BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Public Key Crypto: Math Needed and Diffie-Hellman

October 12, 2020

What do the following all have in common?

- 1. Shift Cipher
- 2. Affine Cipher
- 3. Vig Cipher
- 4. General Sub
- 5. General 2-char sub
- 6. Matrix Cipher
- 7. One-time Pad
- 8. Other ciphers we studied

What do the following all have in common?

- 1. Shift Cipher
- 2. Affine Cipher
- 3. Vig Cipher
- 4. General Sub
- 5. General 2-char sub
- 6. Matrix Cipher
- 7. One-time Pad
- 8. Other ciphers we studied

Alice and Bob need to meet! (Hence Private-Key.)

What do the following all have in common?

- 1. Shift Cipher
- 2. Affine Cipher
- 3. Vig Cipher
- 4. General Sub
- 5. General 2-char sub
- 6. Matrix Cipher
- 7. One-time Pad
- 8. Other ciphers we studied

Alice and Bob need to **meet!** (Hence **Private-Key.**) Can Alice and Bob establish a key without meeting?

What do the following all have in common?

- 1. Shift Cipher
- 2. Affine Cipher
- 3. Vig Cipher
- 4. General Sub
- 5. General 2-char sub
- 6. Matrix Cipher
- 7. One-time Pad
- 8. Other ciphers we studied

Alice and Bob need to **meet!** (Hence **Private-Key.**) Can Alice and Bob establish a key without meeting? **Yes!** And that is the **key** to public-**key** cryptography.

A good crypto system is such that:

- 1. The computational task to **encrypt** and **decrypt** is **easy**.
- 2. The computational task to **crack** is **hard**.

A good crypto system is such that:

- 1. The computational task to **encrypt** and **decrypt** is **easy**.
- 2. The computational task to **crack** is **hard**.

Caveats

A good crypto system is such that:

- 1. The computational task to **encrypt** and **decrypt** is **easy**.
- 2. The computational task to crack is hard.

Caveats

1. Hard to achieve info-theoretic hardness (One-time pad).

A good crypto system is such that:

- 1. The computational task to **encrypt** and **decrypt** is **easy**.
- 2. The computational task to crack is hard.

Caveats

- 1. Hard to achieve info-theoretic hardness (One-time pad).
- 2. Hard to achieve comp-hardness. Few problems provably hard.

A good crypto system is such that:

- 1. The computational task to **encrypt** and **decrypt** is **easy**.
- 2. The computational task to **crack** is **hard**.

Caveats

- 1. Hard to achieve info-theoretic hardness (One-time pad).
- 2. Hard to achieve comp-hardness. Few problems provably hard.
- 3. Can use hardness assumptions (e.g. factoring is hard).

Hardness of a problem is measured by time-to-solve as a function of **length of input**.

Examples

- 1. Given a Boolean fml $\phi(x_1, \ldots, x_n)$, is there a satisfying assignment? Seems to require $2^{\Omega(n)}$ steps.
- 2. Polynomial vs Exp time is our notion of easy vs hard.
- 3. Factoring *n* can be done in $O(\sqrt{n})$ time: **Discuss**. Easy!

Hardness of a problem is measured by time-to-solve as a function of **length of input**.

Examples

- 1. Given a Boolean fml $\phi(x_1, \ldots, x_n)$, is there a satisfying assignment? Seems to require $2^{\Omega(n)}$ steps.
- 2. Polynomial vs Exp time is our notion of easy vs hard.
- 3. Factoring n can be done in $O(\sqrt{n})$ time: Discuss. Easy! NO!!: n is of length $\lg n + O(1)$ (henceforth just $\lg n$). $\sqrt{n} = 2^{(0.5) \lg n}$. Exponential. Slightly better algs known.

Hardness of a problem is measured by time-to-solve as a function of **length of input**.

Examples

- 1. Given a Boolean fml $\phi(x_1, \ldots, x_n)$, is there a satisfying assignment? Seems to require $2^{\Omega(n)}$ steps.
- 2. Polynomial vs Exp time is our notion of easy vs hard.
- 3. Factoring n can be done in $O(\sqrt{n})$ time: **Discuss**. Easy! **NO!!**: n is of **length** $\lg n + O(1)$ (henceforth just $\lg n$). $\sqrt{n} = 2^{(0.5) \lg n}$. Exponential. Slightly better algs known.

Upshot For numeric problems length is $\lg n$. Encryption requires:

- ▶ Alice and Bob can Enc and Dec in time $\leq (\log n)^{O(1)}$.
- ▶ Eve needs time $\geq c^{O(\log n)}$ to crack.

Hardness of a problem is measured by time-to-solve as a function of **length of input**.

Examples

- 1. Given a Boolean fml $\phi(x_1, \ldots, x_n)$, is there a satisfying assignment? Seems to require $2^{\Omega(n)}$ steps.
- 2. Polynomial vs Exp time is our notion of easy vs hard.
- 3. Factoring n can be done in $O(\sqrt{n})$ time: **Discuss**. Easy! **NO!!**: n is of **length** $\lg n + O(1)$ (henceforth just $\lg n$). $\sqrt{n} = 2^{(0.5) \lg n}$. Exponential. Slightly better algs known.

Upshot For numeric problems length is $\lg n$. Encryption requires:

- ▶ Alice and Bob can Enc and Dec in time $\leq (\log n)^{O(1)}$.
- Eve needs time $\geq c^{O(\log n)}$ to crack.

What Counts We count math operations as taking 1 step. This could be an issue with enormous numbers. We will work with mods so not a problem.

Math Needed for Both Diffie-Hellman and RSA

October 12, 2020

Notation

Let p be a prime.

- 1. \mathbb{Z}_p is the numbers $\{0,\ldots,p-1\}$ with mod add and mult.
- 2. \mathbb{Z}_p^* is the numbers $\{1,\ldots,p-1\}$ with mod mult.

Convention By **prime** we will always mean a large prime, so in particular, NOT 2. Hence we can assume $\frac{p-1}{2}$ is in \mathbb{N} .

Exponentiation Mod *p*

Exponentiation Mod p, Note on Notation

Problem Given a, n, p find $a^n \pmod{p}$

Exponentiation Mod p, Note on Notation

Problem Given a, n, p find $a^n \pmod{p}$

Even though we use p and p is always prime, our algorithm works for any natural p.

Problem Given a, n, p find $a^n \pmod{p}$

- 1. $x_0 = a^0 = 1$
- 2. For i = 1 to $n, x_i = ax_{i-1}$
- 3. Let $x = x_n \pmod{p}$
- 4. Output *x*

Is this a good idea?

Problem Given a, n, p find $a^n \pmod{p}$

- 1. $x_0 = a^0 = 1$
- 2. For i = 1 to $n, x_i = ax_{i-1}$
- 3. Let $x = x_n \pmod{p}$
- 4. Output *x*

Is this a good idea? I called it **First Attempt**, so no.

Problem Given a, n, p find $a^n \pmod{p}$

- 1. $x_0 = a^0 = 1$
- 2. For i = 1 to $n, x_i = ax_{i-1}$
- 3. Let $x = x_n \pmod{p}$
- 4. Output x

Is this a good idea? I called it First Attempt, so no.

Discuss How many steps were used to compute $a^n \pmod{p}$?

Problem Given a, n, p find $a^n \pmod{p}$

- 1. $x_0 = a^0 = 1$
- 2. For i = 1 to $n, x_i = ax_{i-1}$
- 3. Let $x = x_n \pmod{p}$
- 4. Output *x*

Is this a good idea? I called it First Attempt, so no.

Discuss How many steps were used to compute $a^n \pmod{p}$? **Answer** $\sim n$.

Problem Given a, n, p find $a^n \pmod{p}$

- 1. $x_0 = a^0 = 1$
- 2. For i = 1 to $n, x_i = ax_{i-1}$
- 3. Let $x = x_n \pmod{p}$
- 4. Output *x*

Is this a good idea? I called it First Attempt, so no.

Discuss How many steps were used to compute $a^n \pmod{p}$?

Answer $\sim n$.

But it's worse than that. Why?

Problem Given a, n, p find $a^n \pmod{p}$

- 1. $x_0 = a^0 = 1$
- 2. For i = 1 to $n, x_i = ax_{i-1}$
- 3. Let $x = x_n \pmod{p}$
- 4. Output *x*

Is this a good idea? I called it **First Attempt**, so no.

