 197 does not work.

8. So M = 8397.



Eve Can Crack It!–Finding M
36392598 = 2× 33 × 11× 197× 311
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.
How many factors of 2× 33 × 11× 197× 311?
2× 4× 2× 2× 2 = 64.

1. Can’t use 197 AND 311: 197× 311 = 61267 > 9999.

2. If use 311 then need a 3: 2× 11× 311 = 6842 < 7648.

3. If use 311 and exactly one 3 does not work:
(a) Use 2 but not 11: 311× 3× 2 = 1866 < 7648
(b) Use 11: ≥ 311× 3× 11 = 10263 > 9999.

4. If use 311, at least two 3’s, and 11:
311× 11× 9 = 30789 > 9999.

5. If use 311 and 9 does not work: 311× 2× 9 = 5598 < 7648.

6. If use 311 and 27: 311× 27 = 8397. WORKS!

7. Leave it to you to show that using 197 does not work.

8. So M = 8397.



That Last Slide was Old-Timey

That last slide was the sort of thing people did before computers.

Today we would just look at all the factors and see which one
works.

In fact, today we would do something even less clever—we discuss
later.



That Last Slide was Old-Timey

That last slide was the sort of thing people did before computers.

Today we would just look at all the factors and see which one
works.

In fact, today we would do something even less clever—we discuss
later.



That Last Slide was Old-Timey

That last slide was the sort of thing people did before computers.

Today we would just look at all the factors and see which one
works.

In fact, today we would do something even less clever—we discuss
later.



Reflect

We found M = 8397 is only M that works..

We might have found no M works. In that case, goto next
8-sequence.

We might have found several M works. In that case, do what is
on the next few slides with each one.



Reflect

We found M = 8397 is only M that works..

We might have found no M works. In that case, goto next
8-sequence.

We might have found several M works. In that case, do what is
on the next few slides with each one.



Reflect

We found M = 8397 is only M that works..

We might have found no M works. In that case, goto next
8-sequence.

We might have found several M works. In that case, do what is
on the next few slides with each one.



Eve Can Crack It—Finding A

EQ4: −6823 ≡ 5783A (mod M)
By either brute force of cleverness we found that M = 8397.

EQ4: −6823 ≡ 5783A (mod 8397)

Use Euclid algorithm to find that 5783−1 (mod 8397) ≡ 1982.
Reflect It is possible the inverse does not exist. Then move on to
next 8-sequence. In the case at hand, the inverse exists.
Multiply both sides of EQ4 by 1982 to get:

−6823× 1982 ≡ A (mod 8397)

A ≡ −6823× 1982 ≡ 4381 (mod 8397)



Eve Can Crack It—Finding A

EQ4: −6823 ≡ 5783A (mod M)
By either brute force of cleverness we found that M = 8397.

EQ4: −6823 ≡ 5783A (mod 8397)
Use Euclid algorithm to find that 5783−1 (mod 8397) ≡ 1982.

Reflect It is possible the inverse does not exist. Then move on to
next 8-sequence. In the case at hand, the inverse exists.
Multiply both sides of EQ4 by 1982 to get:

−6823× 1982 ≡ A (mod 8397)

A ≡ −6823× 1982 ≡ 4381 (mod 8397)



Eve Can Crack It—Finding A

EQ4: −6823 ≡ 5783A (mod M)
By either brute force of cleverness we found that M = 8397.

EQ4: −6823 ≡ 5783A (mod 8397)
Use Euclid algorithm to find that 5783−1 (mod 8397) ≡ 1982.
Reflect It is possible the inverse does not exist. Then move on to
next 8-sequence. In the case at hand, the inverse exists.

Multiply both sides of EQ4 by 1982 to get:

−6823× 1982 ≡ A (mod 8397)

A ≡ −6823× 1982 ≡ 4381 (mod 8397)



Eve Can Crack It—Finding A

EQ4: −6823 ≡ 5783A (mod M)
By either brute force of cleverness we found that M = 8397.

EQ4: −6823 ≡ 5783A (mod 8397)
Use Euclid algorithm to find that 5783−1 (mod 8397) ≡ 1982.
Reflect It is possible the inverse does not exist. Then move on to
next 8-sequence. In the case at hand, the inverse exists.
Multiply both sides of EQ4 by 1982 to get:

−6823× 1982 ≡ A (mod 8397)

A ≡ −6823× 1982 ≡ 4381 (mod 8397)



Eve Can Crack It!—Finding B

Now want to find B. Recall:

EQ1: 7648 ≡ 1865A + B (mod M)

By plugging in M = 8397 and A = 4381 we get

7648 ≡ 1865 ∗ 4381 + B (mod 8397)

B ≡ 7648− 1865 ∗ 4381 ≡ 7364 (mod 8397)

So. . ., are we done? Do we have correct A,B,M? Do we need
more?



Eve Can Crack It!—Finding B

Now want to find B. Recall:

EQ1: 7648 ≡ 1865A + B (mod M)

By plugging in M = 8397 and A = 4381 we get

7648 ≡ 1865 ∗ 4381 + B (mod 8397)

B ≡ 7648− 1865 ∗ 4381 ≡ 7364 (mod 8397)

So. . ., are we done? Do we have correct A,B,M? Do we need
more?



Eve Can Crack It!—Finding B

Now want to find B. Recall:

EQ1: 7648 ≡ 1865A + B (mod M)

By plugging in M = 8397 and A = 4381 we get

7648 ≡ 1865 ∗ 4381 + B (mod 8397)

B ≡ 7648− 1865 ∗ 4381 ≡ 7364 (mod 8397)

So. . ., are we done? Do we have correct A,B,M? Do we need
more?



Eve Can Crack It!—Finding B

Now want to find B. Recall:

EQ1: 7648 ≡ 1865A + B (mod M)

By plugging in M = 8397 and A = 4381 we get

7648 ≡ 1865 ∗ 4381 + B (mod 8397)

B ≡ 7648− 1865 ∗ 4381 ≡ 7364 (mod 8397)

So. . ., are we done? Do we have correct A,B,M? Do we need
more?



Eve Can Crack It!—Finding B

Now want to find B. Recall:

EQ1: 7648 ≡ 1865A + B (mod M)

By plugging in M = 8397 and A = 4381 we get

7648 ≡ 1865 ∗ 4381 + B (mod 8397)

B ≡ 7648− 1865 ∗ 4381 ≡ 7364 (mod 8397)

So. . ., are we done? Do we have correct A,B,M? Do we need
more?



