BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Public Key Crypto: Math Needed and Diffie-Hellman

October 12, 2020

Private-Key Ciphers

What do the following all have in common?

1. Shift Cipher
2. Affine Cipher
3. Vig Cipher
4. General Sub
5. General 2-char sub
6. Matrix Cipher
7. One-time Pad
8. Other ciphers we studied

Private-Key Ciphers

What do the following all have in common?

1. Shift Cipher
2. Affine Cipher
3. Vig Cipher
4. General Sub
5. General 2-char sub
6. Matrix Cipher
7. One-time Pad
8. Other ciphers we studied

Alice and Bob need to meet! (Hence Private-Key.)

Private-Key Ciphers

What do the following all have in common?

1. Shift Cipher
2. Affine Cipher
3. Vig Cipher
4. General Sub
5. General 2-char sub
6. Matrix Cipher
7. One-time Pad
8. Other ciphers we studied

Alice and Bob need to meet! (Hence Private-Key.)
Can Alice and Bob establish a key without meeting?

Private-Key Ciphers

What do the following all have in common?

1. Shift Cipher
2. Affine Cipher
3. Vig Cipher
4. General Sub
5. General 2-char sub
6. Matrix Cipher
7. One-time Pad
8. Other ciphers we studied

Alice and Bob need to meet! (Hence Private-Key.)
Can Alice and Bob establish a key without meeting?
Yes! And that is the key to public-key cryptography.

General Philosophy

A good crypto system is such that:

1. The computational task to encrypt and decrypt is easy.
2. The computational task to crack is hard.

General Philosophy

A good crypto system is such that:

1. The computational task to encrypt and decrypt is easy.
2. The computational task to crack is hard.

Caveats

General Philosophy

A good crypto system is such that:

1. The computational task to encrypt and decrypt is easy.
2. The computational task to crack is hard.

Caveats

1. Hard to achieve info-theoretic hardness (One-time pad).

General Philosophy

A good crypto system is such that:

1. The computational task to encrypt and decrypt is easy.
2. The computational task to crack is hard.

Caveats

1. Hard to achieve info-theoretic hardness (One-time pad).
2. Hard to achieve comp-hardness. Few problems provably hard.

General Philosophy

A good crypto system is such that:

1. The computational task to encrypt and decrypt is easy.
2. The computational task to crack is hard.

Caveats

1. Hard to achieve info-theoretic hardness (One-time pad).
2. Hard to achieve comp-hardness. Few problems provably hard.
3. Can use hardness assumptions (e.g. factoring is hard).

Difficulty of Problems Based on Length of Input

Hardness of a problem is measured by time-to-solve as a function of length of input.

Examples

1. Given a Boolean $\mathrm{fml} \phi\left(x_{1}, \ldots, x_{n}\right)$, is there a satisfying assignment? Seems to require $2^{\Omega(n)}$ steps.
2. Polynomial vs Exp time is our notion of easy vs hard.
3. Factoring n can be done in $O(\sqrt{n})$ time: Discuss. Easy!

Difficulty of Problems Based on Length of Input

Hardness of a problem is measured by time-to-solve as a function of length of input.

Examples

1. Given a Boolean $\mathrm{fml} \phi\left(x_{1}, \ldots, x_{n}\right)$, is there a satisfying assignment? Seems to require $2^{\Omega(n)}$ steps.
2. Polynomial vs Exp time is our notion of easy vs hard.
3. Factoring n can be done in $O(\sqrt{n})$ time: Discuss. Easy! NO!!: n is of length $\lg n+O(1)$ (henceforth just $\lg n$). $\sqrt{n}=2^{(0.5) \lg n}$. Exponential. Slightly better algs known.

Difficulty of Problems Based on Length of Input

Hardness of a problem is measured by time-to-solve as a function of length of input.

Examples

1. Given a Boolean $\mathrm{fml} \phi\left(x_{1}, \ldots, x_{n}\right)$, is there a satisfying assignment? Seems to require $2^{\Omega(n)}$ steps.
2. Polynomial vs Exp time is our notion of easy vs hard.
3. Factoring n can be done in $O(\sqrt{n})$ time: Discuss. Easy! NO!!: n is of length $\lg n+O(1)$ (henceforth just $\lg n$). $\sqrt{n}=2^{(0.5) \lg n}$. Exponential. Slightly better algs known.
Upshot For numeric problems length is $\lg \boldsymbol{n}$. Encryption requires:

- Alice and Bob can Enc and Dec in time $\leq(\log n)^{O(1)}$.
- Eve needs time $\geq c^{O(\log n)}$ to crack.

Difficulty of Problems Based on Length of Input

Hardness of a problem is measured by time-to-solve as a function of length of input.

Examples

1. Given a Boolean $\mathrm{fml} \phi\left(x_{1}, \ldots, x_{n}\right)$, is there a satisfying assignment? Seems to require $2^{\Omega(n)}$ steps.
2. Polynomial vs Exp time is our notion of easy vs hard.
3. Factoring n can be done in $O(\sqrt{n})$ time: Discuss. Easy! NO!!: n is of length $\lg n+O(1)$ (henceforth just $\lg n$). $\sqrt{n}=2^{(0.5) \lg n}$. Exponential. Slightly better algs known.
Upshot For numeric problems length is $\lg \boldsymbol{n}$. Encryption requires:

- Alice and Bob can Enc and Dec in time $\leq(\log n)^{O(1)}$.
- Eve needs time $\geq c^{O(\log n)}$ to crack.

What Counts We count math operations as taking 1 step. This could be an issue with enormous numbers. We will work with mods so not a problem.

Math Needed for Both Diffie-Hellman and RSA

October 12, 2020

Notation

Let p be a prime.

1. \mathbb{Z}_{p} is the numbers $\{0, \ldots, p-1\}$ with mod add and mult.
2. \mathbb{Z}_{p}^{*} is the numbers $\{1, \ldots, p-1\}$ with mod mult.

Convention By prime we will always mean a large prime, so in particular, NOT 2. Hence we can assume $\frac{p-1}{2}$ is in \mathbb{N}.

Exponentiation Mod p

Exponentiation Mod p, Note on Notation

Problem Given a, n, p find $a^{n}(\bmod p)$

Exponentiation Mod p, Note on Notation

Problem Given a, n, p find $a^{n}(\bmod p)$
Even though we use p and p is always prime, our algorithm works for any natural p.

Exponentiation Mod p: First Attempt

Problem Given a, n, p find $a^{n}(\bmod p)$

1. $x_{0}=a^{0}=1$
2. For $i=1$ to $n, x_{i}=a x_{i-1}$
3. Let $x=x_{n}(\bmod p)$
4. Output x

Is this a good idea?

Exponentiation Mod p: First Attempt

Problem Given a, n, p find $a^{n}(\bmod p)$

1. $x_{0}=a^{0}=1$
2. For $i=1$ to $n, x_{i}=a x_{i-1}$
3. Let $x=x_{n}(\bmod p)$
4. Output x

Is this a good idea? I called it First Attempt, so no.

Exponentiation Mod p: First Attempt

Problem Given a, n, p find $a^{n}(\bmod p)$

1. $x_{0}=a^{0}=1$
2. For $i=1$ to $n, x_{i}=a x_{i-1}$
3. Let $x=x_{n}(\bmod p)$
4. Output x

Is this a good idea? I called it First Attempt, so no.
Discuss How many steps were used to compute $a^{n}(\bmod p)$?

Exponentiation Mod p: First Attempt

Problem Given a, n, p find $a^{n}(\bmod p)$

1. $x_{0}=a^{0}=1$
2. For $i=1$ to $n, x_{i}=a x_{i-1}$
3. Let $x=x_{n}(\bmod p)$
4. Output x

Is this a good idea? I called it First Attempt, so no.
Discuss How many steps were used to compute $a^{n}(\bmod p)$?
Answer $\sim n$.

Exponentiation Mod p: First Attempt

Problem Given a, n, p find $a^{n}(\bmod p)$

1. $x_{0}=a^{0}=1$
2. For $i=1$ to $n, x_{i}=a x_{i-1}$
3. Let $x=x_{n}(\bmod p)$
4. Output x

Is this a good idea? I called it First Attempt, so no.
Discuss How many steps were used to compute $a^{n}(\bmod p)$?
Answer $\sim n$.
But it's worse than that. Why?

Exponentiation Mod p: First Attempt

Problem Given a, n, p find $a^{n}(\bmod p)$

1. $x_{0}=a^{0}=1$
2. For $i=1$ to $n, x_{i}=a x_{i-1}$
3. Let $x=x_{n}(\bmod p)$
4. Output x

Is this a good idea? I called it First Attempt, so no.
Discuss How many steps were used to compute $a^{n}(\bmod p)$?
Answer $\sim n$.
But it's worse than that. Why? x gets really large.

Exponentiation Mod p: First Attempt

Problem Given a, n, p find $a^{n}(\bmod p)$

1. $x_{0}=a^{0}=1$
2. For $i=1$ to $n, x_{i}=a x_{i-1}$
3. Let $x=x_{n}(\bmod p)$
4. Output x

Is this a good idea? I called it First Attempt, so no.
Discuss How many steps were used to compute $a^{n}(\bmod p)$?
Answer $\sim n$.
But it's worse than that. Why? x gets really large.
Can mod p every step so x not large. But still takes n steps.

