BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Public Key Cryptography: RSA

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Article Title: Whack a Mole: The new president (of Colombia) calls off talks with a lesser-known leftist insurgent group.

Article Title: Whack a Mole: The new president (of Colombia) calls off talks with a lesser-known leftist insurgent group.

Context: In 2016 FARC, a left-wing insurgent group in Columbia, signed a peace treaty that ended 50 years of conflict **Yeah**!

ション ふゆ アメリア メリア しょうくしゃ

Article Title: Whack a Mole: The new president (of Colombia) calls off talks with a lesser-known leftist insurgent group.

Context: In 2016 FARC, a left-wing insurgent group in Columbia, signed a peace treaty that ended 50 years of conflict **Yeah**!

The former president of Columbia got the Nobel Peace Prize (the leader of FARC did not - I do not know why).

Article Title: Whack a Mole: The new president (of Colombia) calls off talks with a lesser-known leftist insurgent group.

Context: In 2016 FARC, a left-wing insurgent group in Columbia, signed a peace treaty that ended 50 years of conflict **Yeah**!

The former president of Columbia got the Nobel Peace Prize (the leader of FARC did not – I do not know why).

However a more extreme insurgent group, ELN, is still active. Why did FARC negotiate but ELN did not?:

Article Title: Whack a Mole: The new president (of Colombia) calls off talks with a lesser-known leftist insurgent group.

Context: In 2016 FARC, a left-wing insurgent group in Columbia, signed a peace treaty that ended 50 years of conflict **Yeah**!

The former president of Columbia got the Nobel Peace Prize (the leader of FARC did not - I do not know why).

However a more extreme insurgent group, ELN, is still active. Why did FARC negotiate but ELN did not?:

Quote: ... And the ELN's **strong encryption system** has prevented the army from extracting information from seized computers, as it did with FARC.

Article Title: Whack a Mole: The new president (of Colombia) calls off talks with a lesser-known leftist insurgent group.

Context: In 2016 FARC, a left-wing insurgent group in Columbia, signed a peace treaty that ended 50 years of conflict **Yeah**!

The former president of Columbia got the Nobel Peace Prize (the leader of FARC did not - I do not know why).

However a more extreme insurgent group, ELN, is still active. Why did FARC negotiate but ELN did not?:

Quote: ... And the ELN's **strong encryption system** has prevented the army from extracting information from seized computers, as it did with FARC.

Caveat: The article did not say what system they used. Oh Well.

Academics often talk in code that **sounds** like normal speech, so you might not realize it. They talk in public, so this could be called **public key cryptography**.

Academics often talk in code that **sounds** like normal speech, so you might not realize it. They talk in public, so this could be called **public key cryptography**.

When Academics Say:

Academics often talk in code that **sounds** like normal speech, so you might not realize it. They talk in public, so this could be called **public key cryptography**.

When Academics Say: ... of great theoretical and practical importance.

Academics often talk in code that **sounds** like normal speech, so you might not realize it. They talk in public, so this could be called **public key cryptography**.

When Academics Say: ... of great theoretical and practical importance. They Mean:

Academics often talk in code that **sounds** like normal speech, so you might not realize it. They talk in public, so this could be called **public key cryptography**.

When Academics Say: ... of great theoretical and practical importance.

They Mean: interesting to me.

Academics often talk in code that **sounds** like normal speech, so you might not realize it. They talk in public, so this could be called **public key cryptography**.

When Academics Say: ... of great theoretical and practical importance. They Mean:interesting to me.

When Academics Say:

Academics often talk in code that **sounds** like normal speech, so you might not realize it. They talk in public, so this could be called **public key cryptography**.

When Academics Say: ... of great theoretical and practical importance. They Mean: interesting to me.

When Academics Say: It has long been known that....

Academics often talk in code that **sounds** like normal speech, so you might not realize it. They talk in public, so this could be called **public key cryptography**.

When Academics Say: ... of great theoretical and practical importance. They Mean:interesting to me.

When Academics Say: It has long been known that.... They Mean:

Academics often talk in code that **sounds** like normal speech, so you might not realize it. They talk in public, so this could be called **public key cryptography**.

When Academics Say: ... of great theoretical and practical importance. They Mean: interesting to me.

When Academics Say: It has long been known that.... They Mean: I haven't bothered to look up the original reference.

Academics often talk in code that **sounds** like normal speech, so you might not realize it. They talk in public, so this could be called **public key cryptography**.

When Academics Say: ... of great theoretical and practical importance. They Mean: interesting to me.

When Academics Say: It has long been known that.... They Mean: I haven't bothered to look up the original reference.

When Academics Say:

Academics often talk in code that **sounds** like normal speech, so you might not realize it. They talk in public, so this could be called **public key cryptography**.

When Academics Say: ... of great theoretical and practical importance. They Mean: interesting to me.

When Academics Say: It has long been known that.... They Mean: I haven't bothered to look up the original reference.

When Academics Say: The proof is left to the reader.

Academics often talk in code that **sounds** like normal speech, so you might not realize it. They talk in public, so this could be called **public key cryptography**.

When Academics Say: ... of great theoretical and practical importance. They Mean: interesting to me.

When Academics Say: It has long been known that.... They Mean: I haven't bothered to look up the original reference.

When Academics Say: The proof is left to the reader. They Mean:

Academics often talk in code that **sounds** like normal speech, so you might not realize it. They talk in public, so this could be called **public key cryptography**.

When Academics Say: ... of great theoretical and practical importance. They Mean: interesting to me.

When Academics Say: It has long been known that.... They Mean: I haven't bothered to look up the original reference.

When Academics Say: The proof is left to the reader. They Mean: Someone smarter than me can surely prove this.

When Academics Say:

When Academics Say: The agreement of my theory and the empirical data is Excellent.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

When Academics Say: The agreement of my theory and the empirical data is Excellent. They Mean:

When Academics Say: The agreement of my theory and the empirical data is Excellent. They Mean: The agreement of my theory and the empirical data is Good.

When Academics Say: The agreement of my theory and the empirical data is Excellent. They Mean: The agreement of my theory and the empirical data is Good.

When Academics Say:

When Academics Say: The agreement of my theory and the empirical data is Excellent. They Mean: The agreement of my theory and the empirical data is Good.

When Academics Say: The agreement of my theory and the empirical data is Good.

When Academics Say: The agreement of my theory and the empirical data is Excellent. They Mean: The agreement of my theory and the empirical data is

Good.

When Academics Say: The agreement of my theory and the empirical data is Good. They Mean:

When Academics Say: The agreement of my theory and the empirical data is Excellent.

They Mean: The agreement of my theory and the empirical data is Good.

When Academics Say: The agreement of my theory and the empirical data is Good.

They Mean: The agreement of my theory and the empirical data is is Non-existent.

When Academics Say: The agreement of my theory and the empirical data is Excellent.

They Mean: The agreement of my theory and the empirical data is Good.

When Academics Say: The agreement of my theory and the empirical data is Good. They Mean: The agreement of my theory and the empirical data is is Non-existent.

When Academics Say:

When Academics Say: The agreement of my theory and the empirical data is Excellent.

They Mean: The agreement of my theory and the empirical data is Good.

When Academics Say: The agreement of my theory and the empirical data is Good. They Mean: The agreement of my theory and the empirical data is

is Non-existent.

When Academics Say: It is generally believed that....

When Academics Say: The agreement of my theory and the empirical data is Excellent.

They Mean: The agreement of my theory and the empirical data is Good.

When Academics Say: The agreement of my theory and the empirical data is Good. They Mean: The agreement of my theory and the empirical data is is New substant.

is Non-existent.

When Academics Say: It is generally believed that.... They Mean:

When Academics Say: The agreement of my theory and the empirical data is Excellent.

They Mean: The agreement of my theory and the empirical data is Good.

When Academics Say: The agreement of my theory and the empirical data is Good. They Mean: The agreement of my theory and the empirical data is is Non-existent.

When Academics Say: It is generally believed that.... They Mean: Me and my friends think.... Public Key Cryptography: RSA

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

What does RSA Stand For?

RSA stands for

What does RSA Stand For?

RSA stands for

Rivest-Shamir-Adelman.

What does RSA Stand For?

RSA stands for

Rivest-Shamir-Adelman.

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

They are the ones who came up with this cryptosystem.

Recall Fermat's little Theorem **Thm** If p is prime and $a \in \mathbb{N}$ then

 $a^p \equiv a \pmod{p}$.

Recall Fermat's little Theorem Thm If p is prime and $a \in \mathbb{N}$ then

 $a^p \equiv a \pmod{p}$.