Eve Can Crack It!—Finding x0

We have A = 4381,B = 7634,M = 8307 so we have

xn+1 ≡ 4381xn + 7364 (mod 8397)

Need x0.

4381 is rel prime to 8397 so (4381)−1 (mod 8397) exists.
It is 8374. Mult equation by 8374.

8374xn+1 ≡ 8374 ∗ 4381xn + 8374 ∗ 7364 (mod 8397)

8374xn+1 ≡ xn + 6965 (mod 8397)

xn ≡ 8374xn+1 − 6965 ≡ 8374xn+1 + 1432

How will this help us?



Eve Can Crack It!—Finding x0

We have A = 4381,B = 7634,M = 8307 so we have

xn+1 ≡ 4381xn + 7364 (mod 8397)

Need x0.

4381 is rel prime to 8397 so (4381)−1 (mod 8397) exists.
It is 8374. Mult equation by 8374.

8374xn+1 ≡ 8374 ∗ 4381xn + 8374 ∗ 7364 (mod 8397)

8374xn+1 ≡ xn + 6965 (mod 8397)

xn ≡ 8374xn+1 − 6965 ≡ 8374xn+1 + 1432

How will this help us?



Eve Can Crack It!—Finding x0

We have A = 4381,B = 7634,M = 8307 so we have

xn+1 ≡ 4381xn + 7364 (mod 8397)

Need x0.

4381 is rel prime to 8397 so (4381)−1 (mod 8397) exists.
It is 8374. Mult equation by 8374.

8374xn+1 ≡ 8374 ∗ 4381xn + 8374 ∗ 7364 (mod 8397)

8374xn+1 ≡ xn + 6965 (mod 8397)

xn ≡ 8374xn+1 − 6965 ≡ 8374xn+1 + 1432

How will this help us?



Eve Can Crack It!—Finding x0

We have A = 4381,B = 7634,M = 8307 so we have

xn+1 ≡ 4381xn + 7364 (mod 8397)

Need x0.

4381 is rel prime to 8397 so (4381)−1 (mod 8397) exists.
It is 8374. Mult equation by 8374.

8374xn+1 ≡ 8374 ∗ 4381xn + 8374 ∗ 7364 (mod 8397)

8374xn+1 ≡ xn + 6965 (mod 8397)

xn ≡ 8374xn+1 − 6965 ≡ 8374xn+1 + 1432

How will this help us?



Eve Can Crack It!—Finding x0

We have A = 4381,B = 7634,M = 8307 so we have

xn+1 ≡ 4381xn + 7364 (mod 8397)

Need x0.

4381 is rel prime to 8397 so (4381)−1 (mod 8397) exists.
It is 8374. Mult equation by 8374.

8374xn+1 ≡ 8374 ∗ 4381xn + 8374 ∗ 7364 (mod 8397)

8374xn+1 ≡ xn + 6965 (mod 8397)

xn ≡ 8374xn+1 − 6965 ≡ 8374xn+1 + 1432

How will this help us?



Eve Can Crack It!—Finding x0

We have A = 4381,B = 7634,M = 8307 so we have

xn+1 ≡ 4381xn + 7364 (mod 8397)

Need x0.

4381 is rel prime to 8397 so (4381)−1 (mod 8397) exists.
It is 8374. Mult equation by 8374.

8374xn+1 ≡ 8374 ∗ 4381xn + 8374 ∗ 7364 (mod 8397)

8374xn+1 ≡ xn + 6965 (mod 8397)

xn ≡ 8374xn+1 − 6965 ≡ 8374xn+1 + 1432

How will this help us?



Eve Can Crack It!—Finding x0

We have A = 4381,B = 7634,M = 8307 so we have

xn+1 ≡ 4381xn + 7364 (mod 8397)

Need x0.

4381 is rel prime to 8397 so (4381)−1 (mod 8397) exists.
It is 8374. Mult equation by 8374.

8374xn+1 ≡ 8374 ∗ 4381xn + 8374 ∗ 7364 (mod 8397)

8374xn+1 ≡ xn + 6965 (mod 8397)

xn ≡ 8374xn+1 − 6965 ≡ 8374xn+1 + 1432

How will this help us?



Eve Can Crack It!—Finding x0 (cont)

xn ≡ 8374xn+1 + 1432

PAKISTAN had the P on the (say) 191st spot. We know the key
at 191 spot. Hence can use recurrence above to get key at 190th,
189th, . . ., 0th spot.

So can get x0.

Are we done yet? No.



Eve Can Crack It!—Finding x0 (cont)

xn ≡ 8374xn+1 + 1432

PAKISTAN had the P on the (say) 191st spot. We know the key
at 191 spot. Hence can use recurrence above to get key at 190th,
189th, . . ., 0th spot.

So can get x0.

Are we done yet? No.



Eve Can Crack It!—Finding x0 (cont)

xn ≡ 8374xn+1 + 1432

PAKISTAN had the P on the (say) 191st spot. We know the key
at 191 spot. Hence can use recurrence above to get key at 190th,
189th, . . ., 0th spot.

So can get x0.

Are we done yet? No.



Eve Can Crack It!—Finding x0 (cont)

xn ≡ 8374xn+1 + 1432

PAKISTAN had the P on the (say) 191st spot. We know the key
at 191 spot. Hence can use recurrence above to get key at 190th,
189th, . . ., 0th spot.

So can get x0.

Are we done yet? No.



Eve Uses Is-English

Eve has x0,A,B,M so Eve can generate the entire key.

She uses it to recover the entire plaintext.

Use IS-ENGLISH.

If YES, then done.

If NO, then go to next 8-seq or next M if there was one.



Eve Uses Is-English

Eve has x0,A,B,M so Eve can generate the entire key.

She uses it to recover the entire plaintext.

Use IS-ENGLISH.

If YES, then done.

If NO, then go to next 8-seq or next M if there was one.



Eve Uses Is-English

Eve has x0,A,B,M so Eve can generate the entire key.

She uses it to recover the entire plaintext.

Use IS-ENGLISH.

If YES, then done.

If NO, then go to next 8-seq or next M if there was one.



Eve Uses Is-English

Eve has x0,A,B,M so Eve can generate the entire key.

She uses it to recover the entire plaintext.