Exponentiation Mod p : Example of a Good Alg

Want $3^{64}(\bmod 101)$. All math is mod 101.

Exponentiation Mod p : Example of a Good Alg

Want $3^{64}(\bmod 101)$. All math is mod 101.
$x_{0}=3$

Exponentiation Mod p : Example of a Good Alg

Want $3^{64}(\bmod 101)$. All math is mod 101.
$x_{0}=3$
$x_{1}=x_{0}^{2} \equiv 9$. This is $3^{2}(\bmod 101)$.

Exponentiation Mod p : Example of a Good Alg

Want $3^{64}(\bmod 101)$. All math is $\bmod 101$.
$x_{0}=3$
$x_{1}=x_{0}^{2} \equiv 9$. This is $3^{2}(\bmod 101)$.
$x_{2}=x_{1}^{2} \equiv 9^{2} \equiv 81$. This is $3^{4}(\bmod 101)$.

Exponentiation Mod p : Example of a Good Alg

Want $3^{64}(\bmod 101)$. All math is mod 101.
$x_{0}=3$
$x_{1}=x_{0}^{2} \equiv 9$. This is $3^{2}(\bmod 101)$.
$x_{2}=x_{1}^{2} \equiv 9^{2} \equiv 81$. This is $3^{4}(\bmod 101)$.
$x_{3}=x_{2}^{2} \equiv 81^{2} \equiv 97$. This is $3^{8}(\bmod 101)$.

Exponentiation Mod p : Example of a Good Alg

Want $3^{64}(\bmod 101)$. All math is mod 101.
$x_{0}=3$
$x_{1}=x_{0}^{2} \equiv 9$. This is $3^{2}(\bmod 101)$.
$x_{2}=x_{1}^{2} \equiv 9^{2} \equiv 81$. This is $3^{4}(\bmod 101)$.
$x_{3}=x_{2}^{2} \equiv 81^{2} \equiv 97$. This is $3^{8}(\bmod 101)$.
$x_{4}=x_{3}^{2} \equiv 97^{2} \equiv 16$. This is $3^{16}(\bmod 101)$.

Exponentiation Mod p : Example of a Good Alg

Want $3^{64}(\bmod 101)$. All math is mod 101.
$x_{0}=3$
$x_{1}=x_{0}^{2} \equiv 9$. This is $3^{2}(\bmod 101)$.
$x_{2}=x_{1}^{2} \equiv 9^{2} \equiv 81$. This is $3^{4}(\bmod 101)$.
$x_{3}=x_{2}^{2} \equiv 81^{2} \equiv 97$. This is $3^{8}(\bmod 101)$.
$x_{4}=x_{3}^{2} \equiv 97^{2} \equiv 16$. This is $3^{16}(\bmod 101)$.
$x_{5}=x_{4}^{2} \equiv 16^{2} \equiv 54$. This is $3^{32}(\bmod 101)$.

Exponentiation Mod p : Example of a Good Alg

Want $3^{64}(\bmod 101)$. All math is mod 101.
$x_{0}=3$
$x_{1}=x_{0}^{2} \equiv 9$. This is $3^{2}(\bmod 101)$.
$x_{2}=x_{1}^{2} \equiv 9^{2} \equiv 81$. This is $3^{4}(\bmod 101)$.
$x_{3}=x_{2}^{2} \equiv 81^{2} \equiv 97$. This is $3^{8}(\bmod 101)$.
$x_{4}=x_{3}^{2} \equiv 97^{2} \equiv 16$. This is $3^{16}(\bmod 101)$.
$x_{5}=x_{4}^{2} \equiv 16^{2} \equiv 54$. This is $3^{32}(\bmod 101)$.
$x_{6}=x_{5}^{2} \equiv 54^{2} \equiv 88$. This is $3^{64}(\bmod 101)$.
So in 6 steps we got the answer!

Exponentiation Mod p : Example of a Good Alg

Want $3^{64}(\bmod 101)$. All math is mod 101.
$x_{0}=3$
$x_{1}=x_{0}^{2} \equiv 9$. This is $3^{2}(\bmod 101)$.
$x_{2}=x_{1}^{2} \equiv 9^{2} \equiv 81$. This is $3^{4}(\bmod 101)$.
$x_{3}=x_{2}^{2} \equiv 81^{2} \equiv 97$. This is $3^{8}(\bmod 101)$.
$x_{4}=x_{3}^{2} \equiv 97^{2} \equiv 16$. This is $3^{16}(\bmod 101)$.
$x_{5}=x_{4}^{2} \equiv 16^{2} \equiv 54$. This is $3^{32}(\bmod 101)$.
$x_{6}=x_{5}^{2} \equiv 54^{2} \equiv 88$. This is $3^{64}(\bmod 101)$.
So in 6 steps we got the answer!
Discuss How many steps used compute $a^{n}(\bmod p)$?

Exponentiation Mod p : Example of a Good Alg

Want $3^{64}(\bmod 101)$. All math is $\bmod 101$.
$x_{0}=3$
$x_{1}=x_{0}^{2} \equiv 9$. This is $3^{2}(\bmod 101)$.
$x_{2}=x_{1}^{2} \equiv 9^{2} \equiv 81$. This is $3^{4}(\bmod 101)$.
$x_{3}=x_{2}^{2} \equiv 81^{2} \equiv 97$. This is $3^{8}(\bmod 101)$.
$x_{4}=x_{3}^{2} \equiv 97^{2} \equiv 16$. This is $3^{16}(\bmod 101)$.
$x_{5}=x_{4}^{2} \equiv 16^{2} \equiv 54$. This is $3^{32}(\bmod 101)$.
$x_{6}=x_{5}^{2} \equiv 54^{2} \equiv 88$. This is $3^{64}(\bmod 101)$.
So in 6 steps we got the answer!
Discuss How many steps used compute $a^{n}(\bmod p)$?
Discuss What if n is not a power of 2?

A Review of Base 2

Say we want to do $a^{n}(\bmod p)$.

A Review of Base 2

Say we want to do $a^{n}(\bmod p)$.
Express n in binary.

A Review of Base 2

Say we want to do $a^{n}(\bmod p)$.
Express n in binary.
$7=(111)_{2}=1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$. Note $2=\lfloor\lg 7\rfloor$

A Review of Base 2

Say we want to do $a^{n}(\bmod p)$.
Express n in binary.

$$
\begin{aligned}
& 7=(111)_{2}=1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} . \text { Note } 2=\lfloor\lg 7\rfloor \\
& 8=(1000)_{2}=1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0} . \text { Note } 3=\lfloor\lg 8\rfloor
\end{aligned}
$$

A Review of Base 2

Say we want to do $a^{n}(\bmod p)$.
Express n in binary.

$$
\begin{aligned}
& 7=(111)_{2}=1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} . \text { Note } 2=\lfloor\lg 7\rfloor \\
& 8=(1000)_{2}=1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0} . \text { Note } 3=\lfloor\lg 8\rfloor \\
& 9=(1001)_{2}=1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} . \text { Note } 3=\lfloor\lg 9\rfloor
\end{aligned}
$$

A Review of Base 2

Say we want to do $a^{n}(\bmod p)$.
Express n in binary.
$7=(111)_{2}=1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$. Note $2=\lfloor\lg 7\rfloor$
$8=(1000)_{2}=1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}$. Note $3=\lfloor\lg 8\rfloor$
$9=(1001)_{2}=1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$. Note $3=\lfloor\lg 9\rfloor$
Upshot If write n as a sum of powers of 2 with 0,1 coefficients then n is of the form

A Review of Base 2

Say we want to do $a^{n}(\bmod p)$.
Express n in binary.
$7=(111)_{2}=1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$. Note $2=\lfloor\lg 7\rfloor$
$8=(1000)_{2}=1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}$. Note $3=\lfloor\lg 8\rfloor$
$9=(1001)_{2}=1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$. Note $3=\lfloor\lg 9\rfloor$
Upshot If write n as a sum of powers of 2 with 0,1 coefficients then n is of the form

$$
n=n_{L} 2^{L}+\cdots+n_{1} 2^{1}+n_{0} 2^{0}=\sum_{i=0}^{L} n_{i} 2^{i}
$$

Where $L=\lfloor\lg (n)\rfloor$ and $n_{i} \in\{0,1\}$.
Note that L is one less than the number of bits needed for n.

Repeated Squaring Algorithm

All math is $\bmod p$.

Repeated Squaring Algorithm

All math is $\bmod p$.

1. Input (a, n, p).

Repeated Squaring Algorithm

All math is $\bmod p$.

1. Input (a, n, p).
2. Convert n to base 2: $n=\sum_{i=0}^{L} n_{i} 2^{i}$. $(L$ is $\lfloor\lg (n)\rfloor)$

Repeated Squaring Algorithm

All math is $\bmod p$.

1. Input (a, n, p).
2. Convert n to base 2: $n=\sum_{i=0}^{L} n_{i} 2^{i}$. (L is $\left.\lfloor\lg (n)\rfloor\right)$
3. $x_{0}=a$.

Repeated Squaring Algorithm

All math is $\bmod p$.