Discuss How many steps were used to compute $a^n \pmod{p}$?

Answer $\sim n$.

But it's worse than that. Why? x gets really large.

Problem Given a, n, p find $a^n \pmod{p}$

- 1. $x_0 = a^0 = 1$
- 2. For i = 1 to $n, x_i = ax_{i-1}$
- 3. Let $x = x_n \pmod{p}$
- 4. Output *x*

Is this a good idea? I called it **First Attempt**, so no.

Discuss How many steps were used to compute $a^n \pmod{p}$?

Answer $\sim n$.

But it's worse than that. Why? x gets really large.

Can mod p every step so x not large. But still takes n steps.

Want 3⁶⁴ (mod 101). All math is mod 101.

Want 3^{64} (mod 101). All math is mod 101. $x_0 = 3$

Want 3^{64} (mod 101). All math is mod 101. $x_0 = 3$ $x_1 = x_0^2 \equiv 9$. This is 3^2 (mod 101).

Want 3^{64} (mod 101). All math is mod 101. $x_0 = 3$ $x_1 = x_0^2 \equiv 9$. This is 3^2 (mod 101). $x_2 = x_1^2 \equiv 9^2 \equiv 81$. This is 3^4 (mod 101).

Want 3^{64} (mod 101). All math is mod 101. $x_0 = 3$ $x_1 = x_0^2 \equiv 9$. This is 3^2 (mod 101). $x_2 = x_1^2 \equiv 9^2 \equiv 81$. This is 3^4 (mod 101). $x_3 = x_2^2 \equiv 81^2 \equiv 97$. This is 3^8 (mod 101).

Want 3^{64} (mod 101). All math is mod 101. $x_0 = 3$ $x_1 = x_0^2 \equiv 9$. This is 3^2 (mod 101). $x_2 = x_1^2 \equiv 9^2 \equiv 81$. This is 3^4 (mod 101). $x_3 = x_2^2 \equiv 81^2 \equiv 97$. This is 3^8 (mod 101). $x_4 = x_3^2 \equiv 97^2 \equiv 16$. This is 3^{16} (mod 101).

Want 3^{64} (mod 101). All math is mod 101. $x_0 = 3$ $x_1 = x_0^2 \equiv 9$. This is 3^2 (mod 101). $x_2 = x_1^2 \equiv 9^2 \equiv 81$. This is 3^4 (mod 101). $x_3 = x_2^2 \equiv 81^2 \equiv 97$. This is 3^8 (mod 101). $x_4 = x_3^2 \equiv 97^2 \equiv 16$. This is 3^{16} (mod 101). $x_5 = x_4^2 \equiv 16^2 \equiv 54$. This is 3^{32} (mod 101).

```
Want 3^{64} (mod 101). All math is mod 101. x_0=3 x_1=x_0^2\equiv 9. This is 3^2 (mod 101). x_2=x_1^2\equiv 9^2\equiv 81. This is 3^4 (mod 101). x_3=x_2^2\equiv 81^2\equiv 97. This is 3^8 (mod 101). x_4=x_3^2\equiv 97^2\equiv 16. This is 3^{16} (mod 101). x_5=x_4^2\equiv 16^2\equiv 54. This is 3^{32} (mod 101). x_6=x_5^2\equiv 54^2\equiv 88. This is 3^{64} (mod 101). So in 6 steps we got the answer!
```

```
Want 3^{64} (mod 101). All math is mod 101. x_0 = 3 x_1 = x_0^2 \equiv 9. This is 3^2 (mod 101). x_2 = x_1^2 \equiv 9^2 \equiv 81. This is 3^4 (mod 101). x_3 = x_2^2 \equiv 81^2 \equiv 97. This is 3^8 (mod 101). x_4 = x_3^2 \equiv 97^2 \equiv 16. This is 3^{16} (mod 101). x_5 = x_4^2 \equiv 16^2 \equiv 54. This is 3^{32} (mod 101). x_6 = x_5^2 \equiv 54^2 \equiv 88. This is 3^{64} (mod 101). So in 6 steps we got the answer! Discuss How many steps used compute a^n (mod p)?
```

Exponentiation Mod p: Example of a Good Alg

```
Want 3<sup>64</sup> (mod 101). All math is mod 101.
x_0 = 3
x_1 = x_0^2 \equiv 9. This is 3^2 \pmod{101}.
x_2 = x_1^2 \equiv 9^2 \equiv 81. This is 3^4 \pmod{101}.
x_3 = x_2^2 \equiv 81^2 \equiv 97. This is 3^8 \pmod{101}.
x_4 = x_3^2 \equiv 97^2 \equiv 16. This is 3^{16} (mod 101).
x_5 = x_4^2 \equiv 16^2 \equiv 54. This is 3^{32} (mod 101).
x_6 = x_5^2 \equiv 54^2 \equiv 88. This is 3^{64} \pmod{101}.
So in 6 steps we got the answer!
Discuss How many steps used compute a^n \pmod{p}?
Discuss What if n is not a power of 2?
```

Say we want to do $a^n \pmod{p}$.

Say we want to do $a^n \pmod{p}$. Express n in binary.

Say we want to do $a^n \pmod p$. Express n in binary. $7 = (111)_2 = 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$. Note $\mathbf{2} = \lfloor \lg 7 \rfloor$

Say we want to do $a^n \pmod{p}$. Express n in binary.

$$7 = (111)_2 = 1 \times 2^{\textcolor{red}{2}} + 1 \times 2^{\textcolor{blue}{1}} + 1 \times 2^{\textcolor{blue}{0}}. \text{ Note } \textcolor{red}{\textcolor{red}{2}} = \lfloor \lg 7 \rfloor \\ 8 = (1000)_2 = 1 \times 2^{\textcolor{red}{3}} + 0 \times 2^{\textcolor{blue}{2}} + 0 \times 2^{\textcolor{blue}{1}} + 0 \times 2^{\textcolor{blue}{0}}. \text{ Note } \textcolor{red}{\textcolor{red}{3}} = \lfloor \lg 8 \rfloor$$

Say we want to do $a^n \pmod{p}$.

Express n in binary.

$$7 = (111)_2 = 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$
. Note $2 = \lfloor \lg 7 \rfloor$
 $8 = (1000)_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$. Note $3 = \lfloor \lg 8 \rfloor$

$$9 = (1001)_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$
. Note $3 = \lfloor \lg 9 \rfloor$

Say we want to do $a^n \pmod p$. Express n in binary. $7 = (111)_2 = 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$. Note $\mathbf{2} = \lfloor \lg 7 \rfloor$ $8 = (1000)_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$. Note $\mathbf{3} = \lfloor \lg 8 \rfloor$ $9 = (1001)_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$. Note $\mathbf{3} = \lfloor \lg 9 \rfloor$ Upshot If write n as a sum of powers of 2 with 0,1 coefficients then n is of the form

Say we want to do $a^n \pmod{p}$.

Express n in binary.

$$7 = (111)_2 = 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$
. Note $\mathbf{2} = \lfloor \lg 7 \rfloor$ $8 = (1000)_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$. Note $\mathbf{3} = \lfloor \lg 8 \rfloor$ $9 = (1001)_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$. Note $\mathbf{3} = \lfloor \lg 9 \rfloor$ **Upshot** If write n as a sum of powers of 2 with 0,1 coefficients then n is of the form

$$n = n_L 2^L + \dots + n_1 2^1 + n_0 2^0 = \sum_{i=0}^L n_i 2^i$$

Where $L = \lfloor \lg(n) \rfloor$ and $n_i \in \{0, 1\}$.

Note that L is one less than the number of bits needed for n.

All math is mod p.

1. Input (a, n, p).

- 1. Input (a, n, p).
- 2. Convert *n* to base 2: $n = \sum_{i=0}^{L} n_i 2^i$. (*L* is $\lfloor \lg(n) \rfloor$)

- 1. Input (a, n, p).
- 2. Convert *n* to base 2: $n = \sum_{i=0}^{L} n_i 2^i$. (*L* is $\lfloor \lg(n) \rfloor$)
- 3. $x_0 = a$.