Use IS-ENGLISH.

If YES, then done.

If NO, then go to next 8-seq or next M if there was one.



Eve Uses Is-English

Eve has x0,A,B,M so Eve can generate the entire key.

She uses it to recover the entire plaintext.

Use IS-ENGLISH.

If YES, then done.

If NO, then go to next 8-seq or next M if there was one.



Putting it All Together

1. Input is long ciphertext T that Eve knows was coded with
recurrence. Eve knows a word w that she knows appears in
the text and is ≥ 8 letters. w = w1 · · ·w8 is first 8 letters.

2. For EVERY 8-letter seq Eve does the following:

2.1 Assuming 8-letter seq is w1 · · ·w8 form equations and try to
solve them. If can’t then goto next 8-letter seq.

2.2 Use A,B,M, x0 to generate entire key. Decode entire text.
If IS-ENGLISH=YES, DONE! Else goto next 8-let-seq.



Putting it All Together

1. Input is long ciphertext T that Eve knows was coded with
recurrence. Eve knows a word w that she knows appears in
the text and is ≥ 8 letters. w = w1 · · ·w8 is first 8 letters.

2. For EVERY 8-letter seq Eve does the following:

2.1 Assuming 8-letter seq is w1 · · ·w8 form equations and try to
solve them. If can’t then goto next 8-letter seq.

2.2 Use A,B,M, x0 to generate entire key. Decode entire text.
If IS-ENGLISH=YES, DONE! Else goto next 8-let-seq.



Putting it All Together

1. Input is long ciphertext T that Eve knows was coded with
recurrence. Eve knows a word w that she knows appears in
the text and is ≥ 8 letters. w = w1 · · ·w8 is first 8 letters.

2. For EVERY 8-letter seq Eve does the following:

2.1 Assuming 8-letter seq is w1 · · ·w8 form equations and try to
solve them. If can’t then goto next 8-letter seq.

2.2 Use A,B,M, x0 to generate entire key. Decode entire text.
If IS-ENGLISH=YES, DONE! Else goto next 8-let-seq.



Putting it All Together

1. Input is long ciphertext T that Eve knows was coded with
recurrence. Eve knows a word w that she knows appears in
the text and is ≥ 8 letters. w = w1 · · ·w8 is first 8 letters.

2. For EVERY 8-letter seq Eve does the following:

2.1 Assuming 8-letter seq is w1 · · ·w8 form equations and try to
solve them. If can’t then goto next 8-letter seq.

2.2 Use A,B,M, x0 to generate entire key. Decode entire text.
If IS-ENGLISH=YES, DONE! Else goto next 8-let-seq.



Putting it All Together

1. Input is long ciphertext T that Eve knows was coded with
recurrence. Eve knows a word w that she knows appears in
the text and is ≥ 8 letters. w = w1 · · ·w8 is first 8 letters.

2. For EVERY 8-letter seq Eve does the following:

2.1 Assuming 8-letter seq is w1 · · ·w8 form equations and try to
solve them. If can’t then goto next 8-letter seq.

2.2 Use A,B,M, x0 to generate entire key. Decode entire text.
If IS-ENGLISH=YES, DONE! Else goto next 8-let-seq.



Eve Can Factor Fast?

Eve had to factor:

36, 392, 598 = 2× 33 × 11× 197× 311

We usually say
Factoring is Hard

But what do we mean by Factoring is Hard ?

1. If Alice picks two primes p, q of length n and picks N = pq
then factoring N is hard.

2. If a random number is given then half the time it’s even. A
third of the time is divided by 3. Not so hard to factor.

Our scenario is closer to random than to Alice .



Eve Can Factor Fast?

Eve had to factor:

36, 392, 598 = 2× 33 × 11× 197× 311

We usually say
Factoring is Hard

But what do we mean by Factoring is Hard ?

1. If Alice picks two primes p, q of length n and picks N = pq
then factoring N is hard.

2. If a random number is given then half the time it’s even. A
third of the time is divided by 3. Not so hard to factor.

Our scenario is closer to random than to Alice .



Eve Can Factor Fast?

Eve had to factor:

36, 392, 598 = 2× 33 × 11× 197× 311

We usually say
Factoring is Hard

But what do we mean by Factoring is Hard ?

1. If Alice picks two primes p, q of length n and picks N = pq
then factoring N is hard.

2. If a random number is given then half the time it’s even. A
third of the time is divided by 3. Not so hard to factor.

Our scenario is closer to random than to Alice .



Eve Can Factor Fast?

Eve had to factor:

36, 392, 598 = 2× 33 × 11× 197× 311

We usually say
Factoring is Hard

But what do we mean by Factoring is Hard ?

1. If Alice picks two primes p, q of length n and picks N = pq
then factoring N is hard.

2. If a random number is given then half the time it’s even. A
third of the time is divided by 3. Not so hard to factor.

Our scenario is closer to random than to Alice .



Eve Can Factor Fast?

Eve had to factor:

36, 392, 598 = 2× 33 × 11× 197× 311

We usually say
Factoring is Hard

But what do we mean by Factoring is Hard ?

1. If Alice picks two primes p, q of length n and picks N = pq
then factoring N is hard.

2. If a random number is given then half the time it’s even. A
third of the time is divided by 3. Not so hard to factor.

Our scenario is closer to random than to Alice .



Eve Can Factor Fast?

Eve had to factor:

36, 392, 598 = 2× 33 × 11× 197× 311

We usually say
Factoring is Hard

But what do we mean by Factoring is Hard ?

1. If Alice picks two primes p, q of length n and picks N = pq
then factoring N is hard.

2. If a random number is given then half the time it’s even. A
third of the time is divided by 3. Not so hard to factor.

Our scenario is closer to random than to Alice .



With Modern Computers do not Need to be Clever

Recall
(1) M div 36392598, (2) M 4 digs long, (3) 7649 ≤ M ≤ 9999.
How to find M?

Eve Tries All 7649 ≤ M ≤ 9999

This gives a small set of possibilities for M.

PROS and CONS

1. PRO Easy to code.

2. CON Might take a long time if M is more digits long.

3. CAVEAT: For this example it’s fine.

4. CAVEAT: For the Class Prog Assignment it will be fine.



With Modern Computers do not Need to be Clever

Recall
(1) M div 36392598, (2) M 4 digs long, (3) 7649 ≤ M ≤ 9999.
How to find M?
Eve Tries All 7649 ≤ M ≤ 9999

This gives a small set of possibilities for M.