1. Input (a, n, p).
2. Convert n to base 2: $n=\sum_{i=0}^{L} n_{i} 2^{i}$. (L is $\left.\lfloor\lg (n)\rfloor\right)$
3. $x_{0}=a$.
4. For $i=1$ to $L, x_{i}=x_{i-1}^{2}$

Repeated Squaring Algorithm

All math is $\bmod p$.

1. Input (a, n, p).
2. Convert n to base 2: $n=\sum_{i=0}^{L} n_{i} 2^{i}$. $(L$ is $\lfloor\lg (n)\rfloor)$
3. $x_{0}=a$.
4. For $i=1$ to $L, x_{i}=x_{i-1}^{2}$
5. (Now have $\left.a^{n_{0} 2^{0}}, \ldots, a^{n_{L} 2^{L}}\right)$ Answer is $a^{n_{0} 2^{0}} \times \cdots \times a^{n_{L} 2^{L}}$

Repeated Squaring Algorithm

All math is $\bmod p$.

1. Input (a, n, p).
2. Convert n to base 2: $n=\sum_{i=0}^{L} n_{i} 2^{i}$. $(L$ is $\lfloor\lg (n)\rfloor)$
3. $x_{0}=a$.
4. For $i=1$ to $L, x_{i}=x_{i-1}^{2}$
5. (Now have $a^{n_{0} 2^{0}}, \ldots, a^{n_{L} 2^{L}}$) Answer is $a^{n_{0} 2^{0}} \times \cdots \times a^{n_{L} 2^{L}}$

Number of operations:

Repeated Squaring Algorithm

All math is $\bmod p$.

1. Input (a, n, p).
2. Convert n to base 2: $n=\sum_{i=0}^{L} n_{i} 2^{i}$. (L is $\left.\lfloor\lg (n)\rfloor\right)$
3. $x_{0}=a$.
4. For $i=1$ to $L, x_{i}=x_{i-1}^{2}$
5. (Now have $\left.a^{n_{0} 2^{0}}, \ldots, a^{n_{L} 2^{L}}\right)$ Answer is $a^{n_{0} 2^{0}} \times \cdots \times a^{n_{L} 2^{L}}$

Number of operations:
Number of MULTS in step 4: $\leq\lfloor\lg (n)\rfloor \leq \lg (n)$

Repeated Squaring Algorithm

All math is $\bmod p$.

1. Input (a, n, p).
2. Convert n to base 2: $n=\sum_{i=0}^{L} n_{i} 2^{i}$. $(L$ is $\lfloor\lg (n)\rfloor)$
3. $x_{0}=a$.
4. For $i=1$ to $L, x_{i}=x_{i-1}^{2}$
5. (Now have $\left.a^{n_{0} 2^{0}}, \ldots, a^{n_{L} 2^{L}}\right)$ Answer is $a^{n_{0} 2^{0}} \times \cdots \times a^{n_{L} 2^{L}}$

Number of operations:
Number of MULTS in step 4: $\leq\lfloor\lg (n)\rfloor \leq \lg (n)$
Number of MULTS in step 5: $\leq L=\lfloor\lg (n)\rfloor \leq \lg (n)$

Repeated Squaring Algorithm

All math is $\bmod p$.

1. Input (a, n, p).
2. Convert n to base 2: $n=\sum_{i=0}^{L} n_{i} 2^{i}$. (L is $\left.\lfloor\lg (n)\rfloor\right)$
3. $x_{0}=a$.
4. For $i=1$ to $L, x_{i}=x_{i-1}^{2}$
5. (Now have $\left.a^{n_{0} 2^{0}}, \ldots, a^{n_{L} 2^{L}}\right)$ Answer is $a^{n_{0} 2^{0}} \times \cdots \times a^{n_{L} 2^{L}}$

Number of operations:
Number of MULTS in step 4: $\leq\lfloor\lg (n)\rfloor \leq \lg (n)$
Number of MULTS in step 5: $\leq L=\lfloor\lg (n)\rfloor \leq \lg (n)$
Total number of MULTS $\leq 2 \lg (n)$.

Repeated Squaring Algorithm

All math is $\bmod p$.

1. Input (a, n, p).
2. Convert n to base 2: $n=\sum_{i=0}^{L} n_{i} 2^{i}$. $(L$ is $\lfloor\lg (n)\rfloor)$
3. $x_{0}=a$.
4. For $i=1$ to $L, x_{i}=x_{i-1}^{2}$
5. (Now have $a^{n_{0} 2^{0}}, \ldots, a^{n_{L} 2^{L}}$) Answer is $a^{n_{0} 2^{0}} \times \cdots \times a^{n_{L} 2^{L}}$

Number of operations:
Number of MULTS in step 4: $\leq\lfloor\lg (n)\rfloor \leq \lg (n)$
Number of MULTS in step 5: $\leq L=\lfloor\lg (n)\rfloor \leq \lg (n)$
Total number of MULTS $\leq 2 \lg (n)$.
More refined: $\lg (n)+$ (number of 1 's in binary rep of n) -1

Repeated Squaring Algorithm

All math is $\bmod p$.

1. Input (a, n, p).
2. Convert n to base 2: $n=\sum_{i=0}^{L} n_{i} 2^{i}$. (L is $\left.\lfloor\lg (n)\rfloor\right)$
3. $x_{0}=a$.
4. For $i=1$ to $L, x_{i}=x_{i-1}^{2}$
5. (Now have $a^{n_{0} 2^{0}}, \ldots, a^{n_{L} 2^{L}}$) Answer is $a^{n_{0} 2^{0}} \times \cdots \times a^{n_{L} 2^{L}}$

Number of operations:
Number of MULTS in step 4: $\leq\lfloor\lg (n)\rfloor \leq \lg (n)$
Number of MULTS in step 5: $\leq L=\lfloor\lg (n)\rfloor \leq \lg (n)$
Total number of MULTS $\leq 2 \lg (n)$.
More refined: $\lg (n)+$ (number of 1 's in binary rep of n) -1
Example on next page

Example of Exponentiation: $17^{265}(\bmod 101)$

$$
265=2^{8}+2^{3}+2^{0}
$$

Example of Exponentiation: $17^{265}(\bmod 101)$

$$
265=2^{8}+2^{3}+2^{0}
$$

$$
17^{2^{0}} \equiv 17(0 \text { steps })
$$

Example of Exponentiation: $17^{265}(\bmod 101)$

$$
265=2^{8}+2^{3}+2^{0}
$$

$$
\begin{aligned}
& 17^{2^{0}} \equiv 17(0 \text { steps }) \\
& 17^{2^{1}} \equiv 17^{2} \equiv 87(1 \text { step })
\end{aligned}
$$

Example of Exponentiation: $17^{265}(\bmod 101)$

$$
265=2^{8}+2^{3}+2^{0}
$$

$$
\begin{aligned}
& 17^{2^{0}} \equiv 17(0 \text { steps }) \\
& 17^{2^{1}} \equiv 17^{2} \equiv 87(1 \text { step }) \\
& 17^{2^{2}} \equiv 87^{2} \equiv 95(1 \text { step })
\end{aligned}
$$

Example of Exponentiation: $17^{265}(\bmod 101)$

$$
265=2^{8}+2^{3}+2^{0}
$$

$$
\begin{aligned}
& 17^{2^{0}} \equiv 17(0 \text { steps }) \\
& 17^{2^{1}} \equiv 17^{2} \equiv 87(1 \text { step }) \\
& 17^{2^{2}} \equiv 87^{2} \equiv 95(1 \text { step }) \\
& 17^{2^{3}} \equiv 95^{2} \equiv 36(1 \text { step })
\end{aligned}
$$

Example of Exponentiation: $17^{265}(\bmod 101)$

$$
265=2^{8}+2^{3}+2^{0}
$$

$$
\begin{aligned}
& 17^{2^{0}} \equiv 17(0 \text { steps }) \\
& 17^{2^{1}} \equiv 17^{2} \equiv 87(1 \text { step }) \\
& 17^{2^{2}} \equiv 87^{2} \equiv 95(1 \text { step }) \\
& 17^{2^{3}} \equiv 95^{2} \equiv 36(1 \text { step }) \\
& 17^{2^{4}} \equiv 36^{2} \equiv 84(1 \text { step })
\end{aligned}
$$

Example of Exponentiation: $17^{265}(\bmod 101)$

$$
265=2^{8}+2^{3}+2^{0}
$$

$$
\begin{aligned}
& 17^{2^{0}} \equiv 17(0 \text { steps }) \\
& 17^{2^{1}} \equiv 17^{2} \equiv 87(1 \text { step }) \\
& 17^{2^{2}} \equiv 87^{2} \equiv 95(1 \text { step }) \\
& 17^{2^{3}} \equiv 95^{2} \equiv 36(1 \text { step }) \\
& 17^{2^{4}} \equiv 36^{2} \equiv 84(1 \text { step }) \\
& 17^{2^{5}} \equiv 84^{2} \equiv 87(1 \text { step })
\end{aligned}
$$