- 1. Input (a, n, p).
- 2. Convert n to base 2: $n = \sum_{i=0}^{L} n_i 2^i$. (L is $\lfloor \lg(n) \rfloor$)
- 3. $x_0 = a$.
- 4. For i = 1 to L, $x_i = x_{i-1}^2$

- 1. Input (a, n, p).
- 2. Convert n to base 2: $n = \sum_{i=0}^{L} n_i 2^i$. (L is $\lfloor \lg(n) \rfloor$)
- 3. $x_0 = a$.
- 4. For i = 1 to L, $x_i = x_{i-1}^2$
- 5. (Now have $a^{n_02^0}, \ldots, a^{n_L2^L}$) Answer is $a^{n_02^0} \times \cdots \times a^{n_L2^L}$

All math is mod p.

- 1. Input (a, n, p).
- 2. Convert n to base 2: $n = \sum_{i=0}^{L} n_i 2^i$. (L is $\lfloor \lg(n) \rfloor$)
- 3. $x_0 = a$.
- 4. For i = 1 to L, $x_i = x_{i-1}^2$
- 5. (Now have $a^{n_0 2^0}, \ldots, a^{n_L 2^L}$) Answer is $a^{n_0 2^0} \times \cdots \times a^{n_L 2^L}$

Number of operations:

All math is mod p.

- 1. Input (a, n, p).
- 2. Convert *n* to base 2: $n = \sum_{i=0}^{L} n_i 2^i$. (*L* is $\lfloor \lg(n) \rfloor$)
- 3. $x_0 = a$.
- 4. For i = 1 to L, $x_i = x_{i-1}^2$
- 5. (Now have $a^{n_02^0}, \ldots, a^{n_L2^L}$) Answer is $a^{n_02^0} \times \cdots \times a^{n_L2^L}$

Number of operations:

Number of **MULTS** in step 4: $\leq \lfloor \lg(n) \rfloor \leq \lg(n)$

All math is mod p.

- 1. Input (a, n, p).
- 2. Convert n to base 2: $n = \sum_{i=0}^{L} n_i 2^i$. (L is $\lfloor \lg(n) \rfloor$)
- 3. $x_0 = a$.
- 4. For i = 1 to L, $x_i = x_{i-1}^2$
- 5. (Now have $a^{n_02^0}, \ldots, a^{n_L2^L}$) Answer is $a^{n_02^0} \times \cdots \times a^{n_L2^L}$

Number of operations:

Number of **MULTS** in step 4: $\leq \lfloor \lg(n) \rfloor \leq \lg(n)$

Number of **MULTS** in step 5: $\leq L = \lfloor \lg(n) \rfloor \leq \lg(n)$

All math is mod p.

- 1. Input (a, n, p).
- 2. Convert n to base 2: $n = \sum_{i=0}^{L} n_i 2^i$. (L is $\lfloor \lg(n) \rfloor$)
- 3. $x_0 = a$.
- 4. For i = 1 to L, $x_i = x_{i-1}^2$
- 5. (Now have $a^{n_02^0}, \ldots, a^{n_L2^L}$) Answer is $a^{n_02^0} \times \cdots \times a^{n_L2^L}$

Number of operations:

Number of **MULTS** in step 4: $\leq \lfloor \lg(n) \rfloor \leq \lg(n)$

Number of **MULTS** in step 5: $\leq L = \lfloor \lg(n) \rfloor \leq \lg(n)$

Total number of **MULTS** $\leq 2 \lg(n)$.

All math is mod p.

- 1. Input (a, n, p).
- 2. Convert n to base 2: $n = \sum_{i=0}^{L} n_i 2^i$. (L is $\lfloor \lg(n) \rfloor$)
- 3. $x_0 = a$.
- 4. For i = 1 to L, $x_i = x_{i-1}^2$
- 5. (Now have $a^{n_0 2^0}, \ldots, a^{n_L 2^L}$) Answer is $a^{n_0 2^0} \times \cdots \times a^{n_L 2^L}$

Number of operations:

Number of **MULTS** in step 4: $\leq \lfloor \lg(n) \rfloor \leq \lg(n)$

Number of **MULTS** in step 5: $\leq L = \lfloor \lg(n) \rfloor \leq \lg(n)$

Total number of **MULTS** $\leq 2 \lg(n)$.

More refined: $\lg(n) + (number of 1's in binary rep of n) - 1$

All math is mod p.

- 1. Input (a, n, p).
- 2. Convert n to base 2: $n = \sum_{i=0}^{L} n_i 2^i$. (L is $\lfloor \lg(n) \rfloor$)
- 3. $x_0 = a$.
- 4. For i = 1 to L, $x_i = x_{i-1}^2$
- 5. (Now have $a^{n_02^0}, \ldots, a^{n_L2^L}$) Answer is $a^{n_02^0} \times \cdots \times a^{n_L2^L}$

Number of operations:

Number of **MULTS** in step 4: $\leq \lfloor \lg(n) \rfloor \leq \lg(n)$

Number of **MULTS** in step 5: $\leq L = \lfloor \lg(n) \rfloor \leq \lg(n)$

Total number of **MULTS** $\leq 2 \lg(n)$.

More refined: lg(n) + (number of 1's in binary rep of n) - 1Example on next page

$$265 = 2^8 + 2^3 + 2^0$$

$$265 = 2^8 + 2^3 + 2^0$$

$$17^{2^0} \equiv 17 \; (0 \; \text{steps})$$

$$265 = 2^8 + 2^3 + 2^0$$

$$17^{2^0} \equiv 17 \text{ (0 steps)}$$

 $17^{2^1} \equiv 17^2 \equiv 87 \text{ (1 step)}$

$$265 = 2^8 + 2^3 + 2^0$$

$$17^{2^0} \equiv 17 \text{ (0 steps)}$$

 $17^{2^1} \equiv 17^2 \equiv 87 \text{ (1 step)}$
 $17^{2^2} \equiv 87^2 \equiv 95 \text{ (1 step)}$

$$265 = 2^8 + 2^3 + 2^0$$

$$17^{2^0} \equiv 17 \text{ (0 steps)}$$

 $17^{2^1} \equiv 17^2 \equiv 87 \text{ (1 step)}$
 $17^{2^2} \equiv 87^2 \equiv 95 \text{ (1 step)}$
 $17^{2^3} \equiv 95^2 \equiv 36 \text{ (1 step)}$

$$265 = 2^8 + 2^3 + 2^0$$

$$17^{2^0} \equiv 17 \text{ (0 steps)}$$

 $17^{2^1} \equiv 17^2 \equiv 87 \text{ (1 step)}$
 $17^{2^2} \equiv 87^2 \equiv 95 \text{ (1 step)}$
 $17^{2^3} \equiv 95^2 \equiv 36 \text{ (1 step)}$
 $17^{2^4} \equiv 36^2 \equiv 84 \text{ (1 step)}$

$$265 = 2^8 + 2^3 + 2^0$$

$$17^{2^0} \equiv 17 \text{ (0 steps)}$$

 $17^{2^1} \equiv 17^2 \equiv 87 \text{ (1 step)}$
 $17^{2^2} \equiv 87^2 \equiv 95 \text{ (1 step)}$
 $17^{2^3} \equiv 95^2 \equiv 36 \text{ (1 step)}$
 $17^{2^4} \equiv 36^2 \equiv 84 \text{ (1 step)}$
 $17^{2^5} \equiv 84^2 \equiv 87 \text{ (1 step)}$

$$265 = 2^8 + 2^3 + 2^0$$

$$17^{2^0} \equiv 17 \text{ (0 steps)}$$
 $17^{2^1} \equiv 17^2 \equiv 87 \text{ (1 step)}$
 $17^{2^2} \equiv 87^2 \equiv 95 \text{ (1 step)}$
 $17^{2^3} \equiv 95^2 \equiv 36 \text{ (1 step)}$
 $17^{2^4} \equiv 36^2 \equiv 84 \text{ (1 step)}$
 $17^{2^5} \equiv 84^2 \equiv 87 \text{ (1 step)}$
 $17^{2^6} \equiv 87^2 \equiv 95 \text{ (1 step)}$

$$265 = 2^8 + 2^3 + 2^0$$

$$17^{2^0} \equiv 17 \text{ (0 steps)}$$
 $17^{2^1} \equiv 17^2 \equiv 87 \text{ (1 step)}$
 $17^{2^2} \equiv 87^2 \equiv 95 \text{ (1 step)}$
 $17^{2^3} \equiv 95^2 \equiv 36 \text{ (1 step)}$
 $17^{2^4} \equiv 36^2 \equiv 84 \text{ (1 step)}$
 $17^{2^5} \equiv 84^2 \equiv 87 \text{ (1 step)}$
 $17^{2^6} \equiv 87^2 \equiv 95 \text{ (1 step)}$
 $17^{2^7} \equiv 95^2 \equiv 36 \text{ (1 step)}$