PROS and CONS

1. PRO Easy to code.

2. CON Might take a long time if M is more digits long.

3. CAVEAT: For this example it’s fine.

4. CAVEAT: For the Class Prog Assignment it will be fine.



With Modern Computers do not Need to be Clever

Recall
(1) M div 36392598, (2) M 4 digs long, (3) 7649 ≤ M ≤ 9999.
How to find M?
Eve Tries All 7649 ≤ M ≤ 9999

This gives a small set of possibilities for M.

PROS and CONS

1. PRO Easy to code.

2. CON Might take a long time if M is more digits long.

3. CAVEAT: For this example it’s fine.

4. CAVEAT: For the Class Prog Assignment it will be fine.



With Modern Computers do not Need to be Clever

Recall
(1) M div 36392598, (2) M 4 digs long, (3) 7649 ≤ M ≤ 9999.
How to find M?
Eve Tries All 7649 ≤ M ≤ 9999

This gives a small set of possibilities for M.

PROS and CONS

1. PRO Easy to code.

2. CON Might take a long time if M is more digits long.

3. CAVEAT: For this example it’s fine.

4. CAVEAT: For the Class Prog Assignment it will be fine.



With Modern Computers do not Need to be Clever

Recall
(1) M div 36392598, (2) M 4 digs long, (3) 7649 ≤ M ≤ 9999.
How to find M?
Eve Tries All 7649 ≤ M ≤ 9999

This gives a small set of possibilities for M.

PROS and CONS

1. PRO Easy to code.

2. CON Might take a long time if M is more digits long.

3. CAVEAT: For this example it’s fine.

4. CAVEAT: For the Class Prog Assignment it will be fine.



With Modern Computers do not Need to be Clever

Recall
(1) M div 36392598, (2) M 4 digs long, (3) 7649 ≤ M ≤ 9999.
How to find M?
Eve Tries All 7649 ≤ M ≤ 9999

This gives a small set of possibilities for M.

PROS and CONS

1. PRO Easy to code.

2. CON Might take a long time if M is more digits long.

3. CAVEAT: For this example it’s fine.

4. CAVEAT: For the Class Prog Assignment it will be fine.



With Modern Computers do not Need to be Clever

Recall
(1) M div 36392598, (2) M 4 digs long, (3) 7649 ≤ M ≤ 9999.
How to find M?
Eve Tries All 7649 ≤ M ≤ 9999

This gives a small set of possibilities for M.

PROS and CONS

1. PRO Easy to code.

2. CON Might take a long time if M is more digits long.

3. CAVEAT: For this example it’s fine.

4. CAVEAT: For the Class Prog Assignment it will be fine.



With Modern Computers do not Need to be Clever

Recall
(1) M div 36392598, (2) M 4 digs long, (3) 7649 ≤ M ≤ 9999.
How to find M?
Eve Tries All 7649 ≤ M ≤ 9999

This gives a small set of possibilities for M.

PROS and CONS

1. PRO Easy to code.

2. CON Might take a long time if M is more digits long.

3. CAVEAT: For this example it’s fine.

4. CAVEAT: For the Class Prog Assignment it will be fine.



Real World Versus What I Teach (I)

Paraphrase of a Recent conversation with Zan

Bill Have you proofread my slides on the Linear Cong Gen?
Zan Yes, and they are stupid.

Bill Is there a mistake in them I should fix?

Zan You say that Java and other langs use an LCG with some
mysterious M as the mod. The mod is always 232 or 264 you
moron.

Bill But if Alice and Bob use a power of 2 that will cut down on
Eve’s search space!
This exciting conversation continued on next slide!



Real World Versus What I Teach (I)

Paraphrase of a Recent conversation with Zan

Bill Have you proofread my slides on the Linear Cong Gen?

Zan Yes, and they are stupid.

Bill Is there a mistake in them I should fix?

Zan You say that Java and other langs use an LCG with some
mysterious M as the mod. The mod is always 232 or 264 you
moron.

Bill But if Alice and Bob use a power of 2 that will cut down on
Eve’s search space!
This exciting conversation continued on next slide!



Real World Versus What I Teach (I)

Paraphrase of a Recent conversation with Zan

Bill Have you proofread my slides on the Linear Cong Gen?
Zan Yes, and they are stupid.

Bill Is there a mistake in them I should fix?

Zan You say that Java and other langs use an LCG with some
mysterious M as the mod. The mod is always 232 or 264 you
moron.

Bill But if Alice and Bob use a power of 2 that will cut down on
Eve’s search space!
This exciting conversation continued on next slide!



Real World Versus What I Teach (I)

Paraphrase of a Recent conversation with Zan

Bill Have you proofread my slides on the Linear Cong Gen?
Zan Yes, and they are stupid.

Bill Is there a mistake in them I should fix?

Zan You say that Java and other langs use an LCG with some
mysterious M as the mod. The mod is always 232 or 264 you
moron.

Bill But if Alice and Bob use a power of 2 that will cut down on
Eve’s search space!
This exciting conversation continued on next slide!



Real World Versus What I Teach (I)

Paraphrase of a Recent conversation with Zan

Bill Have you proofread my slides on the Linear Cong Gen?
Zan Yes, and they are stupid.

Bill Is there a mistake in them I should fix?

Zan You say that Java and other langs use an LCG with some
mysterious M as the mod.

The mod is always 232 or 264 you
moron.

Bill But if Alice and Bob use a power of 2 that will cut down on
Eve’s search space!
This exciting conversation continued on next slide!



Real World Versus What I Teach (I)

Paraphrase of a Recent conversation with Zan

Bill Have you proofread my slides on the Linear Cong Gen?
Zan Yes, and they are stupid.

Bill Is there a mistake in them I should fix?

Zan You say that Java and other langs use an LCG with some
mysterious M as the mod. The mod is always 232 or 264 you
moron.

Bill But if Alice and Bob use a power of 2 that will cut down on
Eve’s search space!
This exciting conversation continued on next slide!



Real World Versus What I Teach (I)

Paraphrase of a Recent conversation with Zan

Bill Have you proofread my slides on the Linear Cong Gen?
Zan Yes, and they are stupid.

Bill Is there a mistake in them I should fix?