Example of Exponentiation: $17^{265}(\bmod 101)$

$$
265=2^{8}+2^{3}+2^{0}
$$

$$
\begin{aligned}
& 17^{2^{0}} \equiv 17(0 \text { steps }) \\
& 17^{2^{1}} \equiv 17^{2} \equiv 87(1 \text { step }) \\
& 17^{2^{2}} \equiv 87^{2} \equiv 95(1 \text { step }) \\
& 17^{2^{3}} \equiv 95^{2} \equiv 36(1 \text { step }) \\
& 17^{2^{4}} \equiv 36^{2} \equiv 84(1 \text { step }) \\
& 17^{2^{5}} \equiv 84^{2} \equiv 87(1 \text { step }) \\
& 17^{2^{6}} \equiv 87^{2} \equiv 95(1 \text { step })
\end{aligned}
$$

Example of Exponentiation: $17^{265}(\bmod 101)$

$$
265=2^{8}+2^{3}+2^{0}
$$

$$
\begin{aligned}
& 17^{2^{0}} \equiv 17(0 \text { steps }) \\
& 17^{2^{1}} \equiv 17^{2} \equiv 87(1 \text { step }) \\
& 17^{2^{2}} \equiv 87^{2} \equiv 95(1 \text { step }) \\
& 17^{2^{3}} \equiv 95^{2} \equiv 36(1 \text { step }) \\
& 17^{2^{4}} \equiv 36^{2} \equiv 84(1 \text { step }) \\
& 17^{2^{5}} \equiv 84^{2} \equiv 87(1 \text { step }) \\
& 17^{2^{6}} \equiv 87^{2} \equiv 95(1 \text { step }) \\
& 17^{2^{7}} \equiv 95^{2} \equiv 36(1 \text { step })
\end{aligned}
$$

Example of Exponentiation: $17^{265}(\bmod 101)$

$$
265=2^{8}+2^{3}+2^{0}
$$

$$
\begin{aligned}
& 17^{2^{0}} \equiv 17(0 \text { steps }) \\
& 17^{2^{1}} \equiv 17^{2} \equiv 87(1 \text { step }) \\
& 17^{2^{2}} \equiv 87^{2} \equiv 95(1 \text { step }) \\
& 17^{2^{3}} \equiv 95^{2} \equiv 36(1 \text { step }) \\
& 17^{2^{4}} \equiv 36^{2} \equiv 84(1 \text { step }) \\
& 17^{2^{5}} \equiv 84^{2} \equiv 87(1 \text { step }) \\
& 17^{2^{6}} \equiv 87^{2} \equiv 95(1 \text { step }) \\
& 17^{2^{7}} \equiv 95^{2} \equiv 36(1 \text { step }) \\
& 17^{2^{8}} \equiv 36^{2} \equiv 84(1 \text { step })
\end{aligned}
$$

Example of Exponentiation: $17^{265}(\bmod 101)$

$$
265=2^{8}+2^{3}+2^{0}
$$

$$
\begin{aligned}
& 17^{2^{0}} \equiv 17(0 \text { steps }) \\
& 17^{2^{1}} \equiv 17^{2} \equiv 87(1 \text { step }) \\
& 17^{2^{2}} \equiv 87^{2} \equiv 95(1 \text { step }) \\
& 17^{2^{3}} \equiv 95^{2} \equiv 36(1 \text { step }) \\
& 17^{2^{4}} \equiv 36^{2} \equiv 84(1 \text { step }) \\
& 17^{5} \equiv 84^{2} \equiv 87(1 \text { step }) \\
& 17^{2^{6}} \equiv 87^{2} \equiv 95(1 \text { step }) \\
& 17^{2^{7}} \equiv 95^{2} \equiv 36(1 \text { step }) \\
& 17^{2^{8}} \equiv 36^{2} \equiv 84(1 \text { step })
\end{aligned}
$$

This took $8 \sim \lg (265)$ multiplications so far.

Example of Exponentiation: $17^{265}(\bmod 101)$

$$
265=2^{8}+2^{3}+2^{0}
$$

This took $8 \sim \lg (265)$ multiplications so far.
The next step takes only two multiplications:

$$
17^{265} \equiv 17^{2^{8}} \times 17^{2^{3}} \times 17^{2^{0}} \equiv 84 \times 36 \times 17 \equiv 100
$$

Example of Exponentiation: $17^{265}(\bmod 101)$

$$
265=2^{8}+2^{3}+2^{0}
$$

$$
\begin{aligned}
& 17^{2^{0}} \equiv 17(0 \text { steps }) \\
& 17^{2^{1}} \equiv 17^{2} \equiv 87(1 \text { step }) \\
& 17^{2^{2}} \equiv 87^{2} \equiv 95(1 \text { step }) \\
& 17^{2^{3}} \equiv 95^{2} \equiv 36(1 \text { step }) \\
& 17^{2^{4}} \equiv 36^{2} \equiv 84(1 \text { step }) \\
& 17^{2^{5}} \equiv 84^{2} \equiv 87(1 \text { step }) \\
& 17^{2^{6}} \equiv 87^{2} \equiv 95(1 \text { step }) \\
& 17^{2^{7}} \equiv 95^{2} \equiv 36(1 \text { step }) \\
& 17^{2^{8}} \equiv 36^{2} \equiv 84(1 \text { step })
\end{aligned}
$$

This took $8 \sim \lg (265)$ multiplications so far.
The next step takes only two multiplications:

$$
17^{265} \equiv 17^{2^{8}} \times 17^{2^{3}} \times 17^{2^{0}} \equiv 84 \times 36 \times 17 \equiv 100
$$

Point: Step 2 took $<\lg (265)$ steps since base-2 rep had few 1's.

Generators and Discrete Logarithms

Generators $(\bmod p)$

Let's take powers of $3 \bmod 7$. All math is mod 7 .

Generators $(\bmod p)$

Let's take powers of $3 \bmod 7$. All math is mod 7 . $3^{1} \equiv 3$

Generators $(\bmod p)$

Let's take powers of $3 \bmod 7$. All math is mod 7 . $3^{1} \equiv 3$
$3^{2} \equiv 3 \times 3^{1} \equiv 9 \equiv 2$

Generators $(\bmod p)$

Let's take powers of $3 \bmod 7$. All math is mod 7 . $3^{1} \equiv 3$
$3^{2} \equiv 3 \times 3^{1} \equiv 9 \equiv 2$
$3^{3} \equiv 3 \times 3^{2} \equiv 3 \times 2 \equiv 6$

Generators $(\bmod p)$

Let's take powers of $3 \bmod 7$. All math is mod 7 . $3^{1} \equiv 3$
$3^{2} \equiv 3 \times 3^{1} \equiv 9 \equiv 2$
$3^{3} \equiv 3 \times 3^{2} \equiv 3 \times 2 \equiv 6$
$3^{4} \equiv 3 \times 3^{3} \equiv 3 \times 6 \equiv 18 \equiv 4$

Generators $(\bmod p)$

Let's take powers of $3 \bmod 7$. All math is mod 7 . $3^{1} \equiv 3$
$3^{2} \equiv 3 \times 3^{1} \equiv 9 \equiv 2$
$3^{3} \equiv 3 \times 3^{2} \equiv 3 \times 2 \equiv 6$
$3^{4} \equiv 3 \times 3^{3} \equiv 3 \times 6 \equiv 18 \equiv 4$
$3^{5} \equiv 3 \times 3^{4} \equiv 3 \times 4 \equiv 12 \equiv 5$

Generators $(\bmod p)$

Let's take powers of $3 \bmod 7$. All math is mod 7 . $3^{1} \equiv 3$
$3^{2} \equiv 3 \times 3^{1} \equiv 9 \equiv 2$
$3^{3} \equiv 3 \times 3^{2} \equiv 3 \times 2 \equiv 6$
$3^{4} \equiv 3 \times 3^{3} \equiv 3 \times 6 \equiv 18 \equiv 4$
$3^{5} \equiv 3 \times 3^{4} \equiv 3 \times 4 \equiv 12 \equiv 5$
$3^{6} \equiv 3 \times 3^{5} \equiv 3 \times 5 \equiv 15 \equiv 1$

Generators $(\bmod p)$

Let's take powers of $3 \bmod 7$. All math is mod 7 . $3^{1} \equiv 3$
$3^{2} \equiv 3 \times 3^{1} \equiv 9 \equiv 2$
$3^{3} \equiv 3 \times 3^{2} \equiv 3 \times 2 \equiv 6$
$3^{4} \equiv 3 \times 3^{3} \equiv 3 \times 6 \equiv 18 \equiv 4$
$3^{5} \equiv 3 \times 3^{4} \equiv 3 \times 4 \equiv 12 \equiv 5$
$3^{6} \equiv 3 \times 3^{5} \equiv 3 \times 5 \equiv 15 \equiv 1$

$$
\left\{3^{1}, 3^{2}, 3^{3}, 3^{4}, 3^{5}, 3^{6}\right\}=\{1,2,3,4,5,6\} \text { Not in order. }
$$

Generators $(\bmod p)$

Let's take powers of $3 \bmod 7$. All math is mod 7 .
$3^{1} \equiv 3$
$3^{2} \equiv 3 \times 3^{1} \equiv 9 \equiv 2$
$3^{3} \equiv 3 \times 3^{2} \equiv 3 \times 2 \equiv 6$
$3^{4} \equiv 3 \times 3^{3} \equiv 3 \times 6 \equiv 18 \equiv 4$
$3^{5} \equiv 3 \times 3^{4} \equiv 3 \times 4 \equiv 12 \equiv 5$
$3^{6} \equiv 3 \times 3^{5} \equiv 3 \times 5 \equiv 15 \equiv 1$

$$
\left\{3^{1}, 3^{2}, 3^{3}, 3^{4}, 3^{5}, 3^{6}\right\}=\{1,2,3,4,5,6\} \text { Not in order. }
$$

3 is a generator for \mathbb{Z}_{7}^{*}.