$$265 = 2^8 + 2^3 + 2^0$$

$$17^{2^0} \equiv 17 \text{ (0 steps)}$$
 $17^{2^1} \equiv 17^2 \equiv 87 \text{ (1 step)}$
 $17^{2^2} \equiv 87^2 \equiv 95 \text{ (1 step)}$
 $17^{2^3} \equiv 95^2 \equiv 36 \text{ (1 step)}$
 $17^{2^4} \equiv 36^2 \equiv 84 \text{ (1 step)}$
 $17^{2^5} \equiv 84^2 \equiv 87 \text{ (1 step)}$
 $17^{2^6} \equiv 87^2 \equiv 95 \text{ (1 step)}$
 $17^{2^7} \equiv 95^2 \equiv 36 \text{ (1 step)}$
 $17^{2^8} \equiv 36^2 \equiv 84 \text{ (1 step)}$

$$265 = 2^8 + 2^3 + 2^0$$

$$\begin{array}{l} 17^{2^0} \equiv 17 \; (0 \; \text{steps}) \\ 17^{2^1} \equiv 17^2 \equiv 87 \; (1 \; \text{step}) \\ 17^{2^2} \equiv 87^2 \equiv 95 \; (1 \; \text{step}) \\ 17^{2^3} \equiv 95^2 \equiv 36 \; (1 \; \text{step}) \\ 17^{2^4} \equiv 36^2 \equiv 84 \; (1 \; \text{step}) \\ 17^{2^5} \equiv 84^2 \equiv 87 \; (1 \; \text{step}) \\ 17^{2^6} \equiv 87^2 \equiv 95 \; (1 \; \text{step}) \\ 17^{2^7} \equiv 95^2 \equiv 36 \; (1 \; \text{step}) \\ 17^{2^8} \equiv 36^2 \equiv 84 \; (1 \; \text{step}) \\ 17^{2^8} \equiv 36^2 \equiv 84 \; (1 \; \text{step}) \\ \text{This took } 8 \sim \lg(265) \; \text{multiplications so far.} \end{array}$$

$$265 = 2^8 + 2^3 + 2^0$$

$$17^{2^0} \equiv 17 \text{ (0 steps)}$$
 $17^{2^1} \equiv 17^2 \equiv 87 \text{ (1 step)}$
 $17^{2^2} \equiv 87^2 \equiv 95 \text{ (1 step)}$
 $17^{2^3} \equiv 95^2 \equiv 36 \text{ (1 step)}$
 $17^{2^4} \equiv 36^2 \equiv 84 \text{ (1 step)}$
 $17^{2^5} \equiv 84^2 \equiv 87 \text{ (1 step)}$
 $17^{2^6} \equiv 87^2 \equiv 95 \text{ (1 step)}$
 $17^{2^7} \equiv 95^2 \equiv 36 \text{ (1 step)}$
 $17^{2^8} \equiv 36^2 \equiv 84 \text{ (1 step)}$

This took 8 \sim lg(265) multiplications so far.

The next step takes only two multiplications:

$$17^{265} \equiv 17^{2^8} \times 17^{2^3} \times 17^{2^0} \equiv 84 \times 36 \times 17 \equiv 100$$

$$265 = 2^8 + 2^3 + 2^0$$

$$17^{2^0} \equiv 17 \text{ (0 steps)}$$
 $17^{2^1} \equiv 17^2 \equiv 87 \text{ (1 step)}$
 $17^{2^2} \equiv 87^2 \equiv 95 \text{ (1 step)}$
 $17^{2^3} \equiv 95^2 \equiv 36 \text{ (1 step)}$
 $17^{2^4} \equiv 36^2 \equiv 84 \text{ (1 step)}$
 $17^{2^5} \equiv 84^2 \equiv 87 \text{ (1 step)}$
 $17^{2^6} \equiv 87^2 \equiv 95 \text{ (1 step)}$
 $17^{2^7} \equiv 95^2 \equiv 36 \text{ (1 step)}$
 $17^{2^8} \equiv 36^2 \equiv 84 \text{ (1 step)}$

This took $8 \sim \lg(265)$ multiplications so far.

The next step takes only two multiplications:

$$17^{265} \equiv 17^{2^8} \times 17^{2^3} \times 17^{2^0} \equiv 84 \times 36 \times 17 \equiv 100$$

Point: Step 2 took $< \lg(265)$ steps since base-2 rep had few 1's.

Generators and Discrete Logarithms

Generators \pmod{p}

Let's take powers of 3 mod 7. All math is mod 7.

Generators \pmod{p}

Let's take powers of 3 mod 7. All math is mod 7. $3^1 \equiv 3$

$$3^1 \equiv 3$$
$$3^2 \equiv 3 \times 3^1 \equiv 9 \equiv 2$$

$$31 \equiv 3$$

$$32 \equiv 3 \times 31 \equiv 9 \equiv 2$$

$$33 \equiv 3 \times 32 \equiv 3 \times 2 \equiv 6$$

$$3^{1} \equiv 3$$

$$3^{2} \equiv 3 \times 3^{1} \equiv 9 \equiv 2$$

$$3^{3} \equiv 3 \times 3^{2} \equiv 3 \times 2 \equiv 6$$

$$3^{4} \equiv 3 \times 3^{3} \equiv 3 \times 6 \equiv 18 \equiv 4$$

$$3^{1} \equiv 3$$

 $3^{2} \equiv 3 \times 3^{1} \equiv 9 \equiv 2$
 $3^{3} \equiv 3 \times 3^{2} \equiv 3 \times 2 \equiv 6$
 $3^{4} \equiv 3 \times 3^{3} \equiv 3 \times 6 \equiv 18 \equiv 4$
 $3^{5} \equiv 3 \times 3^{4} \equiv 3 \times 4 \equiv 12 \equiv 5$

$$3^{1} \equiv 3$$
 $3^{2} \equiv 3 \times 3^{1} \equiv 9 \equiv 2$
 $3^{3} \equiv 3 \times 3^{2} \equiv 3 \times 2 \equiv 6$
 $3^{4} \equiv 3 \times 3^{3} \equiv 3 \times 6 \equiv 18 \equiv 4$
 $3^{5} \equiv 3 \times 3^{4} \equiv 3 \times 4 \equiv 12 \equiv 5$
 $3^{6} \equiv 3 \times 3^{5} \equiv 3 \times 5 \equiv 15 \equiv 1$

$$\begin{array}{l} 3^1 \equiv 3 \\ 3^2 \equiv 3 \times 3^1 \equiv 9 \equiv 2 \\ 3^3 \equiv 3 \times 3^2 \equiv 3 \times 2 \equiv 6 \\ 3^4 \equiv 3 \times 3^3 \equiv 3 \times 6 \equiv 18 \equiv 4 \\ 3^5 \equiv 3 \times 3^4 \equiv 3 \times 4 \equiv 12 \equiv 5 \\ 3^6 \equiv 3 \times 3^5 \equiv 3 \times 5 \equiv 15 \equiv 1 \end{array}$$

$$\{3^1, 3^2, 3^3, 3^4, 3^5, 3^6\} = \{1, 2, 3, 4, 5, 6\}$$
 Not in order.

Let's take powers of 3 mod 7. All math is mod 7.

$$\begin{array}{l} 3^{1} \equiv 3 \\ 3^{2} \equiv 3 \times 3^{1} \equiv 9 \equiv 2 \\ 3^{3} \equiv 3 \times 3^{2} \equiv 3 \times 2 \equiv 6 \\ 3^{4} \equiv 3 \times 3^{3} \equiv 3 \times 6 \equiv 18 \equiv 4 \\ 3^{5} \equiv 3 \times 3^{4} \equiv 3 \times 4 \equiv 12 \equiv 5 \\ 3^{6} \equiv 3 \times 3^{5} \equiv 3 \times 5 \equiv 15 \equiv 1 \end{array}$$

$$\{3^1, 3^2, 3^3, 3^4, 3^5, 3^6\} = \{1, 2, 3, 4, 5, 6\}$$

 Not in order.