Zan You say that Java and other langs use an LCG with some
mysterious M as the mod. The mod is always 232 or 264 you
moron.

Bill But if Alice and Bob use a power of 2 that will cut down on
Eve’s search space!

This exciting conversation continued on next slide!



Real World Versus What I Teach (I)

Paraphrase of a Recent conversation with Zan

Bill Have you proofread my slides on the Linear Cong Gen?
Zan Yes, and they are stupid.

Bill Is there a mistake in them I should fix?

Zan You say that Java and other langs use an LCG with some
mysterious M as the mod. The mod is always 232 or 264 you
moron.

Bill But if Alice and Bob use a power of 2 that will cut down on
Eve’s search space!
This exciting conversation continued on next slide!



Real World versus What I Teach

Paraphrase of a Recent conversation with Zan (cont)
Zan Get real man!

Bill I will teach them how to crack LCG in the general case, but
then comment that often M is a power of 2.

Zan Okay, that works. You are truly the master of education
(NOTE: Zan did not say that, but he did call me a moron again.)



Real World versus What I Teach

Paraphrase of a Recent conversation with Zan (cont)
Zan Get real man!

Bill I will teach them how to crack LCG in the general case, but
then comment that often M is a power of 2.

Zan Okay, that works. You are truly the master of education
(NOTE: Zan did not say that, but he did call me a moron again.)



Real World versus What I Teach

Paraphrase of a Recent conversation with Zan (cont)
Zan Get real man!

Bill I will teach them how to crack LCG in the general case, but
then comment that often M is a power of 2.

Zan Okay, that works. You are truly the master of education
(NOTE: Zan did not say that, but he did call me a moron again.)



Real World Versus What I Teach (II)

Paraphrase of a Recent conversation with a Student

Bill All langs use Linear Cong Gens for Rand Numbs.

Student Actually Python uses the Mersenne Twister.

Bill OH. I wonder if that would be good for crypto.

Student They say to NOT use it for crypto.

Bill OH. Well, I will look into it and present it to next years class.

Student Why not this semester?

Bill Why not indeed! Okay! I accept your challenge!

Student Challenge? What challenge?



Real World Versus What I Teach (II)

Paraphrase of a Recent conversation with a Student

Bill All langs use Linear Cong Gens for Rand Numbs.

Student Actually Python uses the Mersenne Twister.

Bill OH. I wonder if that would be good for crypto.

Student They say to NOT use it for crypto.

Bill OH. Well, I will look into it and present it to next years class.

Student Why not this semester?

Bill Why not indeed! Okay! I accept your challenge!

Student Challenge? What challenge?



Real World Versus What I Teach (II)

Paraphrase of a Recent conversation with a Student

Bill All langs use Linear Cong Gens for Rand Numbs.

Student Actually Python uses the Mersenne Twister.

Bill OH. I wonder if that would be good for crypto.

Student They say to NOT use it for crypto.

Bill OH. Well, I will look into it and present it to next years class.

Student Why not this semester?

Bill Why not indeed! Okay! I accept your challenge!

Student Challenge? What challenge?



Real World Versus What I Teach (II)

Paraphrase of a Recent conversation with a Student

Bill All langs use Linear Cong Gens for Rand Numbs.

Student Actually Python uses the Mersenne Twister.

Bill OH. I wonder if that would be good for crypto.

Student They say to NOT use it for crypto.

Bill OH. Well, I will look into it and present it to next years class.

Student Why not this semester?

Bill Why not indeed! Okay! I accept your challenge!

Student Challenge? What challenge?



Real World Versus What I Teach (II)

Paraphrase of a Recent conversation with a Student

Bill All langs use Linear Cong Gens for Rand Numbs.

Student Actually Python uses the Mersenne Twister.

Bill OH. I wonder if that would be good for crypto.

Student They say to NOT use it for crypto.

Bill OH. Well, I will look into it and present it to next years class.

Student Why not this semester?

Bill Why not indeed! Okay! I accept your challenge!

Student Challenge? What challenge?



Real World Versus What I Teach (II)

Paraphrase of a Recent conversation with a Student

Bill All langs use Linear Cong Gens for Rand Numbs.

Student Actually Python uses the Mersenne Twister.

Bill OH. I wonder if that would be good for crypto.

Student They say to NOT use it for crypto.

Bill OH. Well, I will look into it and present it to next years class.

Student Why not this semester?

Bill Why not indeed! Okay! I accept your challenge!

Student Challenge? What challenge?



Real World Versus What I Teach (II)

Paraphrase of a Recent conversation with a Student

Bill All langs use Linear Cong Gens for Rand Numbs.

Student Actually Python uses the Mersenne Twister.

Bill OH. I wonder if that would be good for crypto.

Student They say to NOT use it for crypto.

Bill OH. Well, I will look into it and present it to next years class.

Student Why not this semester?

Bill Why not indeed! Okay! I accept your challenge!

Student Challenge? What challenge?



Real World Versus What I Teach (II)

Paraphrase of a Recent conversation with a Student

Bill All langs use Linear Cong Gens for Rand Numbs.

Student Actually Python uses the Mersenne Twister.

Bill OH. I wonder if that would be good for crypto.

Student They say to NOT use it for crypto.

Bill OH. Well, I will look into it and present it to next years class.

Student Why not this semester?

Bill Why not indeed! Okay! I accept your challenge!

Student Challenge? What challenge?



Real World Versus What I Teach (II)

Paraphrase of a Recent conversation with a Student

Bill All langs use Linear Cong Gens for Rand Numbs.

Student Actually Python uses the Mersenne Twister.

Bill OH. I wonder if that would be good for crypto.

Student They say to NOT use it for crypto.

Bill OH. Well, I will look into it and present it to next years class.

Student Why not this semester?

Bill Why not indeed! Okay! I accept your challenge!

Student Challenge? What challenge?



Mersenne Twister

We do a very small example with a smaller word size than is used.
The Mersenne Twister generates a sequence of 10-bit numbers
(two 5-bit numbers, so for us 2 numbers in {0, . . . , 26}).

We give an example:
Params: 7 ,5 ,3 ,5 ,3 ,x0, . . . , x6, unknown to Eve.

xn+7 = xn+5 ⊕ f (xfirst3bits
n x last5bits

n+1 )

f shifts bits 3 to the left (its more complicated).