We want to divide both sides by a and get $a^{p-1} \equiv 1 \pmod{p}$.

Recall Fermat's little Theorem Thm If p is prime and $a \in \mathbb{N}$ then

 $a^p \equiv a \pmod{p}$.

We want to divide both sides by a and get $a^{p-1} \equiv 1 \pmod{p}$. Not quite right: What if $a \equiv 0 \pmod{p}$? Then not true. Hence:

Recall Fermat's little Theorem Thm If p is prime and $a \in \mathbb{N}$ then

$$a^p \equiv a \pmod{p}$$
.

We want to divide both sides by a and get $a^{p-1} \equiv 1 \pmod{p}$. Not quite right: What if $a \equiv 0 \pmod{p}$? Then not true. Hence: Thm If p is prime and $a \in \mathbb{N}$ and $a \not\equiv 0 \pmod{p}$ then

$$a^{p-1} \equiv 1 \pmod{p}.$$

ション ふゆ アメリア メリア しょうくしゃ

Recall Fermat's little Theorem Thm If p is prime and $a \in \mathbb{N}$ then

$$a^p \equiv a \pmod{p}$$
.

We want to divide both sides by a and get $a^{p-1} \equiv 1 \pmod{p}$. Not quite right: What if $a \equiv 0 \pmod{p}$? Then not true. Hence: **Thm** If p is prime and $a \in \mathbb{N}$ and $a \not\equiv 0 \pmod{p}$ then

$$a^{p-1} \equiv 1 \pmod{p}.$$

ション ふゆ アメリア メリア しょうくしゃ

We will refer to both as Fermat's Little Theorem.

Repeated squaring would take \sim lg(999, 999, 999) \sim 30 mults.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Repeated squaring would take $\sim lg(999, 999, 999) \sim 30$ mults. By Fermat's Little Thm $11^{106} \equiv 1 \pmod{107}$.

Repeated squaring would take \sim lg(999, 999, 999) \sim 30 mults. By Fermat's Little Thm $11^{106}\equiv 1 \pmod{107}$. Note 999, 999, 999 \equiv 27 (mod 106)

Repeated squaring would take \sim lg(999, 999, 999) \sim 30 mults. By Fermat's Little Thm $11^{106}\equiv 1 \pmod{107}$. Note 999, 999, 999 \equiv 27 (mod 106)

999,999,999 = 106k + 27 (don't care what k is)

Repeated squaring would take $\sim lg(999, 999, 999) \sim 30$ mults. By Fermat's Little Thm $11^{106} \equiv 1 \pmod{107}$. Note 999, 999, 999 $\equiv 27 \pmod{106}$

999,999,999 = 106k + 27 (don't care what k is)

 $11^{999,999,999} = 11^{106k} \times 11^{27} = (11^{106})^k \times 11^{27} \equiv 1^k 11^{27} \equiv 11^{27} \pmod{10}$

Repeated squaring would take $\sim lg(999, 999, 999) \sim 30$ mults. By Fermat's Little Thm $11^{106} \equiv 1 \pmod{107}$. Note 999, 999, 999 $\equiv 27 \pmod{106}$

999,999,999 = 106k + 27 (don't care what k is)

 $11^{999,999,999} = 11^{106k} \times 11^{27} = (11^{106})^k \times 11^{27} \equiv 1^k 11^{27} \equiv 11^{27} \pmod{10}$

 $11^{999,999,999} \equiv 11^{999,999,999} \pmod{106} \pmod{107} \equiv 11^{27} \pmod{107}$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Repeated squaring would take $\sim lg(999, 999, 999) \sim 30$ mults. By Fermat's Little Thm $11^{106} \equiv 1 \pmod{107}$. Note 999, 999, 999 $\equiv 27 \pmod{106}$

999,999,999 = 106k + 27 (don't care what k is)

$$11^{999,999,999} = 11^{106k} \times 11^{27} = (11^{106})^k \times 11^{27} \equiv 1^k 11^{27} \equiv 11^{27} \pmod{10}$$

$$\begin{split} 11^{999,999,999} &\equiv 11^{999,999,999} \pmod{106} \pmod{107} \equiv 11^{27} \pmod{107} \\ \text{Now do normal repeated squaring, } 2 \lg(27) = 10. \text{ Can do better.} \\ \text{Recall its really} \\ \lg(27) + \text{ the number of 1's in the binary rep of 27.} \end{split}$$

Repeated squaring would take $\sim lg(999, 999, 999) \sim 30$ mults. By Fermat's Little Thm $11^{106} \equiv 1 \pmod{107}$. Note 999, 999, 999 $\equiv 27 \pmod{106}$

999,999,999 = 106k + 27 (don't care what k is)

$$11^{999,999,999} = 11^{106k} \times 11^{27} = (11^{106})^k \times 11^{27} \equiv 1^k 11^{27} \equiv 11^{27} \pmod{10}$$

 $11^{999,999,999} \equiv 11^{999,999,999} \pmod{106} \pmod{107} \equiv 11^{27} \pmod{107}$ Now do normal repeated squaring, $2 \lg(27) = 10$. Can do better. Recall its really $\lg(27)$ + the number of 1's in the binary rep of 27. Can we generalize?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Repeated squaring would take $\sim lg(999, 999, 999) \sim 30$ mults. By Fermat's Little Thm $11^{106} \equiv 1 \pmod{107}$. Note 999, 999, 999 $\equiv 27 \pmod{106}$

999,999,999 = 106k + 27 (don't care what k is)

$$11^{999,999,999} = 11^{106k} \times 11^{27} = (11^{106})^k \times 11^{27} \equiv 1^k 11^{27} \equiv 11^{27} \pmod{10}$$

 $11^{999,999,999} \equiv 11^{999,999,999} \pmod{106} \pmod{107} \equiv 11^{27} \pmod{107}$

Now do normal repeated squaring, $2 \lg(27) = 10$. Can do better. Recall its really $\lg(27)$ + the number of 1's in the binary rep of 27. Can we generalize? Yes

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Generalize p prime, $a \not\equiv 0 \pmod{p}$, $m \in \mathbb{N}$.

Generalize p prime, $a \not\equiv 0 \pmod{p}$, $m \in \mathbb{N}$. We want to compute $a^m \pmod{p}$.

Generalize p prime, $a \not\equiv 0 \pmod{p}$, $m \in \mathbb{N}$. We want to compute $a^m \pmod{p}$. We know that $a^{p-1} \equiv 1 \pmod{p}$.

Generalize p prime, $a \not\equiv 0 \pmod{p}$, $m \in \mathbb{N}$.

We want to compute $a^m \pmod{p}$.

We know that $a^{p-1} \equiv 1 \pmod{p}$. Divide *m* by p-1:

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Generalize p prime, $a \not\equiv 0 \pmod{p}$, $m \in \mathbb{N}$. We want to compute $a^m \pmod{p}$. We know that $a^{p-1} \equiv 1 \pmod{p}$. Divide m by p-1: m = k(p-1) + r

Generalize p prime, $a \not\equiv 0 \pmod{p}$, $m \in \mathbb{N}$. We want to compute $a^m \pmod{p}$. We know that $a^{p-1} \equiv 1 \pmod{p}$. Divide m by p-1: m = k(p-1) + rHence:

Generalize p prime, $a \not\equiv 0 \pmod{p}$, $m \in \mathbb{N}$. We want to compute $a^m \pmod{p}$. We know that $a^{p-1} \equiv 1 \pmod{p}$. Divide m by p - 1: m = k(p-1) + rHence:

$$a^m \equiv a^{k(p-1)+r} \equiv (a^{p-1})^k \times a^r \equiv 1^k a^r \equiv a^r$$

Generalize p prime, $a \not\equiv 0 \pmod{p}$, $m \in \mathbb{N}$. We want to compute $a^m \pmod{p}$. We know that $a^{p-1} \equiv 1 \pmod{p}$. Divide m by p - 1: m = k(p - 1) + rHence:

$$a^m \equiv a^{k(p-1)+r} \equiv (a^{p-1})^k \times a^r \equiv 1^k a^r \equiv a^r$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Since $r \equiv m \pmod{p-1}$, $a^m \equiv a^{m \mod p-1} \pmod{p}$

Generalize p prime, $a \not\equiv 0 \pmod{p}$, $m \in \mathbb{N}$. We want to compute $a^m \pmod{p}$. We know that $a^{p-1} \equiv 1 \pmod{p}$. Divide m by p - 1: m = k(p-1) + rHence:

$$a^m \equiv a^{k(p-1)+r} \equiv (a^{p-1})^k \times a^r \equiv 1^k a^r \equiv a^r$$

Since $r \equiv m \pmod{p-1}$, $a^m \equiv a^{m \mod p-1} \pmod{p}$ This last equation is the important point

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Next few slides are on the ϕ function.