Generators $(\bmod p)$

Let's take powers of $3 \bmod 7$. All math is mod 7 .
$3^{1} \equiv 3$
$3^{2} \equiv 3 \times 3^{1} \equiv 9 \equiv 2$
$3^{3} \equiv 3 \times 3^{2} \equiv 3 \times 2 \equiv 6$
$3^{4} \equiv 3 \times 3^{3} \equiv 3 \times 6 \equiv 18 \equiv 4$
$3^{5} \equiv 3 \times 3^{4} \equiv 3 \times 4 \equiv 12 \equiv 5$
$3^{6} \equiv 3 \times 3^{5} \equiv 3 \times 5 \equiv 15 \equiv 1$

$$
\left\{3^{1}, 3^{2}, 3^{3}, 3^{4}, 3^{5}, 3^{6}\right\}=\{1,2,3,4,5,6\} \text { Not in order. }
$$

3 is a generator for \mathbb{Z}_{7}^{*}.
Definition: If p is a prime and $\left\{g^{1}, \ldots, g^{p-1}\right\}=\{1, \ldots, p-1\}$ then g is a generator for \mathbb{Z}_{p}^{*}.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101. Discuss the following with your neighbor:

1. Find x such that $3^{x} \equiv 81$.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101. Discuss the following with your neighbor:

1. Find x such that $3^{x} \equiv 81$. $x=4$ obv works.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that $3^{x} \equiv 81$. $x=4$ obv works.
2. Find x such that $3^{x} \equiv 92$.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that $3^{x} \equiv 81$. $x=4$ obv works.
2. Find x such that $3^{x} \equiv 92$.

Try computing $3^{1}, 3^{2}, \ldots$, until you get 92 .

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that $3^{x} \equiv 81$. $x=4$ obv works.
2. Find x such that $3^{x} \equiv 92$.

Try computing $3^{1}, 3^{2}, \ldots$, until you get 92 . Might take ~ 100 steps.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that $3^{x} \equiv 81$. $x=4$ obv works.
2. Find x such that $3^{x} \equiv 92$.

Try computing $3^{1}, 3^{2}, \ldots$, until you get 92 .
Might take ~ 100 steps. Shortcut?

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that $3^{x} \equiv 81$. $x=4$ obv works.
2. Find x such that $3^{x} \equiv 92$.

Try computing $3^{1}, 3^{2}, \ldots$, until you get 92 .
Might take ~ 100 steps. Shortcut?
3. Find x such that $3^{x} \equiv 93$.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that $3^{x} \equiv 81$. $x=4$ obv works.
2. Find x such that $3^{x} \equiv 92$.

Try computing $3^{1}, 3^{2}, \ldots$, until you get 92 .
Might take ~ 100 steps. Shortcut?
3. Find x such that $3^{x} \equiv 93$.

Try computing $3^{1}, 3^{2}, \ldots$, until you get 93 .

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that $3^{x} \equiv 81$. $x=4$ obv works.
2. Find x such that $3^{x} \equiv 92$.

Try computing $3^{1}, 3^{2}, \ldots$, until you get 92 . Might take ~ 100 steps. Shortcut?
3. Find x such that $3^{x} \equiv 93$.

Try computing $3^{1}, 3^{2}, \ldots$, until you get 93 .
Might take ~ 100 steps.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that $3^{x} \equiv 81$. $x=4$ obv works.
2. Find x such that $3^{x} \equiv 92$.

Try computing $3^{1}, 3^{2}, \ldots$, until you get 92 .
Might take ~ 100 steps. Shortcut?
3. Find x such that $3^{x} \equiv 93$.

Try computing $3^{1}, 3^{2}, \ldots$, until you get 93 .
Might take ~ 100 steps. Shortcut?

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that $3^{x} \equiv 81$. $x=4$ obv works.
2. Find x such that $3^{x} \equiv 92$.

Try computing $3^{1}, 3^{2}, \ldots$, until you get 92 .
Might take ~ 100 steps. Shortcut?
3. Find x such that $3^{x} \equiv 93$.

Try computing $3^{1}, 3^{2}, \ldots$, until you get 93 .
Might take ~ 100 steps. Shortcut?
The second and third problem look hard. Are they? VOTE: Both hard, both easy, one of each, unknown to science.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that $3^{x} \equiv 81$. $x=4$ obv works.
2. Find x such that $3^{x} \equiv 92$.

Try computing $3^{1}, 3^{2}, \ldots$, until you get 92 .
Might take ~ 100 steps. Shortcut?
3. Find x such that $3^{x} \equiv 93$.

Try computing $3^{1}, 3^{2}, \ldots$, until you get 93 .
Might take ~ 100 steps. Shortcut?
The second and third problem look hard. Are they? VOTE: Both hard, both easy, one of each, unknown to science.
$3^{x} \equiv 92$ easy. $3^{x} \equiv 93$ Not known how hard.

Discrete Log-Example: $3^{x} \equiv 92(\bmod 101)$

Fact: 3 is a generator $\bmod 101$. All math is $\bmod 101$.

Discrete Log-Example: $3^{x} \equiv 92(\bmod 101)$

Fact: 3 is a generator $\bmod 101$. All math is mod 101 .
Find x such that $3^{x} \equiv 92$. Easy!

Discrete Log-Example: $3^{x} \equiv 92(\bmod 101)$

Fact: 3 is a generator $\bmod 101$. All math is mod 101 .
Find x such that $3^{x} \equiv 92$. Easy!

$$
\text { 1. } 92 \equiv 101-9 \equiv(-1)(9) \equiv(-1) 3^{2} .
$$

Discrete Log-Example: $3^{x} \equiv 92(\bmod 101)$

Fact: 3 is a generator $\bmod 101$. All math is mod 101.
Find x such that $3^{x} \equiv 92$. Easy!

1. $92 \equiv 101-9 \equiv(-1)(9) \equiv(-1) 3^{2}$.
2. $3^{50} \equiv-1$ (WHAT! Really?)

Discrete Log-Example: $3^{x} \equiv 92(\bmod 101)$

Fact: 3 is a generator $\bmod 101$. All math is mod 101.
Find x such that $3^{x} \equiv 92$. Easy!

1. $92 \equiv 101-9 \equiv(-1)(9) \equiv(-1) 3^{2}$.
2. $3^{50} \equiv-1$ (WHAT! Really?)
3. $92 \equiv 3^{50} \times 3^{2} \equiv 3^{52}$. So $x=52$ works.

Discrete Log-Example: $3^{x} \equiv 92(\bmod 101)$

Fact: 3 is a generator $\bmod 101$. All math is mod 101.
Find x such that $3^{x} \equiv 92$. Easy!

1. $92 \equiv 101-9 \equiv(-1)(9) \equiv(-1) 3^{2}$.
2. $3^{50} \equiv-1$ (WHAT! Really?)
3. $92 \equiv 3^{50} \times 3^{2} \equiv 3^{52}$. So $x=52$ works.

Generalize:

Discrete Log-Example: $3^{x} \equiv 92(\bmod 101)$

Fact: 3 is a generator $\bmod 101$. All math is mod 101.
Find x such that $3^{x} \equiv 92$. Easy!

1. $92 \equiv 101-9 \equiv(-1)(9) \equiv(-1) 3^{2}$.
2. $3^{50} \equiv-1$ (WHAT! Really?)
3. $92 \equiv 3^{50} \times 3^{2} \equiv 3^{52}$. So $x=52$ works.

Generalize:

1. If g is a generator of \mathbb{Z}_{p}^{*} then $g^{(p-1) / 2} \equiv p-1 \equiv-1$.

Discrete Log-Example: $3^{x} \equiv 92(\bmod 101)$

Fact: 3 is a generator $\bmod 101$. All math is mod 101 .
Find x such that $3^{x} \equiv 92$. Easy!

1. $92 \equiv 101-9 \equiv(-1)(9) \equiv(-1) 3^{2}$.
2. $3^{50} \equiv-1$ (WHAT! Really?)
3. $92 \equiv 3^{50} \times 3^{2} \equiv 3^{52}$. So $x=52$ works.

Generalize:

1. If g is a generator of \mathbb{Z}_{p}^{*} then $g^{(p-1) / 2} \equiv p-1 \equiv-1$.
2. So finding x such that $g^{x} \equiv p-g^{a} \equiv-g^{a}$ is easy:

$$
x=\frac{p-1}{2}+a: \quad g^{\frac{p-1}{2}+a}=g^{\frac{p-1}{2}} g^{a} \equiv-g^{a}
$$

Discrete Log-Example: $3^{x} \equiv 93(\bmod 101)$

Fact: 3 is a generator $\bmod 101$. All math is mod 101.
Is there a trick for $g^{x} \equiv 93(\bmod 101)$? Not that I know of.