1. Very fast since ⊕ and concat and shift are fast.

2. Has same problem for crypto that LCG does: its a recurrence.
Can guess that a word or phrase is in the text.

3. Would need to be a very long phrase so that the recurrence
produces equations.

4. The larger the parameter which we have as 7, the longer the
phrase has to be.



Mersenne Twister

We do a very small example with a smaller word size than is used.
The Mersenne Twister generates a sequence of 10-bit numbers
(two 5-bit numbers, so for us 2 numbers in {0, . . . , 26}).

We give an example:
Params: 7 ,5 ,3 ,5 ,3 ,x0, . . . , x6, unknown to Eve.

xn+7 = xn+5 ⊕ f (xfirst3bits
n x last5bits

n+1 )

f shifts bits 3 to the left (its more complicated).

1. Very fast since ⊕ and concat and shift are fast.

2. Has same problem for crypto that LCG does: its a recurrence.
Can guess that a word or phrase is in the text.

3. Would need to be a very long phrase so that the recurrence
produces equations.

4. The larger the parameter which we have as 7, the longer the
phrase has to be.



Mersenne Twister

We do a very small example with a smaller word size than is used.
The Mersenne Twister generates a sequence of 10-bit numbers
(two 5-bit numbers, so for us 2 numbers in {0, . . . , 26}).

We give an example:
Params: 7 ,5 ,3 ,5 ,3 ,x0, . . . , x6, unknown to Eve.

xn+7 = xn+5 ⊕ f (xfirst3bits
n x last5bits

n+1 )

f shifts bits 3 to the left (its more complicated).

1. Very fast since ⊕ and concat and shift are fast.

2. Has same problem for crypto that LCG does: its a recurrence.
Can guess that a word or phrase is in the text.

3. Would need to be a very long phrase so that the recurrence
produces equations.

4. The larger the parameter which we have as 7, the longer the
phrase has to be.



Mersenne Twister

We do a very small example with a smaller word size than is used.
The Mersenne Twister generates a sequence of 10-bit numbers
(two 5-bit numbers, so for us 2 numbers in {0, . . . , 26}).

We give an example:
Params: 7 ,5 ,3 ,5 ,3 ,x0, . . . , x6, unknown to Eve.

xn+7 = xn+5 ⊕ f (xfirst3bits
n x last5bits

n+1 )

f shifts bits 3 to the left (its more complicated).

1. Very fast since ⊕ and concat and shift are fast.

2. Has same problem for crypto that LCG does: its a recurrence.
Can guess that a word or phrase is in the text.

3. Would need to be a very long phrase so that the recurrence
produces equations.

4. The larger the parameter which we have as 7, the longer the
phrase has to be.



Mersenne Twister

We do a very small example with a smaller word size than is used.
The Mersenne Twister generates a sequence of 10-bit numbers
(two 5-bit numbers, so for us 2 numbers in {0, . . . , 26}).

We give an example:
Params: 7 ,5 ,3 ,5 ,3 ,x0, . . . , x6, unknown to Eve.

xn+7 = xn+5 ⊕ f (xfirst3bits
n x last5bits

n+1 )

f shifts bits 3 to the left (its more complicated).

1. Very fast since ⊕ and concat and shift are fast.

2. Has same problem for crypto that LCG does: its a recurrence.
Can guess that a word or phrase is in the text.

3. Would need to be a very long phrase so that the recurrence
produces equations.

4. The larger the parameter which we have as 7, the longer the
phrase has to be.



Mersenne Twister

We do a very small example with a smaller word size than is used.
The Mersenne Twister generates a sequence of 10-bit numbers
(two 5-bit numbers, so for us 2 numbers in {0, . . . , 26}).

We give an example:
Params: 7 ,5 ,3 ,5 ,3 ,x0, . . . , x6, unknown to Eve.

xn+7 = xn+5 ⊕ f (xfirst3bits
n x last5bits

n+1 )

f shifts bits 3 to the left (its more complicated).

1. Very fast since ⊕ and concat and shift are fast.

2. Has same problem for crypto that LCG does: its a recurrence.
Can guess that a word or phrase is in the text.

3. Would need to be a very long phrase so that the recurrence
produces equations.

4. The larger the parameter which we have as 7, the longer the
phrase has to be.



Mersenne Twister

We do a very small example with a smaller word size than is used.
The Mersenne Twister generates a sequence of 10-bit numbers
(two 5-bit numbers, so for us 2 numbers in {0, . . . , 26}).

We give an example:
Params: 7 ,5 ,3 ,5 ,3 ,x0, . . . , x6, unknown to Eve.

xn+7 = xn+5 ⊕ f (xfirst3bits
n x last5bits

n+1 )

f shifts bits 3 to the left (its more complicated).

1. Very fast since ⊕ and concat and shift are fast.

2. Has same problem for crypto that LCG does: its a recurrence.
Can guess that a word or phrase is in the text.

3. Would need to be a very long phrase so that the recurrence
produces equations.

4. The larger the parameter which we have as 7, the longer the
phrase has to be.



Mersenne Twister Example with Digits

Text-Letter P A K I S T A N B O
Text-Digits 16 01 11 09 19 20 01 14 02 15
Cipher-text 24 66 87 47 17 45 26 96 06 11
Key 18 65 76 48 08 25 25 82 04 04

Text-Letter R D E R S I N D I A
Text-Digits 18 04 05 18 19 09 14 04 09 01
Cipher-text 23 16 01 11 09 19 20 01 14 02
Key 95 12 04 03 90 10 16 07 15 09

Eve will guess the 7 and 5, does not know f , a, b

xn+7 = xn+5 ⊕ f (xfirst a digs
n x last b digs

n+1 )

1509 = 9010⊕ f (0825first a digs, 2528last b digs)
1607 = 0403⊕ f (7648first a digs, 4808last b digs)
9010 = 9512⊕ f (1865first a digs, 6576last b digs)

Can use recurrences to find f , a, b.Will need more equations and
some guesswork, but crackable!