3 is a **generator** for \mathbb{Z}_7^* .

Let's take powers of 3 mod 7. All math is mod 7.

$$\begin{array}{l} 3^1 \equiv 3 \\ 3^2 \equiv 3 \times 3^1 \equiv 9 \equiv 2 \\ 3^3 \equiv 3 \times 3^2 \equiv 3 \times 2 \equiv 6 \\ 3^4 \equiv 3 \times 3^3 \equiv 3 \times 6 \equiv 18 \equiv 4 \\ 3^5 \equiv 3 \times 3^4 \equiv 3 \times 4 \equiv 12 \equiv 5 \\ 3^6 \equiv 3 \times 3^5 \equiv 3 \times 5 \equiv 15 \equiv 1 \end{array}$$

$$\{3^1, 3^2, 3^3, 3^4, 3^5, 3^6\} = \{1, 2, 3, 4, 5, 6\}$$

 Not in order.

3 is a **generator** for \mathbb{Z}_7^* .

Definition: If p is a prime and $\{g^1, \ldots, g^{p-1}\} = \{1, \ldots, p-1\}$ then g is a **generator** for \mathbb{Z}_p^* .

Fact: 3 is a generator mod 101. All math is mod 101.

Discuss the following with your neighbor:

1. Find x such that $3^x \equiv 81$.

Fact: 3 is a generator mod 101. All math is mod 101. **Discuss** the following with your neighbor:

1. Find x such that $3^x \equiv 81$. x = 4 obv works.

- 1. Find x such that $3^x \equiv 81$. x = 4 obv works.
- 2. Find x such that $3^x \equiv 92$.

- 1. Find x such that $3^x \equiv 81$. x = 4 obv works.
- 2. Find x such that $3^x \equiv 92$. Try computing $3^1, 3^2, \dots$, until you get 92.

- 1. Find x such that $3^x \equiv 81$. x = 4 obv works.
- 2. Find x such that $3^x \equiv 92$. Try computing $3^1, 3^2, \ldots$, until you get 92. Might take ~ 100 steps.

- 1. Find x such that $3^x \equiv 81$. x = 4 obv works.
- 2. Find x such that $3^x \equiv 92$. Try computing $3^1, 3^2, \ldots$, until you get 92. Might take ~ 100 steps. Shortcut?

- 1. Find x such that $3^x \equiv 81$. x = 4 obv works.
- 2. Find x such that $3^x \equiv 92$. Try computing $3^1, 3^2, \ldots$, until you get 92. Might take ~ 100 steps. Shortcut?
- 3. Find x such that $3^x \equiv 93$.

- 1. Find x such that $3^x \equiv 81$. x = 4 obv works.
- 2. Find x such that $3^x \equiv 92$. Try computing $3^1, 3^2, \ldots$, until you get 92. Might take ~ 100 steps. Shortcut?
- 3. Find x such that $3^x \equiv 93$. Try computing $3^1, 3^2, \ldots$, until you get 93.

- 1. Find x such that $3^x \equiv 81$. x = 4 obv works.
- 2. Find x such that $3^x \equiv 92$. Try computing $3^1, 3^2, \ldots$, until you get 92. Might take ~ 100 steps. Shortcut?
- 3. Find x such that $3^x \equiv 93$. Try computing $3^1, 3^2, \ldots$, until you get 93. Might take ~ 100 steps.

- 1. Find x such that $3^x \equiv 81$. x = 4 obv works.
- 2. Find x such that $3^x \equiv 92$. Try computing $3^1, 3^2, \ldots$, until you get 92. Might take ~ 100 steps. Shortcut?
- 3. Find x such that $3^x \equiv 93$. Try computing $3^1, 3^2, \ldots$, until you get 93. Might take ~ 100 steps. Shortcut?

Fact: 3 is a generator mod 101. All math is mod 101.

Discuss the following with your neighbor:

- 1. Find x such that $3^x \equiv 81$. x = 4 obv works.
- 2. Find x such that $3^x \equiv 92$. Try computing $3^1, 3^2, \ldots$, until you get 92. Might take ~ 100 steps. Shortcut?
- Find x such that 3^x ≡ 93.
 Try computing 3¹, 3²,..., until you get 93.
 Might take ~ 100 steps. Shortcut?

The second and third problem look hard. Are they? VOTE: Both hard, both easy, one of each, unknown to science.

Fact: 3 is a generator mod 101. All math is mod 101.

Discuss the following with your neighbor:

- 1. Find x such that $3^x \equiv 81$. x = 4 obv works.
- 2. Find x such that $3^x \equiv 92$. Try computing $3^1, 3^2, \ldots$, until you get 92. Might take ~ 100 steps. Shortcut?
- Find x such that 3^x ≡ 93.
 Try computing 3¹, 3²,..., until you get 93.
 Might take ~ 100 steps. Shortcut?

The second and third problem look hard. Are they? VOTE: Both hard, both easy, one of each, unknown to science.

 $3^x \equiv 92$ easy. $3^x \equiv 93$ Not known how hard.

Fact: 3 is a generator mod 101. All math is mod 101.

1.
$$92 \equiv 101 - 9 \equiv (-1)(9) \equiv (-1)3^2$$
.

- 1. $92 \equiv 101 9 \equiv (-1)(9) \equiv (-1)3^2$.
- 2. $3^{50} \equiv -1$ (WHAT! Really?)

- 1. $92 \equiv 101 9 \equiv (-1)(9) \equiv (-1)3^2$.
- 2. $3^{50} \equiv -1$ (WHAT! Really?)
- 3. $92 \equiv 3^{50} \times 3^2 \equiv 3^{52}$. So x = 52 works.

Fact: 3 is a generator mod 101. All math is mod 101. Find x such that $3^x \equiv 92$. Easy!

- 1. $92 \equiv 101 9 \equiv (-1)(9) \equiv (-1)3^2$.
- 2. $3^{50} \equiv -1$ (WHAT! Really?)
- 3. $92 \equiv 3^{50} \times 3^2 \equiv 3^{52}$. So x = 52 works.

Generalize:

Fact: 3 is a generator mod 101. All math is mod 101. Find x such that $3^x \equiv 92$. Easy!

- 1. $92 \equiv 101 9 \equiv (-1)(9) \equiv (-1)3^2$.
- 2. $3^{50} \equiv -1$ (WHAT! Really?)
- 3. $92 \equiv 3^{50} \times 3^2 \equiv 3^{52}$. So x = 52 works.

Generalize:

1. If g is a generator of \mathbb{Z}_p^* then $g^{(p-1)/2} \equiv p-1 \equiv -1$.

Fact: 3 is a generator mod 101. All math is mod 101. Find x such that $3^x \equiv 92$. Easy!

- 1. $92 \equiv 101 9 \equiv (-1)(9) \equiv (-1)3^2$.
- 2. $3^{50} \equiv -1$ (WHAT! Really?)
- 3. $92 \equiv 3^{50} \times 3^2 \equiv 3^{52}$. So x = 52 works.

Generalize:

- 1. If g is a generator of \mathbb{Z}_p^* then $g^{(p-1)/2} \equiv p-1 \equiv -1$.
- 2. So finding x such that $g^x \equiv p g^a \equiv -g^a$ is easy:

$$x = \frac{p-1}{2} + a$$
: $g^{\frac{p-1}{2} + a} = g^{\frac{p-1}{2}} g^a \equiv -g^a$

Fact: 3 is a generator mod 101. All math is mod 101. Is there a trick for $g^x \equiv 93 \pmod{101}$? Not that I know of.

Fact: 3 is a generator mod 101. All math is mod 101. Is there a trick for $g^x \equiv 93 \pmod{101}$? Not that I know of.

Fact: 3 is a generator mod 101. All math is mod 101. Is there a trick for $g^x \equiv 93 \pmod{101}$? Not that I know of.

What is known about complexity of discrete log? Given g, a, p find x such that $g^x \equiv a \pmod{p}$.

1. Naive algorithm is O(p) time.

Fact: 3 is a generator mod 101. All math is mod 101. Is there a trick for $g^x \equiv 93 \pmod{101}$? Not that I know of.

- 1. Naive algorithm is O(p) time.
- 2. Exists a $O(\sqrt{p})$ Time, $O(\sqrt{p})$ space alg. Space makes it not useable.