Discrete Log-Example: $3^{x} \equiv 93(\bmod 101)$

Fact: 3 is a generator $\bmod 101$. All math is mod 101.
Is there a trick for $g^{x} \equiv 93(\bmod 101)$? Not that I know of.
What is known about complexity of discrete log?
Given g, a, p find x such that $g^{x} \equiv a(\bmod p)$.

Discrete Log-Example: $3^{x} \equiv 93(\bmod 101)$

Fact: 3 is a generator $\bmod 101$. All math is mod 101.
Is there a trick for $g^{x} \equiv 93(\bmod 101)$? Not that I know of.
What is known about complexity of discrete log?
Given g, a, p find x such that $g^{x} \equiv a(\bmod p)$.

1. Naive algorithm is $O(p)$ time.

Discrete Log-Example: $3^{x} \equiv 93(\bmod 101)$

Fact: 3 is a generator $\bmod 101$. All math is mod 101.
Is there a trick for $g^{x} \equiv 93(\bmod 101)$? Not that I know of.
What is known about complexity of discrete log?
Given g, a, p find x such that $g^{x} \equiv a(\bmod p)$.

1. Naive algorithm is $O(p)$ time.
2. Exists a $O(\sqrt{p})$ Time, $O(\sqrt{p})$ space alg. Space makes it not useable.

Discrete Log-Example: $3^{x} \equiv 93(\bmod 101)$

Fact: 3 is a generator $\bmod 101$. All math is mod 101.
Is there a trick for $g^{x} \equiv 93(\bmod 101)$? Not that I know of.
What is known about complexity of discrete log?
Given g, a, p find x such that $g^{x} \equiv a(\bmod p)$.

1. Naive algorithm is $O(p)$ time.
2. Exists a $O(\sqrt{p})$ Time, $O(\sqrt{p})$ space alg. Space makes it not useable.
3. Exists a $O(\sqrt{p})$ Time, $(\log p)^{O(1)}$ space alg. Space fine, but Time bad.

Discrete Log-Example: $3^{x} \equiv 93(\bmod 101)$

Fact: 3 is a generator $\bmod 101$. All math is mod 101.
Is there a trick for $g^{x} \equiv 93(\bmod 101)$? Not that I know of.
What is known about complexity of discrete log?
Given g, a, p find x such that $g^{x} \equiv a(\bmod p)$.

1. Naive algorithm is $O(p)$ time.
2. Exists a $O(\sqrt{p})$ Time, $O(\sqrt{p})$ space alg. Space makes it not useable.
3. Exists a $O(\sqrt{p})$ Time, $(\log p)^{O(1)}$ space alg. Space fine, but Time bad.
4. Not much progress on theory front since 1985.

Discrete Log-Example: $3^{x} \equiv 93(\bmod 101)$

Fact: 3 is a generator $\bmod 101$. All math is mod 101.
Is there a trick for $g^{x} \equiv 93(\bmod 101)$? Not that I know of.
What is known about complexity of discrete log?
Given g, a, p find x such that $g^{x} \equiv a(\bmod p)$.

1. Naive algorithm is $O(p)$ time.
2. Exists a $O(\sqrt{p})$ Time, $O(\sqrt{p})$ space alg. Space makes it not useable.
3. Exists a $O(\sqrt{p})$ Time, $(\log p)^{O(1)}$ space alg. Space fine, but Time bad.
4. Not much progress on theory front since 1985.
5. DL is in QuantumP.

My Opinion on DL. Also Applies to Factoring

My Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.

My Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.
2. Opinion: Quantum computers that can do DL fast won't happen

My Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.
2. Opinion: Quantum computers that can do DL fast won't happen in my lifetime.

My Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.
2. Opinion: Quantum computers that can do DL fast won't happen in my lifetime. In your lifetime.

My Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.
2. Opinion: Quantum computers that can do DL fast won't happen in my lifetime. In your lifetime. Ever.

My Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.
2. Opinion: Quantum computers that can do DL fast won't happen in my lifetime. In your lifetime. Ever.
3. Fact: Classical algorithms that are better than naive, using hard number theory, have been discovered and implemented. Still exponential but low constants, possibly good in practice. Some are amenable to parallelism.

My Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.
2. Opinion: Quantum computers that can do DL fast won't happen in my lifetime. In your lifetime. Ever.
3. Fact: Classical algorithms that are better than naive, using hard number theory, have been discovered and implemented. Still exponential but low constants, possibly good in practice. Some are amenable to parallelism.
4. Opinion: The biggest threat to crypto is from hard math combined with special purpose parallel hardware.

My Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.
2. Opinion: Quantum computers that can do DL fast won't happen in my lifetime. In your lifetime. Ever.
3. Fact: Classical algorithms that are better than naive, using hard number theory, have been discovered and implemented. Still exponential but low constants, possibly good in practice. Some are amenable to parallelism.
4. Opinion: The biggest threat to crypto is from hard math combined with special purpose parallel hardware.
5. Fact: If computers do DL much better (e.g., $O\left(n^{1 / 10}\right)$) then humans need to triple the length of their numbers. Still, Eve has made Alice and Bob work harder.

My Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.
2. Opinion: Quantum computers that can do DL fast won't happen in my lifetime. In your lifetime. Ever.
3. Fact: Classical algorithms that are better than naive, using hard number theory, have been discovered and implemented. Still exponential but low constants, possibly good in practice. Some are amenable to parallelism.
4. Opinion: The biggest threat to crypto is from hard math combined with special purpose parallel hardware.
5. Fact: If computers do DL much better (e.g., $O\left(n^{1 / 10}\right)$) then humans need to triple the length of their numbers. Still, Eve has made Alice and Bob work harder.
6. Opinion: When people really really need to up their parameters

My Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.
2. Opinion: Quantum computers that can do DL fast won't happen in my lifetime. In your lifetime. Ever.
3. Fact: Classical algorithms that are better than naive, using hard number theory, have been discovered and implemented. Still exponential but low constants, possibly good in practice. Some are amenable to parallelism.
4. Opinion: The biggest threat to crypto is from hard math combined with special purpose parallel hardware.
5. Fact: If computers do DL much better (e.g., $O\left(n^{1 / 10}\right)$) then humans need to triple the length of their numbers. Still, Eve has made Alice and Bob work harder.
6. Opinion: When people really really need to up their parameters they don't.

My Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.
2. Opinion: Quantum computers that can do DL fast won't happen in my lifetime. In your lifetime. Ever.
3. Fact: Classical algorithms that are better than naive, using hard number theory, have been discovered and implemented. Still exponential but low constants, possibly good in practice. Some are amenable to parallelism.
4. Opinion: The biggest threat to crypto is from hard math combined with special purpose parallel hardware.
5. Fact: If computers do DL much better (e.g., $O\left(n^{1 / 10}\right)$) then humans need to triple the length of their numbers. Still, Eve has made Alice and Bob work harder.
6. Opinion: When people really really need to up their parameters they don't. They say

My Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.
2. Opinion: Quantum computers that can do DL fast won't happen in my lifetime. In your lifetime. Ever.
3. Fact: Classical algorithms that are better than naive, using hard number theory, have been discovered and implemented. Still exponential but low constants, possibly good in practice. Some are amenable to parallelism.
4. Opinion: The biggest threat to crypto is from hard math combined with special purpose parallel hardware.
5. Fact: If computers do DL much better (e.g., $O\left(n^{1 / 10}\right)$) then humans need to triple the length of their numbers. Still, Eve has made Alice and Bob work harder.
6. Opinion: When people really really need to up their parameters they don't. They say

It won't happen to me

My Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.
2. Opinion: Quantum computers that can do DL fast won't happen in my lifetime. In your lifetime. Ever.
3. Fact: Classical algorithms that are better than naive, using hard number theory, have been discovered and implemented. Still exponential but low constants, possibly good in practice. Some are amenable to parallelism.
4. Opinion: The biggest threat to crypto is from hard math combined with special purpose parallel hardware.
5. Fact: If computers do DL much better (e.g., $O\left(n^{1 / 10}\right)$) then humans need to triple the length of their numbers. Still, Eve has made Alice and Bob work harder.
6. Opinion: When people really really need to up their parameters they don't. They say

It won't happen to me Until it does.

My Opinion of My Opinion

I am not an expert on

My Opinion of My Opinion

I am not an expert on

1. Theoretical Quantum Computing

My Opinion of My Opinion

I am not an expert on

1. Theoretical Quantum Computing
2. Practical Quantum Computing

My Opinion of My Opinion

I am not an expert on

1. Theoretical Quantum Computing
2. Practical Quantum Computing
3. Discrete Log algorithms

My Opinion of My Opinion

I am not an expert on

1. Theoretical Quantum Computing
2. Practical Quantum Computing
3. Discrete Log algorithms

Hence my opinion might be wrong.

My Opinion of My Opinion

I am not an expert on

1. Theoretical Quantum Computing
2. Practical Quantum Computing
3. Discrete Log algorithms

Hence my opinion might be wrong.
Actually, if I was and expert on any or all of the above my opinion could still be wrong.

My Opinion of My Opinion

I am not an expert on

1. Theoretical Quantum Computing
2. Practical Quantum Computing
3. Discrete Log algorithms

Hence my opinion might be wrong.
Actually, if I was and expert on any or all of the above my opinion could still be wrong.