Mersenne Twister Example with Digits

Text-Letter P A K I S T A N B O
Text-Digits 16 01 11 09 19 20 01 14 02 15
Cipher-text 24 66 87 47 17 45 26 96 06 11
Key 18 65 76 48 08 25 25 82 04 04

Text-Letter R D E R S I N D I A
Text-Digits 18 04 05 18 19 09 14 04 09 01
Cipher-text 23 16 01 11 09 19 20 01 14 02
Key 95 12 04 03 90 10 16 07 15 09

Eve will guess the 7 and 5, does not know f , a, b

xn+7 = xn+5 ⊕ f (xfirst a digs
n x last b digs

n+1 )

1509 = 9010⊕ f (0825first a digs, 2528last b digs)

1607 = 0403⊕ f (7648first a digs, 4808last b digs)
9010 = 9512⊕ f (1865first a digs, 6576last b digs)

Can use recurrences to find f , a, b.Will need more equations and
some guesswork, but crackable!



Mersenne Twister Example with Digits

Text-Letter P A K I S T A N B O
Text-Digits 16 01 11 09 19 20 01 14 02 15
Cipher-text 24 66 87 47 17 45 26 96 06 11
Key 18 65 76 48 08 25 25 82 04 04

Text-Letter R D E R S I N D I A
Text-Digits 18 04 05 18 19 09 14 04 09 01
Cipher-text 23 16 01 11 09 19 20 01 14 02
Key 95 12 04 03 90 10 16 07 15 09

Eve will guess the 7 and 5, does not know f , a, b

xn+7 = xn+5 ⊕ f (xfirst a digs
n x last b digs

n+1 )

1509 = 9010⊕ f (0825first a digs, 2528last b digs)
1607 = 0403⊕ f (7648first a digs, 4808last b digs)

9010 = 9512⊕ f (1865first a digs, 6576last b digs)

Can use recurrences to find f , a, b.Will need more equations and
some guesswork, but crackable!



Mersenne Twister Example with Digits

Text-Letter P A K I S T A N B O
Text-Digits 16 01 11 09 19 20 01 14 02 15
Cipher-text 24 66 87 47 17 45 26 96 06 11
Key 18 65 76 48 08 25 25 82 04 04

Text-Letter R D E R S I N D I A
Text-Digits 18 04 05 18 19 09 14 04 09 01
Cipher-text 23 16 01 11 09 19 20 01 14 02
Key 95 12 04 03 90 10 16 07 15 09

Eve will guess the 7 and 5, does not know f , a, b

xn+7 = xn+5 ⊕ f (xfirst a digs
n x last b digs

n+1 )

1509 = 9010⊕ f (0825first a digs, 2528last b digs)
1607 = 0403⊕ f (7648first a digs, 4808last b digs)
9010 = 9512⊕ f (1865first a digs, 6576last b digs)

Can use recurrences to find f , a, b.Will need more equations and
some guesswork, but crackable!



Mersenne Twister Example with Digits

Text-Letter P A K I S T A N B O
Text-Digits 16 01 11 09 19 20 01 14 02 15
Cipher-text 24 66 87 47 17 45 26 96 06 11
Key 18 65 76 48 08 25 25 82 04 04

Text-Letter R D E R S I N D I A
Text-Digits 18 04 05 18 19 09 14 04 09 01
Cipher-text 23 16 01 11 09 19 20 01 14 02
Key 95 12 04 03 90 10 16 07 15 09

Eve will guess the 7 and 5, does not know f , a, b

xn+7 = xn+5 ⊕ f (xfirst a digs
n x last b digs

n+1 )

1509 = 9010⊕ f (0825first a digs, 2528last b digs)
1607 = 0403⊕ f (7648first a digs, 4808last b digs)
9010 = 9512⊕ f (1865first a digs, 6576last b digs)

Can use recurrences to find f , a, b.

Will need more equations and
some guesswork, but crackable!



Mersenne Twister Example with Digits

Text-Letter P A K I S T A N B O
Text-Digits 16 01 11 09 19 20 01 14 02 15
Cipher-text 24 66 87 47 17 45 26 96 06 11
Key 18 65 76 48 08 25 25 82 04 04

Text-Letter R D E R S I N D I A
Text-Digits 18 04 05 18 19 09 14 04 09 01
Cipher-text 23 16 01 11 09 19 20 01 14 02
Key 95 12 04 03 90 10 16 07 15 09

Eve will guess the 7 and 5, does not know f , a, b

xn+7 = xn+5 ⊕ f (xfirst a digs
n x last b digs

n+1 )

1509 = 9010⊕ f (0825first a digs, 2528last b digs)
1607 = 0403⊕ f (7648first a digs, 4808last b digs)
9010 = 9512⊕ f (1865first a digs, 6576last b digs)

Can use recurrences to find f , a, b.Will need more equations and
some guesswork, but crackable!



Upshot

Any pseudo-random generator that is based on recurrences is
crackable.



An Approach To
Generating Random Bits



Random-number generation

1. Continually collect ‘unpredictable” data.

2. This data may be biased.

3. Correct biases in it to make it more random.

4. Called smoothing .

Unpredictable: Different models. Our Model: There is a
0 < p < 1 such that each bit has

Pr(1) = p, Pr(0) = 1− p.
Bits are independent. p is not known.



Smoothing via Von Neumann Technique (VN)

I Need to eliminate bias.

I VN technique for eliminating bias:

I Collect two bits per output bit

I 01 7→ 0

I 10 7→ 1

I 00, 11 7→ skip

I Note that this assumes independence (as well as constant bias)
I This gives truly random bits (next slide) but takes time.



Prob of 0, Prob of 1

Pr(1) = p, Pr(0) = 1− p.

Flip 2 coins
first bit second bit Prob

0 0 (1− p)2

0 1 (1− p)p
1 0 p(1− p)
1 1 p2

Pr(01) = Pr(10) = p(1− p).

Hence if we toss out the 00 and 11 then

Pr(01) = Pr(10) =
1

2
.

Perfect Randomness!



Prob of 0, Prob of 1

Pr(1) = p, Pr(0) = 1− p.
Flip 2 coins

first bit second bit Prob

0 0 (1− p)2

0 1 (1− p)p
1 0 p(1− p)
1 1 p2

Pr(01) = Pr(10) = p(1− p).

Hence if we toss out the 00 and 11 then

Pr(01) = Pr(10) =
1

2
.

Perfect Randomness!



Prob of 0, Prob of 1

Pr(1) = p, Pr(0) = 1− p.
Flip 2 coins

first bit second bit Prob

0 0 (1− p)2

0 1 (1− p)p
1 0 p(1− p)
1 1 p2

Pr(01) = Pr(10) = p(1− p).

Hence if we toss out the 00 and 11 then

Pr(01) = Pr(10) =
1

2
.