Next few slides are on the ϕ function.

YES, you have already seen it.

Next few slides are on the ϕ function.

YES, you have already seen it.

Who first said Math is best learned twice... at least twice.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Next few slides are on the ϕ function.

YES, you have already seen it.

Who first said Math is best learned twice... at least twice. My CMSC 858R class thought either Gauss or Gasarch.

Next few slides are on the ϕ function.

YES, you have already seen it.

Who first said Math is best learned twice... at least twice. My CMSC 858R class thought either Gauss or Gasarch.

Answer: Said by Larry Denenberg, who was a grad student in CS the same time Bill Gasarch was.

ション ふゆ アメリア メリア しょうくしゃ

Next few slides are on the ϕ function.

YES, you have already seen it.

Who first said Math is best learned twice... at least twice. My CMSC 858R class thought either Gauss or Gasarch.

Answer: Said by Larry Denenberg, who was a grad student in CS the same time Bill Gasarch was. Popularized by Bill Gasarch.

ション ふゆ アメリア メリア しょうくしゃ

Next few slides are on the ϕ function.

YES, you have already seen it.

Who first said Math is best learned twice... at least twice. My CMSC 858R class thought either Gauss or Gasarch.

Answer: Said by Larry Denenberg, who was a grad student in CS the same time Bill Gasarch was. Popularized by Bill Gasarch. Probably not said by Gauss.

Next few slides are on the ϕ function.

YES, you have already seen it.

Who first said Math is best learned twice... at least twice. My CMSC 858R class thought either Gauss or Gasarch.

Answer: Said by Larry Denenberg, who was a grad student in CS the same time Bill Gasarch was. Popularized by Bill Gasarch. Probably not said by Gauss. Probably not true for Gauss.

Recall If p is prime and $1 \le a \le p - 1$ then $a^{p-1} \equiv 1 \pmod{p}$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recall If p is prime and $1 \le a \le p-1$ then $a^{p-1} \equiv 1 \pmod{p}$. **Recall** For all m, $a^m \equiv a^{m \pmod{p-1}} \pmod{p}$. So arithmetic in the exponents is mod p-1.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Recall If p is prime and $1 \le a \le p - 1$ then $a^{p-1} \equiv 1 \pmod{p}$. **Recall** For all m, $a^m \equiv a^{m \pmod{p-1}} \pmod{p}$. So arithmetic in the exponents is mod p - 1.

We need to generalize this to when the mod is **not** a prime.

Needed Mathematics- The ϕ Function (cont)

Recall If p is prime and $1 \le a \le p - 1$ then $a^{p-1} \equiv 1 \pmod{p}$. **Recall** For all m, $a^m \equiv a^{m \pmod{p-1}} \pmod{p}$. So arithmetic in the exponents is mod p - 1.

We need to generalize this to when the mod is **not** a prime. **Definition** $\phi(n)$ is the number of numbers in $\{1, \ldots, n\}$ that are relatively prime to n.

Needed Mathematics- The ϕ Function (cont)

Recall If p is prime and $1 \le a \le p - 1$ then $a^{p-1} \equiv 1 \pmod{p}$. **Recall** For all m, $a^m \equiv a^{m \pmod{p-1}} \pmod{p}$. So arithmetic in the exponents is mod p - 1.

We need to generalize this to when the mod is **not** a prime. **Definition** $\phi(n)$ is the number of numbers in $\{1, \ldots, n\}$ that are relatively prime to *n*. **Recall** If *p* is prime then $\phi(p) = p - 1$.

Needed Mathematics- The ϕ Function (cont)

Recall If p is prime and $1 \le a \le p - 1$ then $a^{p-1} \equiv 1 \pmod{p}$. **Recall** For all m, $a^m \equiv a^{m \pmod{p-1}} \pmod{p}$. So arithmetic in the exponents is mod p - 1.

We need to generalize this to when the mod is **not** a prime.

Definition $\phi(n)$ is the number of numbers in $\{1, \ldots, n\}$ that are relatively prime to n.

Recall If p is prime then $\phi(p) = p - 1$. **Recall** If a, b rel prime then $\phi(ab) = \phi(a)\phi(b)$.

We restate and generalize.

We restate and generalize.

Fermat's Little Theorem If *p* is prime and $a \not\equiv 0 \pmod{p}$ then

$$a^m \equiv a^{m \mod p-1} \pmod{p}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

We restate and generalize.

Fermat's Little Theorem If p is prime and $a \not\equiv 0 \pmod{p}$ then

$$a^m \equiv a^{m \mod p-1} \pmod{p}.$$

Restate:

Fermat's Little Theorem If p is prime and a is rel prime to p then

$$a^m \equiv a^{m \mod \phi(p)} \pmod{p}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

We restate and generalize.

Fermat's Little Theorem If *p* is prime and $a \not\equiv 0 \pmod{p}$ then

$$a^m \equiv a^{m \mod p-1} \pmod{p}.$$

Restate:

Fermat's Little Theorem If p is prime and a is rel prime to p then

$$a^m \equiv a^{m \mod \phi(p)} \pmod{p}.$$

Generalize: **Fermat-Euler Theorem** If $n \in \mathbb{N}$ and *a* is rel prime to *n* then

$$a^m \equiv a^{m \mod \phi(n)} \pmod{n}.$$

*ロト *目 * * * * * * * * * * * * * * *

14^{999,999} (mod 393)

(ロト (個) (E) (E) (E) (E) のへの

$$\phi(393) = \phi(3 \times 131) = \phi(3) \times \phi(131) = 2 \times 130 = 260.$$

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

$$\phi(393) = \phi(3 \times 131) = \phi(3) \times \phi(131) = 2 \times 130 = 260.$$

 $14^{999,999} = 14^{999,999} \pmod{260} \pmod{393} \equiv 14^{39} \pmod{393}$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$\phi(393) = \phi(3 \times 131) = \phi(3) \times \phi(131) = 2 \times 130 = 260.$$

 $14^{999,999} = 14^{999,999} \pmod{260} \pmod{393} \equiv 14^{39} \pmod{393}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Now just do repeated squaring.

I got you interested in the theorem

 $a^m \equiv a^{m \bmod \phi(n)} \pmod{n}$

by telling you that it can be used to do things like

17^{191,992,194,299,292,777} (mod 150).

with much less than 2 lg(191, 992, 194, 299, 292, 777) mults.

I got you interested in the theorem

 $a^m \equiv a^{m \bmod \phi(n)} \pmod{n}$

by telling you that it can be used to do things like

17^{191,992,194,299,292,777} (mod 150).

ション ふゆ アメリア メリア しょうくしゃ

with much less than $2 \lg(191, 992, 194, 299, 292, 777)$ mults. This is true! There will be some HW using it.

I got you interested in the theorem

 $a^m \equiv a^{m \bmod \phi(n)} \pmod{n}$

by telling you that it can be used to do things like

17^{191,992,194,299,292,777} (mod 150).

ション ふゆ アメリア メリア しょうくしゃ

with much less than $2 \lg(191, 992, 194, 299, 292, 777)$ mults. This is true! There will be some HW using it.

You are thinking

I got you interested in the theorem

 $a^m \equiv a^{m \bmod \phi(n)} \pmod{n}$

by telling you that it can be used to do things like

17^{191,992,194,299,292,777} (mod 150).

with much less than $2 \lg(191, 992, 194, 299, 292, 777)$ mults. This is true! There will be some HW using it.

You are thinking A&B will need to do $a^m \pmod{n}$ for large m.

ション ふゆ アメリア メリア しょうくしゃ

I got you interested in the theorem

 $a^m \equiv a^{m \bmod \phi(n)} \pmod{n}$

by telling you that it can be used to do things like

```
17<sup>191,992,194,299,292,777</sup> (mod 150).
```

with much less than $2 \lg(191, 992, 194, 299, 292, 777)$ mults. This is true! There will be some HW using it.

You are thinking A&B will need to do $a^m \pmod{n}$ for large m.

No. That is not what we will be doing, though I see why you would think that. Or you see why I think you would think that. Or

I got you interested in the theorem

 $a^m \equiv a^{m \bmod \phi(n)} \pmod{n}$

by telling you that it can be used to do things like

```
17<sup>191,992,194,299,292,777</sup> (mod 150).
```

with much less than $2 \lg(191, 992, 194, 299, 292, 777)$ mults. This is true! There will be some HW using it.