Fact: 3 is a generator mod 101. All math is mod 101. Is there a trick for $g^x \equiv 93 \pmod{101}$? Not that I know of.

- 1. Naive algorithm is O(p) time.
- 2. Exists a $O(\sqrt{p})$ Time, $O(\sqrt{p})$ space alg. Space makes it not useable.
- 3. Exists a $O(\sqrt{p})$ Time, $(\log p)^{O(1)}$ space alg. Space fine, but Time bad.

Fact: 3 is a generator mod 101. All math is mod 101. Is there a trick for $g^x \equiv 93 \pmod{101}$? Not that I know of.

- 1. Naive algorithm is O(p) time.
- 2. Exists a $O(\sqrt{p})$ Time, $O(\sqrt{p})$ space alg. Space makes it not useable.
- 3. Exists a $O(\sqrt{p})$ Time, $(\log p)^{O(1)}$ space alg. Space fine, but Time bad.
- 4. Not much progress on theory front since 1985.

Fact: 3 is a generator mod 101. All math is mod 101. Is there a trick for $g^x \equiv 93 \pmod{101}$? Not that I know of.

- 1. Naive algorithm is O(p) time.
- 2. Exists a $O(\sqrt{p})$ Time, $O(\sqrt{p})$ space alg. Space makes it not useable.
- 3. Exists a $O(\sqrt{p})$ Time, $(\log p)^{O(1)}$ space alg. Space fine, but Time bad.
- 4. Not much progress on theory front since 1985.
- 5. DL is in QuantumP.

My Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.

- 1. Fact: DL in in QuantumP.
- 2. **Opinion:** Quantum computers that can do DL **fast** won't happen

- 1. Fact: DL in in QuantumP.
- 2. **Opinion:** Quantum computers that can do DL **fast** won't happen in my lifetime.

- 1. Fact: DL in in QuantumP.
- 2. **Opinion:** Quantum computers that can do DL **fast** won't happen in my lifetime. In your lifetime.

- 1. Fact: DL in in QuantumP.
- Opinion: Quantum computers that can do DL fast won't happen in my lifetime. In your lifetime. Ever.

- 1. Fact: DL in in QuantumP.
- Opinion: Quantum computers that can do DL fast won't happen in my lifetime. In your lifetime. Ever.
- 3. Fact: Classical algorithms that are *better* than naive, using hard number theory, have been discovered and implemented. Still exponential but low constants, possibly good in practice. Some are amenable to parallelism.

- 1. Fact: DL in in QuantumP.
- 2. **Opinion:** Quantum computers that can do DL **fast** won't happen in my lifetime. In your lifetime. Ever.
- 3. Fact: Classical algorithms that are *better* than naive, using hard number theory, have been discovered and implemented. Still exponential but low constants, possibly good in practice. Some are amenable to parallelism.
- 4. **Opinion:** The biggest threat to crypto is from hard math combined with special purpose parallel hardware.

- 1. Fact: DL in in QuantumP.
- Opinion: Quantum computers that can do DL fast won't happen in my lifetime. In your lifetime. Ever.
- Fact: Classical algorithms that are better than naive, using hard number theory, have been discovered and implemented. Still exponential but low constants, possibly good in practice. Some are amenable to parallelism.
- 4. **Opinion:** The biggest threat to crypto is from hard math combined with special purpose parallel hardware.
- 5. Fact: If computers do DL much better (e.g., $O(n^{1/10})$) then humans need to triple the length of their numbers. Still, Eve has made Alice and Bob work harder.

- 1. Fact: DL in in QuantumP.
- Opinion: Quantum computers that can do DL fast won't happen in my lifetime. In your lifetime. Ever.
- Fact: Classical algorithms that are better than naive, using hard number theory, have been discovered and implemented. Still exponential but low constants, possibly good in practice. Some are amenable to parallelism.
- 4. **Opinion:** The biggest threat to crypto is from hard math combined with special purpose parallel hardware.
- 5. Fact: If computers do DL much better (e.g., $O(n^{1/10})$) then humans need to triple the length of their numbers. Still, Eve has made Alice and Bob work harder.
- Opinion: When people really really need to up their parameters

- 1. Fact: DL in in QuantumP.
- 2. **Opinion:** Quantum computers that can do DL **fast** won't happen in my lifetime. In your lifetime. Ever.
- Fact: Classical algorithms that are better than naive, using hard number theory, have been discovered and implemented. Still exponential but low constants, possibly good in practice. Some are amenable to parallelism.
- 4. **Opinion:** The biggest threat to crypto is from hard math combined with special purpose parallel hardware.
- 5. Fact: If computers do DL much better (e.g., $O(n^{1/10})$) then humans need to triple the length of their numbers. Still, Eve has made Alice and Bob work harder.
- 6. **Opinion:** When people really really need to up their parameters they don't.

- 1. Fact: DL in in QuantumP.
- Opinion: Quantum computers that can do DL fast won't happen in my lifetime. In your lifetime. Ever.
- Fact: Classical algorithms that are better than naive, using hard number theory, have been discovered and implemented. Still exponential but low constants, possibly good in practice. Some are amenable to parallelism.
- 4. **Opinion:** The biggest threat to crypto is from hard math combined with special purpose parallel hardware.
- 5. Fact: If computers do DL much better (e.g., $O(n^{1/10})$) then humans need to triple the length of their numbers. Still, Eve has made Alice and Bob work harder.
- 6. **Opinion:** When people really really need to up their parameters they don't. They say

- 1. Fact: DL in in QuantumP.
- Opinion: Quantum computers that can do DL fast won't happen in my lifetime. In your lifetime. Ever.
- Fact: Classical algorithms that are better than naive, using hard number theory, have been discovered and implemented. Still exponential but low constants, possibly good in practice. Some are amenable to parallelism.
- 4. **Opinion:** The biggest threat to crypto is from hard math combined with special purpose parallel hardware.
- 5. Fact: If computers do DL much better (e.g., $O(n^{1/10})$) then humans need to triple the length of their numbers. Still, Eve has made Alice and Bob work harder.
- Opinion: When people really really need to up their parameters they don't. They say
 - It won't happen to me

- 1. Fact: DL in in QuantumP.
- Opinion: Quantum computers that can do DL fast won't happen in my lifetime. In your lifetime. Ever.
- Fact: Classical algorithms that are better than naive, using hard number theory, have been discovered and implemented. Still exponential but low constants, possibly good in practice. Some are amenable to parallelism.
- 4. **Opinion:** The biggest threat to crypto is from hard math combined with special purpose parallel hardware.
- 5. Fact: If computers do DL much better (e.g., $O(n^{1/10})$) then humans need to triple the length of their numbers. Still, Eve has made Alice and Bob work harder.
- Opinion: When people really really need to up their parameters they don't. They say
 - It won't happen to me Until it does.

I am not an expert on

I am not an expert on

1. Theoretical Quantum Computing

I am not an expert on

- 1. Theoretical Quantum Computing
- 2. Practical Quantum Computing

I am not an expert on

- 1. Theoretical Quantum Computing
- 2. Practical Quantum Computing
- 3. Discrete Log algorithms

I am **not** an expert on

- 1. Theoretical Quantum Computing
- 2. Practical Quantum Computing
- 3. Discrete Log algorithms

Hence my opinion might be wrong.

I am **not** an expert on

- 1. Theoretical Quantum Computing
- 2. Practical Quantum Computing
- 3. Discrete Log algorithms

Hence my opinion might be wrong.

Actually, if I was and expert on any or all of the above my opinion could still be wrong.

I am **not** an expert on

- 1. Theoretical Quantum Computing
- 2. Practical Quantum Computing
- 3. Discrete Log algorithms

Hence my opinion might be wrong.

Actually, if I was and expert on any or all of the above my opinion could still be wrong.

1. Newton believed in alchemy.

I am **not** an expert on

- 1. Theoretical Quantum Computing
- 2. Practical Quantum Computing
- 3. Discrete Log algorithms

Hence my opinion might be wrong.

Actually, if I was and expert on any or all of the above my opinion could still be wrong.

- 1. Newton believed in alchemy.
- 2. Alan Turing believed that you should **first** teach computers to think and talk and understand, and **then** teach them chess.

Definition Let p be a prime and g be a generator mod p.

The Discrete Log Problem:

Definition Let p be a prime and g be a generator mod p.