Perfect Randomness!



Prob of 0, Prob of 1

Pr(1) = p, Pr(0) = 1− p.
Flip 2 coins

first bit second bit Prob

0 0 (1− p)2

0 1 (1− p)p
1 0 p(1− p)
1 1 p2

Pr(01) = Pr(10) = p(1− p).

Hence if we toss out the 00 and 11 then

Pr(01) = Pr(10) =
1

2
.

Perfect Randomness!



Prob of 0, Prob of 1

Pr(1) = p, Pr(0) = 1− p.
Flip 2 coins

first bit second bit Prob

0 0 (1− p)2

0 1 (1− p)p
1 0 p(1− p)
1 1 p2

Pr(01) = Pr(10) = p(1− p).

Hence if we toss out the 00 and 11 then

Pr(01) = Pr(10) =
1

2
.

Perfect Randomness!



Prob of 0, Prob of 1

Pr(1) = p, Pr(0) = 1− p.
Flip 2 coins

first bit second bit Prob

0 0 (1− p)2

0 1 (1− p)p
1 0 p(1− p)
1 1 p2

Pr(01) = Pr(10) = p(1− p).

Hence if we toss out the 00 and 11 then

Pr(01) = Pr(10) =
1

2
.

Perfect Randomness!



How Many Random Bits Can We Expect?

Assume that Pr(b = 0) = p and Pr(b = 1) = 1− p.

If flip 2 coins then expected numb of rand bits is

Pr(01) + Pr(10) = p(1− p) + (1− p)p = 2p(1− p).

If flip 2n coins then expected number of rand bits is 2np(1− p).



How Good is VN Method?
If flip 14 coins (n = 7) then we get the following graph:



How Good is VN Method? Not Very Good

1. If p = 0.2 or 0.8 then from 14 flips we only get around 2 truly
random bits. Sad.

2. The method can be extended, called The Elias Method.
We won’t present it but will show graph on next slide.



How Good is VN Method? Not Very Good

1. If p = 0.2 or 0.8 then from 14 flips we only get around 2 truly
random bits.

Sad.

2. The method can be extended, called The Elias Method.
We won’t present it but will show graph on next slide.



How Good is VN Method? Not Very Good

1. If p = 0.2 or 0.8 then from 14 flips we only get around 2 truly
random bits. Sad.

2. The method can be extended, called The Elias Method.
We won’t present it but will show graph on next slide.



How Good is VN Method? Not Very Good

1. If p = 0.2 or 0.8 then from 14 flips we only get around 2 truly
random bits. Sad.

2. The method can be extended, called The Elias Method.
We won’t present it but will show graph on next slide.



VN vs GMS

If we flip 14 bits:



How Good is Elias Method?

1. If p = 0.2 or 0.8 then from 14 flips we only get around 4 truly
random bits. Better than VN. Still sad.

2. For both VN and Elias we are assuming that there is a steady
source of independent biased coins with the same bias. This is
unrealistic. Still, a good attempt.

3. So can we get truly random bits?



How Good is Elias Method?

1. If p = 0.2 or 0.8 then from 14 flips we only get around 4 truly
random bits. Better than VN.

Still sad.

2. For both VN and Elias we are assuming that there is a steady
source of independent biased coins with the same bias. This is
unrealistic. Still, a good attempt.

3. So can we get truly random bits?



How Good is Elias Method?

1. If p = 0.2 or 0.8 then from 14 flips we only get around 4 truly
random bits. Better than VN. Still sad.

2. For both VN and Elias we are assuming that there is a steady
source of independent biased coins with the same bias. This is
unrealistic. Still, a good attempt.

3. So can we get truly random bits?



How Good is Elias Method?

1. If p = 0.2 or 0.8 then from 14 flips we only get around 4 truly
random bits. Better than VN. Still sad.

2. For both VN and Elias we are assuming that there is a steady
source of independent biased coins with the same bias. This is
unrealistic. Still, a good attempt.

3. So can we get truly random bits?



How Good is Elias Method?

1. If p = 0.2 or 0.8 then from 14 flips we only get around 4 truly
random bits. Better than VN. Still sad.

2. For both VN and Elias we are assuming that there is a steady
source of independent biased coins with the same bias. This is
unrealistic. Still, a good attempt.

3. So can we get truly random bits?



Sources of True Random Bits

1. Radioactivity

2. Atmospheric noise

3. Last bit of the atomic clock

4. Thermal Heat-entropy.

5. Lasers

These are all expensive.

What is used Psuedo-random generator that are more
sophisticated than what I showed here.



Sources of True Random Bits

1. Radioactivity

2. Atmospheric noise

3. Last bit of the atomic clock

4. Thermal Heat-entropy.

5. Lasers

These are all expensive.

What is used Psuedo-random generator that are more
sophisticated than what I showed here.



Sources of True Random Bits

1. Radioactivity

2. Atmospheric noise

3. Last bit of the atomic clock

4. Thermal Heat-entropy.

5. Lasers

These are all expensive.

What is used Psuedo-random generator that are more
sophisticated than what I showed here.



Sources of True Random Bits

1. Radioactivity

2. Atmospheric noise

3. Last bit of the atomic clock

4. Thermal Heat-entropy.

5. Lasers

These are all expensive.

What is used Psuedo-random generator that are more
sophisticated than what I showed here.



Sources of True Random Bits

1. Radioactivity

2. Atmospheric noise

3. Last bit of the atomic clock

4. Thermal Heat-entropy.

5. Lasers

These are all expensive.

What is used Psuedo-random generator that are more
sophisticated than what I showed here.



Sources of True Random Bits

1. Radioactivity

2. Atmospheric noise

3. Last bit of the atomic clock

4. Thermal Heat-entropy.

5. Lasers

These are all expensive.

What is used Psuedo-random generator that are more
sophisticated than what I showed here.



Sources of True Random Bits

1. Radioactivity

2. Atmospheric noise

3. Last bit of the atomic clock

4. Thermal Heat-entropy.

5. Lasers

These are all expensive.

What is used Psuedo-random generator that are more
sophisticated than what I showed here.



Sources of True Random Bits

1. Radioactivity

2. Atmospheric noise

3. Last bit of the atomic clock

4. Thermal Heat-entropy.

5. Lasers

These are all expensive.

What is used Psuedo-random generator that are more
sophisticated than what I showed here.