You are thinking A&B will need to do $a^m \pmod{n}$ for large m.

No. That is not what we will be doing, though I see why you would think that. Or you see why I think you would think that. Or We will just use the theorem:

$$a^m \equiv a^{m \mod \phi(n)} \pmod{n}$$
.

Easy or Hard?

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 善臣 めへぐ

Easy or Hard?

1. Given L, generate two primes of length L: p, q.

Easy or Hard?

1. Given L, generate two primes of length L: p, q. Easy.

Easy or Hard?

1. Given L, generate two primes of length L: p, q. Easy.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

2. Given p, q find N = pq and R = (p-1)(q-1).

Easy or Hard?

- 1. Given L, generate two primes of length L: p, q. Easy.
- 2. Given p, q find N = pq and R = (p-1)(q-1). Easy.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Easy or Hard?

- 1. Given L, generate two primes of length L: p, q. Easy.
- 2. Given p, q find N = pq and R = (p-1)(q-1). Easy.

3. Given R find an e rel prime to R. (e for encrypt.)

Easy or Hard?

- 1. Given L, generate two primes of length L: p, q. Easy.
- 2. Given p, q find N = pq and R = (p-1)(q-1). Easy.
- 3. Given R find an e rel prime to R. (e for encrypt.) Easy.

Easy or Hard?

- 1. Given L, generate two primes of length L: p, q. Easy.
- 2. Given p, q find N = pq and R = (p-1)(q-1). Easy.
- 3. Given R find an e rel prime to R. (e for encrypt.) Easy.

4. Given R, e find d such that $ed \equiv 1 \pmod{R}$.

Easy or Hard?

- 1. Given L, generate two primes of length L: p, q. Easy.
- 2. Given p, q find N = pq and R = (p-1)(q-1). Easy.
- 3. Given R find an e rel prime to R. (e for encrypt.) Easy.

4. Given R, e find d such that $ed \equiv 1 \pmod{R}$. Easy.

Easy or Hard?

- 1. Given L, generate two primes of length L: p, q. Easy.
- 2. Given p, q find N = pq and R = (p-1)(q-1). Easy.
- 3. Given R find an e rel prime to R. (e for encrypt.) Easy.

- 4. Given R, e find d such that $ed \equiv 1 \pmod{R}$. Easy.
- 5. Given N, e find d such that $ed \equiv 1 \pmod{R}$.

Easy or Hard?

- 1. Given L, generate two primes of length L: p, q. Easy.
- 2. Given p, q find N = pq and R = (p-1)(q-1). Easy.
- 3. Given R find an e rel prime to R. (e for encrypt.) Easy.

- 4. Given R, e find d such that $ed \equiv 1 \pmod{R}$. Easy.
- 5. Given N, e find d such that $ed \equiv 1 \pmod{R}$. Hard.

Easy or Hard?

- 1. Given L, generate two primes of length L: p, q. Easy.
- 2. Given p, q find N = pq and R = (p-1)(q-1). Easy.
- 3. Given R find an e rel prime to R. (e for encrypt.) Easy.

- 4. Given R, e find d such that $ed \equiv 1 \pmod{R}$. Easy.
- 5. Given N, e find d such that $ed \equiv 1 \pmod{R}$. Hard.
- 6. Compute $m^e \pmod{N}$.

Easy or Hard?

- 1. Given L, generate two primes of length L: p, q. Easy.
- 2. Given p, q find N = pq and R = (p-1)(q-1). Easy.
- 3. Given R find an e rel prime to R. (e for encrypt.) Easy.

- 4. Given R, e find d such that $ed \equiv 1 \pmod{R}$. Easy.
- 5. Given N, e find d such that $ed \equiv 1 \pmod{R}$. Hard.
- 6. Compute *m^e* (mod *N*). Easy.

Let *L* be a security parameter

Let *L* be a security parameter

1. Alice picks two primes p, q of length L and computes N = pq.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Let *L* be a security parameter

1. Alice picks two primes p, q of length L and computes N = pq.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2. Alice computes $R = \phi(N) = \phi(pq) = (p-1)(q-1)$.

Let *L* be a security parameter

- 1. Alice picks two primes p, q of length L and computes N = pq.
- 2. Alice computes $R = \phi(N) = \phi(pq) = (p-1)(q-1)$.
- 3. Alice picks an $e \in \{\frac{R}{3}, \ldots, \frac{2R}{3}\}$ that is relatively prime to R.

Let *L* be a security parameter

- 1. Alice picks two primes p, q of length L and computes N = pq.
- 2. Alice computes $R = \phi(N) = \phi(pq) = (p-1)(q-1)$.
- 3. Alice picks an $e \in \{\frac{R}{3}, \ldots, \frac{2R}{3}\}$ that is relatively prime to R.

4. Alice finds d such that $ed \equiv 1 \pmod{R}$.

Let *L* be a security parameter

- 1. Alice picks two primes p, q of length L and computes N = pq.
- 2. Alice computes $R = \phi(N) = \phi(pq) = (p-1)(q-1)$.
- 3. Alice picks an $e \in \{\frac{R}{3}, \ldots, \frac{2R}{3}\}$ that is relatively prime to R.

- 4. Alice finds d such that $ed \equiv 1 \pmod{R}$.
- 5. Alice broadcasts (N, e). (Bob and Eve both see it.)

Let *L* be a security parameter

- 1. Alice picks two primes p, q of length L and computes N = pq.
- 2. Alice computes $R = \phi(N) = \phi(pq) = (p-1)(q-1)$.
- 3. Alice picks an $e \in \{\frac{R}{3}, \ldots, \frac{2R}{3}\}$ that is relatively prime to R.

- 4. Alice finds d such that $ed \equiv 1 \pmod{R}$.
- 5. Alice broadcasts (N, e). (Bob and Eve both see it.)
- 6. Bob To send $m \in \{1, \ldots, N-1\}$, send $m^e \pmod{N}$.

Let *L* be a security parameter

- 1. Alice picks two primes p, q of length L and computes N = pq.
- 2. Alice computes $R = \phi(N) = \phi(pq) = (p-1)(q-1)$.
- 3. Alice picks an $e \in \{\frac{R}{3}, \dots, \frac{2R}{3}\}$ that is relatively prime to R.
- 4. Alice finds d such that $ed \equiv 1 \pmod{R}$.
- 5. Alice broadcasts (N, e). (Bob and Eve both see it.)
- 6. Bob To send $m \in \{1, \ldots, N-1\}$, send $m^e \pmod{N}$.
- 7. If Alice gets $m^e \pmod{N}$ she computes

$$(m^e)^d \equiv m^{ed} \equiv m^{ed \mod R} \equiv m^{1 \mod R} \equiv m^{1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let *L* be a security parameter

- 1. Alice picks two primes p, q of length L and computes N = pq.
- 2. Alice computes $R = \phi(N) = \phi(pq) = (p-1)(q-1)$.
- 3. Alice picks an $e \in \{\frac{R}{3}, \dots, \frac{2R}{3}\}$ that is relatively prime to R.
- 4. Alice finds d such that $ed \equiv 1 \pmod{R}$.
- 5. Alice broadcasts (N, e). (Bob and Eve both see it.)
- 6. Bob To send $m \in \{1, \ldots, N-1\}$, send $m^e \pmod{N}$.
- 7. If Alice gets $m^e \pmod{N}$ she computes

$$(m^e)^d \equiv m^{ed} \equiv m^{ed \mod R} \equiv m^{1 \mod R} \equiv m.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

PRO Alice and Bob can execute the protocol easily.

Let *L* be a security parameter

- 1. Alice picks two primes p, q of length L and computes N = pq.
- 2. Alice computes $R = \phi(N) = \phi(pq) = (p-1)(q-1)$.
- 3. Alice picks an $e \in \{\frac{R}{3}, \dots, \frac{2R}{3}\}$ that is relatively prime to R.
- 4. Alice finds d such that $ed \equiv 1 \pmod{R}$.
- 5. Alice broadcasts (N, e). (Bob and Eve both see it.)
- 6. Bob To send $m \in \{1, \ldots, N-1\}$, send $m^e \pmod{N}$.
- 7. If Alice gets $m^e \pmod{N}$ she computes

$$(m^e)^d \equiv m^{ed} \equiv m^{ed \mod R} \equiv m^{1 \mod R} \equiv m.$$

PRO Alice and Bob can execute the protocol easily. **Biggest PRO** Alice and Bob never had to meet!