1. Newton believed in alchemy.

My Opinion of My Opinion

I am not an expert on

1. Theoretical Quantum Computing
2. Practical Quantum Computing
3. Discrete Log algorithms

Hence my opinion might be wrong.
Actually, if I was and expert on any or all of the above my opinion could still be wrong.

1. Newton believed in alchemy.
2. Alan Turing believed that you should first teach computers to think and talk and understand, and then teach them chess.

Discrete Log-General

Definition Let p be a prime and g be a generator $\bmod p$. The Discrete Log Problem: Given $y \in\{1, \ldots, p\}$, find x such that $g^{x} \equiv y(\bmod p)$. We call this $D L_{p, g}(y)$.

Discrete Log-General

Definition Let p be a prime and g be a generator $\bmod p$. The Discrete Log Problem: Given $y \in\{1, \ldots, p\}$, find x such that $g^{x} \equiv y(\bmod p)$. We call this $D L_{p, g}(y)$.

1. If g is small then $D L\left(g^{a}\right)$ might be easy: $D L_{1009,7}(49)=2$ since $7^{2} \equiv 49(\bmod 1009)$.

Discrete Log-General

Definition Let p be a prime and g be a generator $\bmod p$. The Discrete Log Problem: Given $y \in\{1, \ldots, p\}$, find x such that $g^{x} \equiv y(\bmod p)$. We call this $D L_{p, g}(y)$.

1. If g is small then $D L\left(g^{a}\right)$ might be easy: $D L_{1009,7}(49)=2$ since $7^{2} \equiv 49(\bmod 1009)$.
2. If g is small then $D L\left(p-g^{a}\right)$ might be easy:
$D L_{1009,7}(1009-49)=506$ since $7^{504} 7^{2} \equiv-7^{2} \equiv 1009-49$ (mod 1009).

Discrete Log-General

Definition Let p be a prime and g be a generator $\bmod p$. The Discrete Log Problem:
Given $y \in\{1, \ldots, p\}$, find x such that $g^{x} \equiv y(\bmod p)$. We call this $D L_{p, g}(y)$.

1. If g is small then $D L\left(g^{a}\right)$ might be easy: $D L_{1009,7}(49)=2$ since $7^{2} \equiv 49(\bmod 1009)$.
2. If g is small then $D L\left(p-g^{a}\right)$ might be easy:
$D L_{1009,7}(1009-49)=506$ since $7^{504} 7^{2} \equiv-7^{2} \equiv 1009-49$ $(\bmod 1009)$.
3. If $g, a \in\left\{\frac{p}{3}, \ldots, \frac{2 p}{3}\right\}$ then problem suspected hard.

Discrete Log-General

Definition Let p be a prime and g be a generator $\bmod p$. The Discrete Log Problem:
Given $y \in\{1, \ldots, p\}$, find x such that $g^{x} \equiv y(\bmod p)$. We call this $D L_{p, g}(y)$.

1. If g is small then $D L\left(g^{a}\right)$ might be easy: $D L_{1009,7}(49)=2$ since $7^{2} \equiv 49(\bmod 1009)$.
2. If g is small then $D L\left(p-g^{a}\right)$ might be easy:
$D L_{1009,7}(1009-49)=506$ since $7^{504} 7^{2} \equiv-7^{2} \equiv 1009-49$ $(\bmod 1009)$.
3. If $g, a \in\left\{\frac{p}{3}, \ldots, \frac{2 p}{3}\right\}$ then problem suspected hard.
4. Tradeoff: By restricting a we are cutting down search space for Eve. Even so, in this case we need to since she REALLY can recognize when DL is easy.

Consider What We Already Have Here

Consider What We Already Have Here

- Exponentiation is Easy.

Consider What We Already Have Here

- Exponentiation is Easy.
- Discrete Log is thought to be Hard.

Consider What We Already Have Here

- Exponentiation is Easy.
- Discrete Log is thought to be Hard.

We want a crypto system where:

Consider What We Already Have Here

- Exponentiation is Easy.
- Discrete Log is thought to be Hard.

We want a crypto system where:

- Alice and Bob do Exponentiation to encrypt and decrypt.

Consider What We Already Have Here

- Exponentiation is Easy.
- Discrete Log is thought to be Hard.

We want a crypto system where:

- Alice and Bob do Exponentiation to encrypt and decrypt.
- Eve has to do Discrete Log to crack it.

Consider What We Already Have Here

- Exponentiation is Easy.
- Discrete Log is thought to be Hard.

We want a crypto system where:

- Alice and Bob do Exponentiation to encrypt and decrypt.
- Eve has to do Discrete Log to crack it.

No. But we'll come close.

Convention

For the rest of the slides on Diffie-Hellman Key Exchange there will always be a prime p that we are considering.

ALL math done from that point on is mod p.
ALL numbers are in $\{1, \ldots, p-1\}$.

Finding Generators

Finding Gens; How Many Gens Are There?

Problem Given p, find g such that

- g generates \mathbb{Z}_{p}^{*}.
- $g \in\left\{\frac{p}{3}, \ldots, \frac{2 p}{3}\right\}$. (We ignore floors and ceilings for notational convienance.)

Finding Gens; How Many Gens Are There?

Problem Given p, find g such that
$-g$ generates \mathbb{Z}_{p}^{*}.

- $g \in\left\{\frac{p}{3}, \ldots, \frac{2 p}{3}\right\}$. (We ignore floors and ceilings for notational convienance.)

We could test $\frac{p}{3}$, then $\frac{p}{3}+1$, etc. Will we hit a generator soon?

Finding Gens; How Many Gens Are There?

Problem Given p, find g such that

- g generates \mathbb{Z}_{p}^{*}.
- $g \in\left\{\frac{p}{3}, \ldots, \frac{2 p}{3}\right\}$. (We ignore floors and ceilings for notational convienance.)

We could test $\frac{p}{3}$, then $\frac{p}{3}+1$, etc. Will we hit a generator soon?
How many elts of $\{1, \ldots, p-1\}$ are gens? $\Theta\left(\frac{c p}{\log \log p}\right)$

Finding Gens; How Many Gens Are There?

Problem Given p, find g such that

- g generates \mathbb{Z}_{p}^{*}.
- $g \in\left\{\frac{p}{3}, \ldots, \frac{2 p}{3}\right\}$. (We ignore floors and ceilings for notational convienance.)

We could test $\frac{p}{3}$, then $\frac{p}{3}+1$, etc. Will we hit a generator soon?
How many elts of $\{1, \ldots, p-1\}$ are gens? $\Theta\left(\frac{c p}{\log \log p}\right)$
Hence if you just look for a gen you will find one soon.

Finding Gens: First Attempt

Given prime p, find a gen for \mathbb{Z}_{p}^{*}

Finding Gens: First Attempt

Given prime p, find a gen for \mathbb{Z}_{p}^{*}

1. Input p.

Finding Gens: First Attempt

Given prime p, find a gen for \mathbb{Z}_{p}^{*}

1. Input p.
2. For $g=\left\lceil\frac{p}{3}\right\rceil$ to $\left\lfloor\frac{2 p}{3}\right\rfloor$:

Compute $g^{1}, g^{2}, \ldots, g^{p-1}$ until either hit a repeat or finish. If repeats then g is NOT a generator, so goto the next g. If finishes then output g and stop.

CON: Computing g^{1}, \ldots, g^{p-1} is $O(p)$ operations.

Finding Gens: First Attempt

Given prime p, find a gen for \mathbb{Z}_{p}^{*}

1. Input p.
2. For $g=\left\lceil\frac{p}{3}\right\rceil$ to $\left\lfloor\frac{2 p}{3}\right\rfloor$:

Compute $g^{1}, g^{2}, \ldots, g^{p-1}$ until either hit a repeat or finish. If repeats then g is NOT a generator, so goto the next g. If finishes then output g and stop.

CON: Computing g^{1}, \ldots, g^{p-1} is $O(p)$ operations.
Bad! Recall $(\log p)^{O(1)}$ is fast, $O(p)$ is slow.

Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that (1) x divides $p-1$, (2) $x \neq p-1$, and (3) $g^{x} \equiv 1$.

Given prime p, find a gen for \mathbb{Z}_{p}^{*}

Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that (1) x divides $p-1$, (2) $x \neq p-1$, and (3) $g^{x} \equiv 1$.

Given prime p, find a gen for \mathbb{Z}_{p}^{*}

1. Input p.

Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that (1) x divides $p-1$, (2) $x \neq p-1$, and (3) $g^{x} \equiv 1$.

Given prime p, find a gen for \mathbb{Z}_{p}^{*}

1. Input p.
2. Factor $p-1$. Let F be the set of its factors except $p-1$.

Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that (1) x divides $p-1$, (2) $x \neq p-1$, and (3) $g^{x} \equiv 1$.

Given prime p, find a gen for \mathbb{Z}_{p}^{*}

1. Input p.
2. Factor $p-1$. Let F be the set of its factors except $p-1$.
3. For $g=\left\lceil\frac{p}{3}\right\rceil$ to $\left\lfloor\frac{2 p}{3}\right\rfloor$:

Compute g^{x} for all $x \in F$. If any $=1$ then g not generator. If none are 1 then output g and stop.

Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that (1) x divides $p-1$, (2) $x \neq p-1$, and (3) $g^{x} \equiv 1$.

Given prime p, find a gen for \mathbb{Z}_{p}^{*}

1. Input p.
2. Factor $p-1$. Let F be the set of its factors except $p-1$.
3. For $g=\left\lceil\frac{p}{3}\right\rceil$ to $\left\lfloor\frac{2 p}{3}\right\rfloor$:

Compute g^{x} for all $x \in F$. If any $=1$ then g not generator. If none are 1 then output g and stop.

Is this a good algorithm?

Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that (1) x divides $p-1$, (2) $x \neq p-1$, and (3) $g^{x} \equiv 1$.

Given prime p, find a gen for \mathbb{Z}_{p}^{*}

1. Input p.
2. Factor $p-1$. Let F be the set of its factors except $p-1$.
3. For $g=\left\lceil\frac{p}{3}\right\rceil$ to $\left\lfloor\frac{2 p}{3}\right\rfloor$:

Compute g^{x} for all $x \in F$. If any $=1$ then g not generator.
If none are 1 then output g and stop.
Is this a good algorithm?
FACT Every iter - $O(|F|(\log p))$ ops. $|F|$ might be huge! So no good. But wait for next slide....

Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that (1) x divides $p-1$, (2) $x \neq p-1$, and (3) $g^{x} \equiv 1$.

Given prime p, find a gen for \mathbb{Z}_{p}^{*}

1. Input p.
2. Factor $p-1$. Let F be the set of its factors except $p-1$.
3. For $g=\left\lceil\frac{p}{3}\right\rceil$ to $\left\lfloor\frac{2 p}{3}\right\rfloor$:

Compute g^{x} for all $x \in F$. If any $=1$ then g not generator.
If none are 1 then output g and stop.
Is this a good algorithm?
FACT Every iter - $O(|F|(\log p))$ ops. $|F|$ might be huge! So no good. But wait for next slide....
BIG CON: Factoring $p-1$? Really? Darn!

Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.
2. $p-1$ may have many factors.

Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.
2. $p-1$ may have many factors.

We want $p-1$ to be easy to factor and have few factors.

Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.
2. $p-1$ may have many factors.

We want $p-1$ to be easy to factor and have few factors.
There are three kinds of people in the world:

Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.
2. $p-1$ may have many factors.

We want $p-1$ to be easy to factor and have few factors.
There are three kinds of people in the world:

1. Those who make things happen.

Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.
2. $p-1$ may have many factors.

We want $p-1$ to be easy to factor and have few factors.
There are three kinds of people in the world:

1. Those who make things happen.
2. Those who watch things happen.

Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.
2. $p-1$ may have many factors.

We want $p-1$ to be easy to factor and have few factors.
There are three kinds of people in the world:

1. Those who make things happen.
2. Those who watch things happen.
3. Those who wonder what happened.

Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.
2. $p-1$ may have many factors.

We want $p-1$ to be easy to factor and have few factors.
There are three kinds of people in the world:

1. Those who make things happen.
2. Those who watch things happen.
3. Those who wonder what happened.

We will make things happen.

Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.
2. $p-1$ may have many factors.

We want $p-1$ to be easy to factor and have few factors.
There are three kinds of people in the world:

1. Those who make things happen.
2. Those who watch things happen.
3. Those who wonder what happened.

We will make things happen.
We will make $p-1$ easy to factor.

Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.
2. $p-1$ may have many factors.

We want $p-1$ to be easy to factor and have few factors.
There are three kinds of people in the world:

1. Those who make things happen.
2. Those who watch things happen.
3. Those who wonder what happened.

We will make things happen.
We will make $p-1$ easy to factor.
We will make $p-1$ have few factors.

Finding Gens: Third Attempt

Idea: Pick p such that $p-1=2 q$ where q is prime.

Finding Gens: Third Attempt

Idea: Pick p such that $p-1=2 q$ where q is prime. Given prime p, find a gen for \mathbb{Z}_{p}^{*}

Finding Gens: Third Attempt

Idea: Pick p such that $p-1=2 q$ where q is prime. Given prime p, find a gen for \mathbb{Z}_{p}^{*}

1. Input p a prime such that $p-1=2 q$ where q is prime. (We later explore how we can find such a prime.)

Finding Gens: Third Attempt

Idea: Pick p such that $p-1=2 q$ where q is prime. Given prime p, find a gen for \mathbb{Z}_{p}^{*}

1. Input p a prime such that $p-1=2 q$ where q is prime. (We later explore how we can find such a prime.)
2. Factor $p-1$. Let F be the set of its factors except $p-1$. That's EASY: $F=\{2, q\}$.

Finding Gens: Third Attempt

Idea: Pick p such that $p-1=2 q$ where q is prime. Given prime p, find a gen for \mathbb{Z}_{p}^{*}

1. Input p a prime such that $p-1=2 q$ where q is prime. (We later explore how we can find such a prime.)
2. Factor $p-1$. Let F be the set of its factors except $p-1$. That's EASY: $F=\{2, q\}$.
3. For $g=\left\lceil\frac{p}{3}\right\rceil$ to $\left\lfloor\frac{2 p}{3}\right\rfloor$:

Compute g^{x} for all $x \in F$. If any $=1$ then g NOT generator. If none are 1 then output g and stop.

Finding Gens: Third Attempt

Idea: Pick p such that $p-1=2 q$ where q is prime.
Given prime p, find a gen for \mathbb{Z}_{p}^{*}

1. Input p a prime such that $p-1=2 q$ where q is prime. (We later explore how we can find such a prime.)
2. Factor $p-1$. Let F be the set of its factors except $p-1$. That's EASY: $F=\{2, q\}$.
3. For $g=\left\lceil\frac{p}{3}\right\rceil$ to $\left\lfloor\frac{2 p}{3}\right\rfloor$:

Compute g^{x} for all $x \in F$. If any $=1$ then g NOT generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO Every iteration does $O(\log p)$ operations.

Finding Gens: Third Attempt

Idea: Pick p such that $p-1=2 q$ where q is prime.
Given prime p, find a gen for \mathbb{Z}_{p}^{*}

1. Input p a prime such that $p-1=2 q$ where q is prime. (We later explore how we can find such a prime.)
2. Factor $p-1$. Let F be the set of its factors except $p-1$. That's EASY: $F=\{2, q\}$.
3. For $g=\left\lceil\frac{p}{3}\right\rceil$ to $\left\lfloor\frac{2 p}{3}\right\rfloor$:

Compute g^{x} for all $x \in F$. If any $=1$ then g NOT generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO Every iteration does $O(\log p)$ operations.
CON: Need both p and $\frac{p-1}{2}$ are primes.

Finding Gens: Third Attempt

Idea: Pick p such that $p-1=2 q$ where q is prime.
Given prime p, find a gen for \mathbb{Z}_{p}^{*}

1. Input p a prime such that $p-1=2 q$ where q is prime. (We later explore how we can find such a prime.)
2. Factor $p-1$. Let F be the set of its factors except $p-1$. That's EASY: $F=\{2, q\}$.
3. For $g=\left\lceil\frac{p}{3}\right\rceil$ to $\left\lfloor\frac{2 p}{3}\right\rfloor$:

Compute g^{x} for all $x \in F$. If any $=1$ then g NOT generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO Every iteration does $O(\log p)$ operations.
CON: Need both p and $\frac{p-1}{2}$ are primes.
CAVEAT We need to pick certain kinds of primes. Can do that!

Finding Gens: Fourth Attempt

Theorem If p is prime and $(p-1) / 2$ is prime and $a \in\{2, \ldots, p-2\}$, then a^{2} is a generator.

Finding Gens: Fourth Attempt

Theorem If p is prime and $(p-1) / 2$ is prime and $a \in\{2, \ldots, p-2\}$, then a^{2} is a generator.

1. Input p a prime such that $(p-1) / 2$ is prime. (We later explore how we can find such a prime.)

Finding Gens: Fourth Attempt

Theorem If p is prime and $(p-1) / 2$ is prime and $a \in\{2, \ldots, p-2\}$, then a^{2} is a generator.

1. Input p a prime such that $(p-1) / 2$ is prime. (We later explore how we can find such a prime.)
2. Pick $a \in\{2, \ldots, p-2\}$. Output a^{2}.

Finding Gens: Fourth Attempt

Theorem If p is prime and $(p-1) / 2$ is prime and $a \in\{2, \ldots, p-2\}$, then a^{2} is a generator.

1. Input p a prime such that $(p-1) / 2$ is prime. (We later explore how we can find such a prime.)
2. Pick $a \in\{2, \ldots, p-2\}$. Output a^{2}.

PRO Fast and can be deterministic (just take $a=2$).

Finding Gens: Fourth Attempt

Theorem If p is prime and $(p-1) / 2$ is prime and $a \in\{2, \ldots, p-2\}$, then a^{2} is a generator.

1. Input p a prime such that $(p-1) / 2$ is prime. (We later explore how we can find such a prime.)
2. Pick $a \in\{2, \ldots, p-2\}$. Output a^{2}.

PRO Fast and can be deterministic (just take $a=2$).
CAVEAT We need to pick certain kinds of primes. Can do that! Stay tuned! Will find primes next lecture!

BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!