The Discrete Log Problem:

Given $y \in \{1, ..., p\}$, find x such that $g^x \equiv y \pmod{p}$. We call this $DL_{p,g}(y)$.

1. If g is small then $DL(g^a)$ might be easy: $DL_{1009,7}(49)=2$ since $7^2\equiv 49\pmod{1009}$.

Definition Let p be a prime and g be a generator mod p.

The **Discrete Log Problem**:

- 1. If g is small then $DL(g^a)$ might be easy: $DL_{1009,7}(49) = 2$ since $7^2 \equiv 49 \pmod{1009}$.
- 2. If g is small then $DL(p-g^a)$ might be easy: $DL_{1009,7}(1009-49)=506$ since $7^{504}7^2\equiv -7^2\equiv 1009-49$ (mod 1009).

Definition Let p be a prime and g be a generator mod p.

The **Discrete Log Problem**:

- 1. If g is small then $DL(g^a)$ might be easy: $DL_{1009,7}(49) = 2$ since $7^2 \equiv 49 \pmod{1009}$.
- 2. If g is small then $DL(p-g^a)$ might be easy: $DL_{1009,7}(1009-49)=506$ since $7^{504}7^2\equiv -7^2\equiv 1009-49$ (mod 1009).
- 3. If $g, a \in \{\frac{p}{3}, \dots, \frac{2p}{3}\}$ then problem suspected hard.

Definition Let p be a prime and g be a generator mod p.

The Discrete Log Problem:

- 1. If g is small then $DL(g^a)$ might be easy: $DL_{1009,7}(49) = 2$ since $7^2 \equiv 49 \pmod{1009}$.
- 2. If g is small then $DL(p-g^a)$ might be easy: $DL_{1009,7}(1009-49)=506$ since $7^{504}7^2\equiv -7^2\equiv 1009-49$ (mod 1009).
- 3. If $g, a \in \{\frac{p}{3}, \dots, \frac{2p}{3}\}$ then problem suspected hard.
- 4. **Tradeoff:** By restricting *a* we are cutting down search space for Eve. Even so, in this case we need to since she REALLY can recognize when DL is easy.

► Exponentiation is Easy.

- Exponentiation is Easy.
- ▶ Discrete Log is thought to be Hard.

- Exponentiation is Easy.
- Discrete Log is thought to be Hard.

We want a crypto system where:

- Exponentiation is Easy.
- Discrete Log is thought to be Hard.

We want a crypto system where:

▶ Alice and Bob do Exponentiation to encrypt and decrypt.

- Exponentiation is Easy.
- Discrete Log is thought to be Hard.

We want a crypto system where:

- ▶ Alice and Bob do Exponentiation to encrypt and decrypt.
- Eve has to do Discrete Log to crack it.

- Exponentiation is Easy.
- Discrete Log is thought to be Hard.

We want a crypto system where:

- Alice and Bob do Exponentiation to encrypt and decrypt.
- Eve has to do Discrete Log to crack it.

No. But we'll come close.

Convention

For the rest of the slides on Diffie-Hellman Key Exchange there will always be a prime p that we are considering.

ALL math done from that point on is mod p.

ALL numbers are in $\{1, \ldots, p-1\}$.

Finding Generators

Finding Gens; How Many Gens Are There?

Problem Given p, find g such that

- ightharpoonup g generates \mathbb{Z}_p^* .
- ▶ $g \in \{\frac{p}{3}, \dots, \frac{2p}{3}\}$. (We ignore floors and ceilings for notational convienance.)

Finding Gens; How Many Gens Are There?

Problem Given p, find g such that

- ightharpoonup g generates \mathbb{Z}_p^* .
- ▶ $g \in \{\frac{p}{3}, \dots, \frac{2p}{3}\}$. (We ignore floors and ceilings for notational convienance.)

We could test $\frac{p}{3}$, then $\frac{p}{3}+1$, etc. Will we hit a generator soon?

Finding Gens; How Many Gens Are There?

Problem Given p, find g such that

- ightharpoonup g generates \mathbb{Z}_p^* .
- ▶ $g \in \{\frac{p}{3}, \dots, \frac{2p}{3}\}$. (We ignore floors and ceilings for notational convienance.)

We could test $\frac{p}{3}$, then $\frac{p}{3}+1$, etc. Will we hit a generator soon?

How many elts of $\{1,\ldots,p-1\}$ are gens? $\Theta(\frac{cp}{\log\log p})$

Finding Gens; How Many Gens Are There?

Problem Given p, find g such that

- ightharpoonup g generates \mathbb{Z}_p^* .
- ▶ $g \in \{\frac{p}{3}, \dots, \frac{2p}{3}\}$. (We ignore floors and ceilings for notational convienance.)

We could test $\frac{p}{3}$, then $\frac{p}{3}+1$, etc. Will we hit a generator soon?

How many elts of
$$\{1, \ldots, p-1\}$$
 are gens? $\Theta(\frac{cp}{\log \log p})$

Hence if you just look for a gen you will find one soon.

Given prime p, find a gen for \mathbb{Z}_p^*

Given prime p, find a gen for \mathbb{Z}_p^*

1. Input *p*.

Given prime p, find a gen for \mathbb{Z}_p^*

- 1. Input *p*.
- 2. For $g = \left\lceil \frac{p}{3} \right\rceil$ to $\left\lfloor \frac{2p}{3} \right\rfloor$:

Compute $g^1, g^2, \ldots, g^{p-1}$ until either hit a repeat or finish. If repeats then g is NOT a generator, so goto the next g. If finishes then output g and stop.

CON: Computing g^1, \ldots, g^{p-1} is O(p) operations.

Given prime ρ , find a gen for \mathbb{Z}_p^*

- 1. Input *p*.
- 2. For $g = \left\lceil \frac{p}{3} \right\rceil$ to $\left\lfloor \frac{2p}{3} \right\rfloor$:

Compute $g^1, g^2, \ldots, g^{p-1}$ until either hit a repeat or finish. If repeats then g is NOT a generator, so goto the next g. If finishes then output g and stop.

CON: Computing g^1, \ldots, g^{p-1} is O(p) operations. **Bad!** Recall $(\log p)^{O(1)}$ is fast, O(p) is slow.

Theorem: If g is **not** a generator then there exists x that (1) x divides p-1, (2) $x \neq p-1$, and (3) $g^x \equiv 1$.

Given prime ρ , find a gen for \mathbb{Z}_p^*

Theorem: If g is **not** a generator then there exists x that (1) x divides p-1, (2) $x \neq p-1$, and (3) $g^x \equiv 1$.

Given prime p, find a gen for \mathbb{Z}_p^*

1. Input *p*.

Theorem: If g is **not** a generator then there exists x that (1) x divides p-1, (2) $x \neq p-1$, and (3) $g^x \equiv 1$.

Given prime p, find a gen for \mathbb{Z}_p^*

- **1**. Input *p*.
- 2. Factor p-1. Let F be the set of its factors except p-1.

Theorem: If g is **not** a generator then there exists x that (1) x divides p-1, (2) $x \neq p-1$, and (3) $g^x \equiv 1$.

Given prime ρ , find a gen for \mathbb{Z}_{ρ}^*

- **1**. Input *p*.
- 2. Factor p-1. Let F be the set of its factors except p-1.
- 3. For $g = \left\lceil \frac{p}{3} \right\rceil$ to $\left\lfloor \frac{2p}{3} \right\rfloor$:

 Compute g^x for all $x \in F$. If any = 1 then g not generator. If none are 1 then output g and stop.

Theorem: If g is **not** a generator then there exists x that (1) x divides p-1, (2) $x \neq p-1$, and (3) $g^x \equiv 1$.

Given prime ρ , find a gen for \mathbb{Z}_{ρ}^*

- 1. Input *p*.
- 2. Factor p-1. Let F be the set of its factors except p-1.
- 3. For $g = \left\lceil \frac{p}{3} \right\rceil$ to $\left\lfloor \frac{2p}{3} \right\rfloor$:

 Compute g^x for all $x \in F$. If any = 1 then g not generator. If none are 1 then output g and stop.

Is this a good algorithm?

Theorem: If g is **not** a generator then there exists x that (1) x divides p-1, (2) $x \neq p-1$, and (3) $g^x \equiv 1$.