Let *L* be a security parameter

- 1. Alice picks two primes p, q of length L and computes N = pq.
- 2. Alice computes $R = \phi(N) = \phi(pq) = (p-1)(q-1)$.
- 3. Alice picks an $e \in \{\frac{R}{3}, \dots, \frac{2R}{3}\}$ that is relatively prime to R.
- 4. Alice finds d such that $ed \equiv 1 \pmod{R}$.
- 5. Alice broadcasts (N, e). (Bob and Eve both see it.)
- 6. Bob To send $m \in \{1, \ldots, N-1\}$, send $m^e \pmod{N}$.
- 7. If Alice gets $m^e \pmod{N}$ she computes

$$(m^e)^d \equiv m^{ed} \equiv m^{ed \mod R} \equiv m^{1 \mod R} \equiv m.$$

PRO Alice and Bob can execute the protocol easily. **Biggest PRO** Alice and Bob never had to meet! **Question** Can Eve find out *m*?

Convention for RSA

Alice sends (N, e) to get the process started.

Convention for RSA

Alice sends (N, e) to get the process started.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Then Bob can send Alice messages.

Convention for RSA

Alice sends (N, e) to get the process started.

Then Bob can send Alice messages.

We don't have Alice sending Bob messages.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Alice sends (N, e) to get the process started.

Then Bob can send Alice messages.

We don't have Alice sending Bob messages.

In examples we do in slides and HW we might not have $e \in \{R/3, \ldots, 2R/3\}$ since we want to have easy computations for educational purposes.

ション ふゆ アメリア メリア しょうくしゃ

Pick out two students to be Alice and Bob. Use primes:

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

- p = 31, Prime.
- q = 37, Prime.

Pick out two students to be Alice and Bob. Use primes:

- p = 31, Prime.
- q = 37, Prime.
- N = pq = 31 * 37 = 1147. $R = \phi(N) = 30 * 36 = 1080.$

Pick out two students to be Alice and Bob. Use primes:

p = 31, Prime. q = 37, Prime. N = pq = 31 * 37 = 1147. $R = \phi(N) = 30 * 36 = 1080$. Use e = 77, e rel prime to RFind d = 533 ($ed \equiv 1 \pmod{R}$)) Check $ed = 77 * 533 = 41041 \equiv 1 \pmod{1080}$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Pick out two students to be Alice and Bob. Use primes: p = 31, Prime. q = 37, Prime. N = pq = 31 * 37 = 1147. $R = \phi(N) = 30 * 36 = 1080.$

 $R = \phi(N) = 30 * 36 = 1080.$ Use e = 77, e rel prime to RFind d = 533 ($ed \equiv 1 \pmod{R}$)) **Check** $ed = 77 * 533 = 41041 \equiv 1 \pmod{1080}.$ **Bob** pick an $m \in \{1, ..., N - 1\} = \{1, ..., 1146\}$. Do not tell us what it is.

ション ふぼう メリン メリン しょうくしゃ

Pick out two students to be Alice and Bob. Use primes: p = 31, Prime. q = 37, Prime. N = pq = 31 * 37 = 1147. $R = \phi(N) = 30 * 36 = 1080.$ Use e = 77, e rel prime to R Find d = 533 ($ed \equiv 1 \pmod{R}$) **Check** $ed = 77 * 533 = 41041 \equiv 1 \pmod{1080}$. **Bob** pick an $m \in \{1, ..., N-1\} = \{1, ..., 1146\}$. Do not tell us what it is.

Bob compute $c = m^e \pmod{1147}$ and tell it to us.

Pick out two students to be Alice and Bob. Use primes: p = 31, Prime. q = 37, Prime. N = pq = 31 * 37 = 1147. $R = \phi(N) = 30 * 36 = 1080.$ Use e = 77, e rel prime to R Find d = 533 ($ed \equiv 1 \pmod{R}$) **Check** $ed = 77 * 533 = 41041 \equiv 1 \pmod{1080}$. **Bob** pick an $m \in \{1, ..., N-1\} = \{1, ..., 1146\}$. Do not tell us what it is. **Bob** compute $c = m^e \pmod{1147}$ and tell it to us.

Alice compute $c^d \pmod{1147}$, should get back *m*.

If Eve can factor then she can crack RSA.

- 1. Input (N, e) where N = pq and e is rel prime to R = (p-1)(q-1). (p, q, R are NOT part of the input.)
- 2. Eve factors N to find p, q. Eve computes R = (p-1)(q-1).
- 3. Eve finds d such that $ed \equiv 1 \pmod{R}$.

If Factoring Easy then RSA is crackable

If Eve can factor then she can crack RSA.

- 1. Input (N, e) where N = pq and e is rel prime to R = (p-1)(q-1). (p, q, R are NOT part of the input.)
- 2. Eve factors N to find p, q. Eve computes R = (p-1)(q-1).
- 3. Eve finds d such that $ed \equiv 1 \pmod{R}$.

If Factoring Easy then RSA is crackable

What about converse?

If RSA is crackable then Factoring is Easy

VOTE TRUE or FALSE or UNKNOWN TO SCIENCE

If Eve can factor then she can crack RSA.

- 1. Input (N, e) where N = pq and e is rel prime to R = (p-1)(q-1). (p, q, R are NOT part of the input.)
- 2. Eve factors N to find p, q. Eve computes R = (p-1)(q-1).
- 3. Eve finds d such that $ed \equiv 1 \pmod{R}$.

If Factoring Easy then RSA is crackable

What about converse?

If RSA is crackable then Factoring is Easy

VOTE TRUE or FALSE or UNKNOWN TO SCIENCE UNKNOWN TO SCIENCE.

If Eve can factor then she can crack RSA.

- 1. Input (N, e) where N = pq and e is rel prime to R = (p-1)(q-1). (p, q, R are NOT part of the input.)
- 2. Eve factors N to find p, q. Eve computes R = (p-1)(q-1).
- 3. Eve finds d such that $ed \equiv 1 \pmod{R}$.

If Factoring Easy then RSA is crackable

What about converse?

If RSA is crackable then Factoring is Easy

VOTE TRUE or FALSE or UNKNOWN TO SCIENCE UNKNOWN TO SCIENCE.

Note In ugrad math classes rare to have a statement that is **UNKNOWN TO SCIENCE**. **Discuss**.

Definition Let f be the following function: **Input** $N, e, m^e \pmod{N}$ (know N = pq but don't know p, q). **Outputs** m.

Hardness assumption (HA) *f* is hard to compute.

One can show, assuming HA that RSA is hard to crack. But this proof will depend on a model of security. See caveats about this on similar DH slides (bribery, timing attacks, Maginot Line).

The following are all possible:

The following are all possible:

1) Factoring easy. RSA is crackable.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The following are all possible:

- 1) Factoring easy. RSA is crackable.
- 2) Factoring hard, HA false. RSA crackable, Factoring hard!!

The following are all possible:

- 1) Factoring easy. RSA is crackable.
- 2) Factoring hard, HA false. RSA crackable, Factoring hard!!
- 3) Factoring hard, HA true, but RSA is crackable by other means. Timing Attacks. Must rethink our model of security.

The following are all possible:

- 1) Factoring easy. RSA is crackable.
- 2) Factoring hard, HA false. RSA crackable, Factoring hard!!
- 3) Factoring hard, HA true, but RSA is crackable by other means. Timing Attacks. Must rethink our model of security.

4) Factoring hard, HA true, and RSA remains uncracked for years. Increases our confidence but

The following are all possible:

- 1) Factoring easy. RSA is crackable.
- 2) Factoring hard, HA false. RSA crackable, Factoring hard!!
- 3) Factoring hard, HA true, but RSA is crackable by other means. Timing Attacks. Must rethink our model of security.

4) Factoring hard, HA true, and RSA remains uncracked for years. Increases our confidence but

Item 4 is current state with some caveats: Do Alice and Bob use it properly? Do they have large enough parameters? What is Eve's computing power?

RSA has NY,NY Problem. Will Fix

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

The RSA given above is referred to as **Plain RSA**. **Insecure!**

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The RSA given above is referred to as **Plain RSA**. **Insecure!**

Scenario

Eve sees Bob send Alice c_1 (message is m_1).

The RSA given above is referred to as **Plain RSA**. **Insecure!**

Scenario

Eve sees Bob send Alice c_1 (message is m_1). Later Eve sees Bob send Alice c_2 (message is m_2).

The RSA given above is referred to as **Plain RSA**. **Insecure!**

Scenario

Eve sees Bob send Alice c_1 (message is m_1). Later Eve sees Bob send Alice c_2 (message is m_2).

What can Eve easily deduce?

The RSA given above is referred to as **Plain RSA**. **Insecure!**

Scenario

Eve sees Bob send Alice c_1 (message is m_1). Later Eve sees Bob send Alice c_2 (message is m_2).

ション ふゆ アメリア メリア しょうくしゃ

What can Eve easily deduce?

Eve can know if $c_1 = c_2$ or not. So what?

The RSA given above is referred to as **Plain RSA**. **Insecure!**

Scenario

Eve sees Bob send Alice c_1 (message is m_1). Later Eve sees Bob send Alice c_2 (message is m_2).

What can Eve easily deduce?

Eve can know if $c_1 = c_2$ or not. So what? Eve knows if $m_1 = m_2$ or not. Its the NY,NY problem!

ション ふゆ アメリア メリア しょうくしゃ

The RSA given above is referred to as **Plain RSA**. **Insecure!**

Scenario

Eve sees Bob send Alice c_1 (message is m_1). Later Eve sees Bob send Alice c_2 (message is m_2).

What can Eve easily deduce?

Eve can know if $c_1 = c_2$ or not. So what? Eve knows if $m_1 = m_2$ or not. Its the NY,NY problem!

ション ふゆ アメリア メリア しょうくしゃ

That alone makes it insecure.

The RSA given above is referred to as **Plain RSA**. **Insecure!**

Scenario

Eve sees Bob send Alice c_1 (message is m_1). Later Eve sees Bob send Alice c_2 (message is m_2).

What can Eve easily deduce?

Eve can know if $c_1 = c_2$ or not. So what? Eve knows if $m_1 = m_2$ or not. Its the NY,NY problem!

That alone makes it insecure.

Plain RSA is never used and should never be used!

PKCS-1.5 RSA

How can we fix RSA to make it work? Discuss

How can we fix RSA to make it work? **Discuss** Need randomness.

How can we fix RSA to make it work? **Discuss** Need randomness.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

We need to change how Bob sends a message; **BAD** To send $m \in \{1, ..., N - 1\}$, send $m^e \pmod{N}$.

How can we fix RSA to make it work? **Discuss** Need randomness.

We need to change how Bob sends a message; **BAD** To send $m \in \{1, ..., N - 1\}$, send $m^e \pmod{N}$.

FIX To send $m \in \{1, ..., N-1\}$, pick rand r, send $(rm)^e$. (NOTE- rm means r CONCAT with m here and elsewhere.) Alice and Bob agree on **length** of r ahead of time.

How can we fix RSA to make it work? **Discuss** Need randomness.

We need to change how Bob sends a message; **BAD** To send $m \in \{1, ..., N - 1\}$, send $m^e \pmod{N}$.

FIX To send $m \in \{1, ..., N-1\}$, pick rand r, send $(rm)^e$. (NOTE- rm means r CONCAT with m here and elsewhere.) Alice and Bob agree on **length** of r ahead of time.

Alice and Bob pick L_1 and L_2 such that $\lg N = L_1 + L_2$. To send $m \in \{0, 1\}^{L_2}$ pick random $r \in \{0, 1\}^{L_1}$. When Alice gets rm she will know that m is the last L_2 bits.

p = 31, q = 37, $N = pq = 31 \times 37 = 1147$.

$$p = 31, q = 37, N = pq = 31 \times 37 = 1147.$$

 $R = \phi(N) = 30 * 36 = 1080$

$$p = 31, q = 37, N = pq = 31 \times 37 = 1147.$$

 $R = \phi(N) = 30 * 36 = 1080$
 $e = 77$ (e rel prime to R), $d = 533$ (ed $\equiv 1 \pmod{R}$).
 $L_1 = 3.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

$$p = 31, q = 37, N = pq = 31 \times 37 = 1147.$$

 $R = \phi(N) = 30 * 36 = 1080$
 $e = 77$ (e rel prime to R), $d = 533$ (ed $\equiv 1 \pmod{R}$)).
 $L_1 = 3.$
Bob wants to send 1100100 (note- $L_2 = 7$ bits).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

$$p = 31, q = 37, N = pq = 31 \times 37 = 1147.$$

 $R = \phi(N) = 30 * 36 = 1080$
 $e = 77$ (e rel prime to R), $d = 533$ (ed $\equiv 1 \pmod{R}$)).
 $L_1 = 3.$
Pob wants to cond 1100100 (note $L_2 = 7$ bits)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Bob wants to send 1100100 (note- $L_2 = I$ bits).

1. Bob generates $L_1 = 3$ random bits. 100.

$$p = 31, q = 37, N = pq = 31 \times 37 = 1147.$$

 $R = \phi(N) = 30 * 36 = 1080$
 $e = 77$ (e rel prime to R), $d = 533$ (ed $\equiv 1 \pmod{R}$).
 $L_1 = 3.$

Bob wants to send 1100100 (note- $L_2 = 7$ bits).

- 1. Bob generates $L_1 = 3$ random bits. 100.
- Bob sends 1001100100 which is 612 in base 10 by sending 612⁷⁷ (mod 1147) which is 277.

$$p = 31, q = 37, N = pq = 31 \times 37 = 1147.$$

 $R = \phi(N) = 30 * 36 = 1080$
 $e = 77$ (e rel prime to R), $d = 533$ (ed $\equiv 1 \pmod{R}$).
 $L_1 = 3.$

Bob wants to send 1100100 (note- $L_2 = 7$ bits).

- 1. Bob generates $L_1 = 3$ random bits. 100.
- Bob sends 1001100100 which is 612 in base 10 by sending 612⁷⁷ (mod 1147) which is 277.

ション ふゆ アメリア メリア しょうくしゃ

3. Alice decodes by doing $277^{533} \pmod{1147} = 612$.

$$p = 31, q = 37, N = pq = 31 \times 37 = 1147.$$

 $R = \phi(N) = 30 * 36 = 1080$
 $e = 77$ (e rel prime to R), $d = 533$ (ed $\equiv 1 \pmod{R}$).
 $L_1 = 3.$

Bob wants to send 1100100 (note- $L_2 = 7$ bits).

- 1. Bob generates $L_1 = 3$ random bits. 100.
- Bob sends 1001100100 which is 612 in base 10 by sending 612⁷⁷ (mod 1147) which is 277.
- 3. Alice decodes by doing $277^{533} \pmod{1147} = 612$.
- 4. Alice puts 612 into binary to get 1001100100. She knows to only read the last 7 bits 1100100.

ション ふゆ アメリア メリア しょうくしゃ

$$p = 31, q = 37, N = pq = 31 \times 37 = 1147.$$

 $R = \phi(N) = 30 * 36 = 1080$
 $e = 77$ (e rel prime to R), $d = 533$ (ed $\equiv 1 \pmod{R}$).
 $L_1 = 3.$

Bob wants to send 1100100 (note- $L_2 = 7$ bits).

- 1. Bob generates $L_1 = 3$ random bits. 100.
- Bob sends 1001100100 which is 612 in base 10 by sending 612⁷⁷ (mod 1147) which is 277.
- 3. Alice decodes by doing $277^{533} \pmod{1147} = 612$.
- 4. Alice puts 612 into binary to get 1001100100. She knows to only read the last 7 bits 1100100.

Important If later Bob wants to send 100 again he will choose a DIFFERENT random 3 bits so Eve won't know he sent the same message.

RSA has Another Problem

Is PKCS-1.5 RSA Secure? VOTE

Is PKCS-1.5 RSA Secure? VOTE

▶ YES (under hardness assumptions and large *n*)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Is PKCS-1.5 RSA Secure? VOTE

- YES (under hardness assumptions and large n)
- ▶ NO (there is yet another weird security thing we overlooked)

Is PKCS-1.5 RSA Secure? VOTE

- YES (under hardness assumptions and large n)
- ▶ NO (there is yet another weird security thing we overlooked)

NO (there is yet another weird security thing we overlooked)

Is PKCS-1.5 RSA Secure? VOTE

- YES (under hardness assumptions and large n)
- ▶ NO (there is yet another weird security thing we overlooked)

ション ふゆ アメリア メリア しょうくしゃ

NO (there is yet another weird security thing we overlooked) **Scenario** N and e are public. Bob sends $(rm)^e \pmod{N}$. Eve cannot determine what m is.

Is PKCS-1.5 RSA Secure? VOTE

- YES (under hardness assumptions and large n)
- ▶ NO (there is yet another weird security thing we overlooked)

ション ふゆ アメリア メリア しょうくしゃ

NO (there is yet another weird security thing we overlooked) **Scenario** N and e are public. Bob sends $(rm)^e \pmod{N}$. Eve cannot determine what m is. What can Eve do that is still obnoxious?