Given prime p, find a gen for \mathbb{Z}_p^*

- 1. Input *p*.
- 2. Factor p-1. Let F be the set of its factors except p-1.
- 3. For $g = \left\lceil \frac{p}{3} \right\rceil$ to $\left\lfloor \frac{2p}{3} \right\rfloor$:

 Compute g^x for all $x \in F$. If any = 1 then g not generator. If none are 1 then output g and stop.

Is this a good algorithm?

FACT Every iter $-O(|F|(\log p))$ ops. |F| might be huge! So no good. But wait for next slide....

Theorem: If g is **not** a generator then there exists x that (1) x divides p-1, (2) $x \neq p-1$, and (3) $g^x \equiv 1$.

Given prime ρ , find a gen for \mathbb{Z}_{ρ}^*

- 1. Input *p*.
- 2. Factor p-1. Let F be the set of its factors except p-1.
- 3. For $g = \left\lceil \frac{p}{3} \right\rceil$ to $\left\lfloor \frac{2p}{3} \right\rfloor$:

 Compute g^x for all $x \in F$. If any = 1 then g not generator. If none are 1 then output g and stop.

Is this a good algorithm?

FACT Every iter $-O(|F|(\log p))$ ops. |F| might be huge! So no good. But wait for next slide....

BIG CON: Factoring p-1? Really? Darn!

Second Attempt had two problems:

- 1. Factoring is hard.
- 2. p-1 may have many factors.

Second Attempt had two problems:

- 1. Factoring is hard.
- 2. p-1 may have many factors.

We want p-1 to be easy to factor and have few factors.

Second Attempt had two problems:

- 1. Factoring is hard.
- 2. p-1 may have many factors.

We want p-1 to be easy to factor and have few factors.

There are three kinds of people in the world:

Second Attempt had two problems:

- 1. Factoring is hard.
- 2. p-1 may have many factors.

We want p-1 to be easy to factor and have few factors.

There are three kinds of people in the world:

1. Those who make things happen.

Second Attempt had two problems:

- 1. Factoring is hard.
- 2. p-1 may have many factors.

We want p-1 to be easy to factor and have few factors.

There are three kinds of people in the world:

- 1. Those who make things happen.
- 2. Those who watch things happen.

Second Attempt had two problems:

- 1. Factoring is hard.
- 2. p-1 may have many factors.

We want p-1 to be easy to factor and have few factors.

There are three kinds of people in the world:

- 1. Those who make things happen.
- 2. Those who watch things happen.
- 3. Those who wonder what happened.

Second Attempt had two problems:

- 1. Factoring is hard.
- 2. p-1 may have many factors.

We want p-1 to be easy to factor and have few factors.

There are three kinds of people in the world:

- 1. Those who make things happen.
- 2. Those who watch things happen.
- 3. Those who wonder what happened.

We will make things happen.

Second Attempt had two problems:

- 1. Factoring is hard.
- 2. p-1 may have many factors.

We want p-1 to be easy to factor and have few factors.

There are three kinds of people in the world:

- 1. Those who make things happen.
- 2. Those who watch things happen.
- 3. Those who wonder what happened.

We will make things happen.

We will make p-1 easy to factor.

Second Attempt had two problems:

- 1. Factoring is hard.
- 2. p-1 may have many factors.

We want p-1 to be easy to factor and have few factors.

There are three kinds of people in the world:

- 1. Those who make things happen.
- 2. Those who watch things happen.
- 3. Those who wonder what happened.

We will make things happen.

We will make p-1 easy to factor.

We will make p-1 have few factors.

Idea: Pick p such that p - 1 = 2q where q is prime.

Idea: Pick p such that p-1=2q where q is prime. Given prime p, find a gen for \mathbb{Z}_p^*

Idea: Pick p such that p-1=2q where q is prime. Given prime p, find a gen for \mathbb{Z}_p^*

1. Input p a prime such that p-1=2q where q is prime. (We later explore how we can find such a prime.)

Idea: Pick p such that p-1=2q where q is prime. Given prime p, find a gen for \mathbb{Z}_p^*

- 1. Input p a prime such that p-1=2q where q is prime. (We later explore how we can find such a prime.)
- 2. Factor p-1. Let F be the set of its factors except p-1. That's EASY: $F=\{2,q\}$.

Idea: Pick p such that p-1=2q where q is prime. Given prime p, find a gen for \mathbb{Z}_p^*

- 1. Input p a prime such that p-1=2q where q is prime. (We later explore how we can find such a prime.)
- 2. Factor p-1. Let F be the set of its factors except p-1. That's EASY: $F=\{2,q\}$.
- 3. For $g = \left\lceil \frac{p}{3} \right\rceil$ to $\left\lfloor \frac{2p}{3} \right\rfloor$:

 Compute g^x for all $x \in F$. If any = 1 then g NOT generator. If none are 1 then output g and stop.

Idea: Pick p such that p-1=2q where q is prime. Given prime p, find a gen for \mathbb{Z}_p^*

- 1. Input p a prime such that p-1=2q where q is prime. (We later explore how we can find such a prime.)
- 2. Factor p-1. Let F be the set of its factors except p-1. That's EASY: $F=\{2,q\}$.
- 3. For $g = \left\lceil \frac{p}{3} \right\rceil$ to $\left\lfloor \frac{2p}{3} \right\rfloor$:

 Compute g^x for all $x \in F$. If any = 1 then g NOT generator. If none are 1 then output g and stop.

Is this a good algorithm? PRO Every iteration does $O(\log p)$ operations.

Idea: Pick p such that p-1=2q where q is prime. Given prime p, find a gen for \mathbb{Z}_p^*

- 1. Input p a prime such that p-1=2q where q is prime. (We later explore how we can find such a prime.)
- 2. Factor p-1. Let F be the set of its factors except p-1. That's EASY: $F=\{2,q\}$.
- 3. For $g = \left\lceil \frac{p}{3} \right\rceil$ to $\left\lfloor \frac{2p}{3} \right\rfloor$:

 Compute g^x for all $x \in F$. If any = 1 then g NOT generator. If none are 1 then output g and stop.

Is this a good algorithm? **PRO** Every iteration does $O(\log p)$ operations. **CON:** Need both p and $\frac{p-1}{2}$ are primes.

Idea: Pick p such that p-1=2q where q is prime. Given prime p, find a gen for \mathbb{Z}_p^*

- 1. Input p a prime such that p-1=2q where q is prime. (We later explore how we can find such a prime.)
- 2. Factor p-1. Let F be the set of its factors except p-1. That's EASY: $F=\{2,q\}$.
- 3. For $g = \left\lceil \frac{p}{3} \right\rceil$ to $\left\lfloor \frac{2p}{3} \right\rfloor$:

 Compute g^x for all $x \in F$. If any = 1 then g NOT generator. If none are 1 then output g and stop.

Is this a good algorithm?

PRO Every iteration does $O(\log p)$ operations.

CON: Need both p and $\frac{p-1}{2}$ are primes.

CAVEAT We need to pick certain kinds of primes. Can do that!

Theorem If p is prime and (p-1)/2 is prime and $a \in \{2, ..., p-2\}$, then a^2 is a generator.

Theorem If p is prime and (p-1)/2 is prime and $a \in \{2, ..., p-2\}$, then a^2 is a generator.

1. Input p a prime such that (p-1)/2 is prime. (We later explore how we can find such a prime.)

Theorem If p is prime and (p-1)/2 is prime and $a \in \{2, ..., p-2\}$, then a^2 is a generator.

- 1. Input p a prime such that (p-1)/2 is prime. (We later explore how we can find such a prime.)
- 2. Pick $a \in \{2, ..., p-2\}$. Output a^2 .

Theorem If p is prime and (p-1)/2 is prime and $a \in \{2, ..., p-2\}$, then a^2 is a generator.

- 1. Input p a prime such that (p-1)/2 is prime. (We later explore how we can find such a prime.)
- 2. Pick $a \in \{2, ..., p-2\}$. Output a^2 .

PRO Fast and can be deterministic (just take a = 2).

Theorem If p is prime and (p-1)/2 is prime and $a \in \{2, ..., p-2\}$, then a^2 is a generator.

- 1. Input p a prime such that (p-1)/2 is prime. (We later explore how we can find such a prime.)
- 2. Pick $a \in \{2, ..., p-2\}$. Output a^2 .

PRO Fast and can be deterministic (just take a = 2). **CAVEAT** We need to pick certain kinds of primes. **Can** do that! **Stay tuned!** Will find primes next lecture!

BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!