Is PKCS-1.5 RSA Secure? VOTE

- YES (under hardness assumptions and large n)
- NO (there is yet another weird security thing we overlooked)

NO (there is yet another weird security thing we overlooked) **Scenario** N and e are public. Bob sends $(rm)^e \pmod{N}$. Eve cannot determine what m is. What can Eve do that is still obnoxious? Eve can compute $2^e(rm)^e \equiv (2(rm))^e \pmod{N}$. So what?

Is PKCS-1.5 RSA Secure? VOTE

- YES (under hardness assumptions and large n)
- ▶ NO (there is yet another weird security thing we overlooked)

NO (there is yet another weird security thing we overlooked) **Scenario** N and e are public. Bob sends $(rm)^e \pmod{N}$. Eve cannot determine what m is. What can Eve do that is still obnoxious? Eve can compute $2^e(rm)^e \equiv (2(rm))^e \pmod{N}$. So what?

Eve can later pretend she is Bob and send $(2(rm))^e \pmod{N}$.

Is PKCS-1.5 RSA Secure? VOTE

- YES (under hardness assumptions and large n)
- NO (there is yet another weird security thing we overlooked)

NO (there is yet another weird security thing we overlooked) **Scenario** N and e are public. Bob sends $(rm)^e \pmod{N}$. Eve cannot determine what m is. What can Eve do that is still obnoxious? Eve can compute $2^e(rm)^e \equiv (2(rm))^e \pmod{N}$. So what?

Eve can later pretend she is Bob and send $(2(rm))^e \pmod{N}$. Why bad? **Discuss**

Is PKCS-1.5 RSA Secure? VOTE

- YES (under hardness assumptions and large n)
- NO (there is yet another weird security thing we overlooked)

NO (there is yet another weird security thing we overlooked) **Scenario** N and e are public. Bob sends $(rm)^e \pmod{N}$. Eve cannot determine what m is. What can Eve do that is still obnoxious? Eve can compute $2^e(rm)^e \equiv (2(rm))^e \pmod{N}$. So what?

Eve can later pretend she is Bob and send $(2(rm))^e \pmod{N}$.

Why bad? **Discuss** (1) will confuse Alice (2) Sealed Bid Scenario.

An encryption system is **malleable** if when Eve sees a message she can figure out a way to send a similar one, where she knows the similarity (she still does not know the message).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

An encryption system is **malleable** if when Eve sees a message she can figure out a way to send a similar one, where she knows the similarity (she still does not know the message).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

1. The definition above is informal.

An encryption system is **malleable** if when Eve sees a message she can figure out a way to send a similar one, where she knows the similarity (she still does not know the message).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

- 1. The definition above is informal.
- 2. Can modify RSA so that it's probably not malleable.

An encryption system is **malleable** if when Eve sees a message she can figure out a way to send a similar one, where she knows the similarity (she still does not know the message).

- 1. The definition above is informal.
- 2. Can modify RSA so that it's probably not malleable.
- 3. That way is called PKCS-2.0-RSA.

An encryption system is **malleable** if when Eve sees a message she can figure out a way to send a similar one, where she knows the similarity (she still does not know the message).

- 1. The definition above is informal.
- 2. Can modify RSA so that it's probably not malleable.
- 3. That way is called PKCS-2.0-RSA.
- 4. Name BLAH-1.5 is hint that it's not final version.

Other Public Key Systems

Better Hardness Assumptions

We really want to say Cracking RSA is Exactly as Hard as Factoring but we do not know this, and it's probably false.

Better Hardness Assumptions

We really want to say Cracking RSA is Exactly as Hard as Factoring but we do not know this, and it's probably false.

Are there other Public Key Cryptosystems that **are** equivalent to factoring?

Better Hardness Assumptions

We really want to say Cracking RSA is Exactly as Hard as Factoring but we do not know this, and it's probably false.

Are there other Public Key Cryptosystems that **are** equivalent to factoring?

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Yes. On Next Slide.

Rabin's Encryption System and its Variants

<ロト < @ ト < 差 ト < 差 ト 差 の < @</p>

Rabin's Encryption System and its Variants

1. Rabin's enc equivalent to factoring pq.

Rabin's Encryption System and its Variants

- 1. Rabin's enc equivalent to factoring pq.
- 2. Rabin's enc is hard to use: messages do not decode uniquely.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 1. Rabin's enc equivalent to factoring pq.
- 2. Rabin's enc is hard to use: messages do not decode uniquely.
- 3. Blum-Williams modified Rabin's Enc so that messages decode uniquely; but the set of messages you can send is small.

- 1. Rabin's enc equivalent to factoring pq.
- 2. Rabin's enc is hard to use: messages do not decode uniquely.
- 3. Blum-Williams modified Rabin's Enc so that messages decode uniquely; but the set of messages you can send is small.

4. Hard to combine Blum-Williams modification with the padding needed to solve NY,NY problem.

- 1. Rabin's enc equivalent to factoring pq.
- 2. Rabin's enc is hard to use: messages do not decode uniquely.
- 3. Blum-Williams modified Rabin's Enc so that messages decode uniquely; but the set of messages you can send is small.
- 4. Hard to combine Blum-Williams modification with the padding needed to solve NY,NY problem.
- 5. Cracking Rabin Enc EQUIV factoring: but this is only if Eve has no other information.

- 1. Rabin's enc equivalent to factoring pq.
- 2. Rabin's enc is hard to use: messages do not decode uniquely.
- 3. Blum-Williams modified Rabin's Enc so that messages decode uniquely; but the set of messages you can send is small.
- 4. Hard to combine Blum-Williams modification with the padding needed to solve NY,NY problem.
- 5. Cracking Rabin Enc EQUIV factoring: but this is only if Eve has no other information.
- 6. If Eve can trick Alice into sending a chosen message, she can crack Rabin. So CPA-insecure.

ション ふゆ アメビア メロア しょうくり

- 1. Rabin's enc equivalent to factoring pq.
- 2. Rabin's enc is hard to use: messages do not decode uniquely.
- 3. Blum-Williams modified Rabin's Enc so that messages decode uniquely; but the set of messages you can send is small.
- 4. Hard to combine Blum-Williams modification with the padding needed to solve NY,NY problem.
- 5. Cracking Rabin Enc EQUIV factoring: but this is only if Eve has no other information.
- 6. If Eve can trick Alice into sending a chosen message, she can crack Rabin. So CPA-insecure.

ション ふゆ アメビア メロア しょうくり

Why is RSA used and not Rabin? either

- 1. Rabin's enc equivalent to factoring pq.
- 2. Rabin's enc is hard to use: messages do not decode uniquely.
- 3. Blum-Williams modified Rabin's Enc so that messages decode uniquely; but the set of messages you can send is small.
- 4. Hard to combine Blum-Williams modification with the padding needed to solve NY,NY problem.
- 5. Cracking Rabin Enc EQUIV factoring: but this is only if Eve has no other information.
- 6. If Eve can trick Alice into sending a chosen message, she can crack Rabin. So CPA-insecure.

ション ふゆ アメリア メリア しょうくしゃ

- Why is RSA used and not Rabin? either
 - 1. The problems above make it not practical.

- 1. Rabin's enc equivalent to factoring pq.
- 2. Rabin's enc is hard to use: messages do not decode uniquely.
- 3. Blum-Williams modified Rabin's Enc so that messages decode uniquely; but the set of messages you can send is small.
- 4. Hard to combine Blum-Williams modification with the padding needed to solve NY,NY problem.
- 5. Cracking Rabin Enc EQUIV factoring: but this is only if Eve has no other information.
- 6. If Eve can trick Alice into sending a chosen message, she can crack Rabin. So CPA-insecure.
- Why is RSA used and not Rabin? either
 - 1. The problems above make it not practical.
 - 2. The problems above could have been gotten around but RSA just got to the market faster.

ション ふゆ アメリア メリア しょうくしゃ

RSA Summary

Summary of RSA

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Summary of RSA

1. PKCS-2.0-RSA is REALLY used!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

- 1. PKCS-2.0-RSA is REALLY used!
- 2. There are many variants of RSA but all use the ideas above.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1. PKCS-2.0-RSA is REALLY used!
- 2. There are many variants of RSA but all use the ideas above.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

3. Factoring easy implies RSA crackable. TRUE.

Summary of RSA

- 1. PKCS-2.0-RSA is REALLY used!
- 2. There are many variants of RSA but all use the ideas above.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

- 3. Factoring easy implies RSA crackable. TRUE.
- 4. RSA crackable implies Factoring easy: UNKNOWN.

Summary of RSA

- 1. PKCS-2.0-RSA is REALLY used!
- 2. There are many variants of RSA but all use the ideas above.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

- 3. Factoring easy implies RSA crackable. TRUE.
- 4. RSA crackable implies Factoring easy: UNKNOWN.
- 5. RSA crackable implies Factoring easy: Often stated in expositions of crypto. They are wrong!

How Important Is Public Key?

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Public key is mostly used for giving out keys to be used for classical systems.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

This makes the following work:

Public key is mostly used for giving out keys to be used for classical systems.

This makes the following work:

1. Amazon – Credit Cards

Public key is mostly used for giving out keys to be used for classical systems.

This makes the following work:

- 1. Amazon Credit Cards
- 2. Ebay Paypal

Public key is mostly used for giving out keys to be used for classical systems.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

This makes the following work:

- 1. Amazon Credit Cards
- 2. Ebay Paypal
- 3. Facebook privacy -

Public key is mostly used for giving out keys to be used for classical systems.

This makes the following work:

- 1. Amazon Credit Cards
- 2. Ebay Paypal
- Facebook privacy just kidding, Facebook has no privacy. see: https://www.youtube.com/watch?v=cqggW08BW00

Public key is mostly used for giving out keys to be used for classical systems.

This makes the following work:

- 1. Amazon Credit Cards
- 2. Ebay Paypal
- Facebook privacy just kidding, Facebook has no privacy. see: https://www.youtube.com/watch?v=cqggW08BW00

4. Every financial institution in the world.

Public key is mostly used for giving out keys to be used for classical systems.

This makes the following work:

- 1. Amazon Credit Cards
- 2. Ebay Paypal
- Facebook privacy just kidding, Facebook has no privacy. see: https://www.youtube.com/watch?v=cqggW08BW00

- 4. Every financial institution in the world.
- 5. Military though less is known about this.

What if Factoring can be done fast (quantum, fancy number theory, better hardware)?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

What if Factoring can be done fast (quantum, fancy number theory, better hardware)?

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

1. Since 1960:

What if Factoring can be done fast (quantum, fancy number theory, better hardware)?

1. Since 1960:

1.1 Math-advances have sped up factoring by 1000 times.

What if Factoring can be done fast (quantum, fancy number theory, better hardware)?

- 1. Since 1960:
 - 1.1 Math-advances have sped up factoring by 1000 times.
 - 1.2 Hardware-advances have sped up factoring by 1000 times.

What if Factoring can be done fast (quantum, fancy number theory, better hardware)?

- 1. Since 1960:
 - 1.1 Math-advances have sped up factoring by 1000 times.
 - 1.2 Hardware-advances have sped up factoring by 1000 times.

1.3 So Factoring has been sped up 1,000,000 times.

What if Factoring can be done fast (quantum, fancy number theory, better hardware)?

- 1. Since 1960:
 - 1.1 Math-advances have sped up factoring by 1000 times.
 - 1.2 Hardware-advances have sped up factoring by 1000 times.

- 1.3 So Factoring has been sped up 1,000,000 times.
- 2. Factoring is in Quantum P, though making that practical seems a ways off.

What if Factoring can be done fast (quantum, fancy number theory, better hardware)?

- 1. Since 1960:
 - 1.1 Math-advances have sped up factoring by 1000 times.
 - 1.2 Hardware-advances have sped up factoring by 1000 times.
 - 1.3 So Factoring has been sped up 1,000,000 times.
- 2. Factoring is in Quantum P, though making that practical seems a ways off.
- 3. There are now several Public Key Systems based on **other** hardness assumptions. See next slide.

Non-factoring based crypto systems:

Non-factoring based crypto systems:

1. Elliptic Curve Cryto Based on elliptic curves (duh). Classically this is better than RSA since is secure with smaller parameters. However, a quantum computer can crack it. Has been around since 1985 but hard math made it hard to use.

Non-factoring based crypto systems:

 Elliptic Curve Cryto Based on elliptic curves (duh). Classically this is better than RSA since is secure with smaller parameters. However, a quantum computer can crack it. Has been around since 1985 but hard math made it hard to use.

2. Lattice-based Crypto Based on certain lattice problems being hard to solve. Has been around since 1995.

Non-factoring based crypto systems:

- Elliptic Curve Cryto Based on elliptic curves (duh). Classically this is better than RSA since is secure with smaller parameters. However, a quantum computer can crack it. Has been around since 1985 but hard math made it hard to use.
- 2. Lattice-based Crypto Based on certain lattice problems being hard to solve. Has been around since 1995.
- 3. Learning-With Errors (LWE) Based on the difficulty of learning a function from just a few points. Has been around since 2000. We will cover this later.

Non-factoring based crypto systems:

- Elliptic Curve Cryto Based on elliptic curves (duh). Classically this is better than RSA since is secure with smaller parameters. However, a quantum computer can crack it. Has been around since 1985 but hard math made it hard to use.
- 2. Lattice-based Crypto Based on certain lattice problems being hard to solve. Has been around since 1995.
- 3. Learning-With Errors (LWE) Based on the difficulty of learning a function from just a few points. Has been around since 2000. We will cover this later.
- 4. McElice Public Key Based on error-correcting codes. Hardness assumption is that its hard to error-correct without the parity matrix. Has been around since 1978 but large keys made it a problem. We will cover this later.

Non-factoring based crypto systems:

- Elliptic Curve Cryto Based on elliptic curves (duh). Classically this is better than RSA since is secure with smaller parameters. However, a quantum computer can crack it. Has been around since 1985 but hard math made it hard to use.
- 2. Lattice-based Crypto Based on certain lattice problems being hard to solve. Has been around since 1995.
- 3. Learning-With Errors (LWE) Based on the difficulty of learning a function from just a few points. Has been around since 2000. We will cover this later.
- 4. McElice Public Key Based on error-correcting codes. Hardness assumption is that its hard to error-correct without the parity matrix. Has been around since 1978 but large keys made it a problem. We will cover this later.

None of these are widely used

Non-factoring based crypto systems:

- Elliptic Curve Cryto Based on elliptic curves (duh). Classically this is better than RSA since is secure with smaller parameters. However, a quantum computer can crack it. Has been around since 1985 but hard math made it hard to use.
- 2. Lattice-based Crypto Based on certain lattice problems being hard to solve. Has been around since 1995.
- 3. Learning-With Errors (LWE) Based on the difficulty of learning a function from just a few points. Has been around since 2000. We will cover this later.
- 4. McElice Public Key Based on error-correcting codes. Hardness assumption is that its hard to error-correct without the parity matrix. Has been around since 1978 but large keys made it a problem. We will cover this later.

None of these are widely used Why?

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ へ ○

1. Chicken-and-egg problem: since they have not been out there and attacked, and fixed (like RSA) they are not considered secure.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

1. Chicken-and-egg problem: since they have not been out there and attacked, and fixed (like RSA) they are not considered secure.

2. Inertia.

- Chicken-and-egg problem: since they have not been out there and attacked, and fixed (like RSA) they are not considered secure.
- 2. Inertia.
- 3.
- 4. Changing over would be expensive and a company has to ask itself, is it worth it?

- Chicken-and-egg problem: since they have not been out there and attacked, and fixed (like RSA) they are not considered secure.
- 2. Inertia.
- 3.
- 4. Changing over would be expensive and a company has to ask itself, is it worth it?

ション ふゆ アメリア メリア しょうくしゃ

- 5.
- 6. There are other security issues that are more pressing.

- Chicken-and-egg problem: since they have not been out there and attacked, and fixed (like RSA) they are not considered secure.
- 2. Inertia.
- 3.
- 4. Changing over would be expensive and a company has to ask itself, is it worth it?

ション ふゆ アメリア メリア しょうくしゃ

- 5.
- There are other security issues that are more pressing. However, they are also not being dealt with.

NIST (National Institute of Standards and Technology) solicited **Quantum-Resistant Crypto Systems**.

NIST (National Institute of Standards and Technology) solicited **Quantum-Resistant Crypto Systems**.

Lattice-Based, LWE, and Code based all made it into the 2nd round:

NIST (National Institute of Standards and Technology) solicited **Quantum-Resistant Crypto Systems**.

Lattice-Based, LWE, and Code based all made it into the 2nd round:

https://www.scribd.com/document/474476570/ PQC-Overview-Aug-2020-NIST

BILL, STOP RECORDING LECTURE!!!!

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

BILL STOP RECORDING LECTURE!!!