Public Key Crtyptography

Public Key Cryptography

Alice and Bob never have to meet!

Number Theory Algs needed for Public Key

The following can be done quickly.

Number Theory Algs needed for Public Key

The following can be done quickly.

1. Given (a, n, p) compute $a^{n}(\bmod p)$. Repeated Squaring. (1) $\leq 2 \lg n$ always, $(2) \leq \lg n+O(1)$ if n close to $2^{2^{m}}$.

Number Theory Algs needed for Public Key

The following can be done quickly.

1. Given (a, n, p) compute $a^{n}(\bmod p)$. Repeated Squaring. (1) $\leq 2 \lg n$ always, $(2) \leq \lg n+O(1)$ if n close to $2^{2^{m}}$.
2. Given n, find a safe prime of length n and a generator g.

Number Theory Algs needed for Public Key

The following can be done quickly.

1. Given (a, n, p) compute $a^{n}(\bmod p)$. Repeated Squaring. (1) $\leq 2 \lg n$ always, $(2) \leq \lg n+O(1)$ if n close to $2^{2^{m}}$.
2. Given n, find a safe prime of length n and a generator g.
3. Given a, b rel prime find inverse of $a \bmod b$: Euclidean alg.

Number Theory Assumptions

1. Discrete Log is hard.
2. Factoring is hard.

Note: We usually don't assume these but instead assume close cousins.

The Diffie-Helman Key Exchange

Alice and Bob will share a secret s. Security parameter L.

The Diffie-Helman Key Exchange

Alice and Bob will share a secret s. Security parameter L.

1. Alice finds a $(p, g), p$ of length L, g gen for \mathbb{Z}_{p}.

The Diffie-Helman Key Exchange

Alice and Bob will share a secret s. Security parameter L.

1. Alice finds a $(p, g), p$ of length L, g gen for \mathbb{Z}_{p}.
2. Alice sends (p, g) to Bob in the clear (Eve sees (p, g)).

The Diffie-Helman Key Exchange

Alice and Bob will share a secret s. Security parameter L.

1. Alice finds a $(p, g), p$ of length L, g gen for \mathbb{Z}_{p}.
2. Alice sends (p, g) to Bob in the clear (Eve sees (p, g)).
3. Alice picks random $a \in\{1, \ldots, p-1\}$, computes g^{a} and sends it to Bob in the clear (Eve sees g^{a}).

The Diffie-Helman Key Exchange

Alice and Bob will share a secret s. Security parameter L.

1. Alice finds a $(p, g), p$ of length L, g gen for \mathbb{Z}_{p}.
2. Alice sends (p, g) to Bob in the clear (Eve sees (p, g)).
3. Alice picks random $a \in\{1, \ldots, p-1\}$, computes g^{a} and sends it to Bob in the clear (Eve sees g^{a}).
4. Bob picks random $b \in\{1, \ldots, p-1\}$, computes g^{b} and sends it to Alice in the clear (Eve sees g^{b}).

The Diffie-Helman Key Exchange

Alice and Bob will share a secret s. Security parameter L.

1. Alice finds a $(p, g), p$ of length L, g gen for \mathbb{Z}_{p}.
2. Alice sends (p, g) to Bob in the clear (Eve sees (p, g)).
3. Alice picks random $a \in\{1, \ldots, p-1\}$, computes g^{a} and sends it to Bob in the clear (Eve sees g^{a}).
4. Bob picks random $b \in\{1, \ldots, p-1\}$, computes g^{b} and sends it to Alice in the clear (Eve sees g^{b}).
5. Alice computes $\left(g^{b}\right)^{a}=g^{a b}$.

The Diffie-Helman Key Exchange

Alice and Bob will share a secret s. Security parameter L.

1. Alice finds a $(p, g), p$ of length L, g gen for \mathbb{Z}_{p}.
2. Alice sends (p, g) to Bob in the clear (Eve sees (p, g)).
3. Alice picks random $a \in\{1, \ldots, p-1\}$, computes g^{a} and sends it to Bob in the clear (Eve sees g^{a}).
4. Bob picks random $b \in\{1, \ldots, p-1\}$, computes g^{b} and sends it to Alice in the clear (Eve sees g^{b}).
5. Alice computes $\left(g^{b}\right)^{a}=g^{a b}$.
6. Bob computes $\left(g^{a}\right)^{b}=g^{a b}$.

The Diffie-Helman Key Exchange

Alice and Bob will share a secret s. Security parameter L.

1. Alice finds a $(p, g), p$ of length L, g gen for \mathbb{Z}_{p}.
2. Alice sends (p, g) to Bob in the clear (Eve sees (p, g)).
3. Alice picks random $a \in\{1, \ldots, p-1\}$, computes g^{a} and sends it to Bob in the clear (Eve sees g^{a}).
4. Bob picks random $b \in\{1, \ldots, p-1\}$, computes g^{b} and sends it to Alice in the clear (Eve sees g^{b}).
5. Alice computes $\left(g^{b}\right)^{a}=g^{a b}$.
6. Bob computes $\left(g^{a}\right)^{b}=g^{a b}$.
7. $g^{a b}$ is the shared secret.

The Diffie-Helman Key Exchange

Alice and Bob will share a secret s. Security parameter L.

1. Alice finds a $(p, g), p$ of length L, g gen for \mathbb{Z}_{p}.
2. Alice sends (p, g) to Bob in the clear (Eve sees (p, g)).
3. Alice picks random $a \in\{1, \ldots, p-1\}$, computes g^{a} and sends it to Bob in the clear (Eve sees g^{a}).
4. Bob picks random $b \in\{1, \ldots, p-1\}$, computes g^{b} and sends it to Alice in the clear (Eve sees g^{b}).
5. Alice computes $\left(g^{b}\right)^{a}=g^{a b}$.
6. Bob computes $\left(g^{a}\right)^{b}=g^{a b}$.
7. $g^{a b}$ is the shared secret.

Definition

Let f be $f\left(p, g, g^{a}, g^{b}\right)=g^{a b}$.
Hardness assumption: f is hard to compute.

ElGamal Uses DH So Can Control Message

1. Alice and Bob do Diffie Helman.
2. Alice and Bob share secret $s=g^{a b}$.
3. Alice and Bob compute $\left(g^{a b}\right)^{-1}(\bmod p)$.
4. To send m, Alice sends $c=m g^{a b}$
5. To decrypt, Bob computes $c\left(g^{a b}\right)^{-1} \equiv m g^{a b}\left(g^{a b}\right)^{-1} \equiv m$

We omit discussion of Hardness assumption (HW)

RSA

Let L be a security parameter

RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes $N=p q$.

RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes $N=p q$.
2. Alice computes $\phi(N)=\phi(p q)=(p-1)(q-1)$. Denote by R

RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes $N=p q$.
2. Alice computes $\phi(N)=\phi(p q)=(p-1)(q-1)$. Denote by R
3. Alice picks an $e \in\left\{\frac{R}{3}, \ldots, \frac{2 R}{3}\right\}$ that is relatively prime to R. Alice finds d such that $e d \equiv 1(\bmod R)$.

RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes $N=p q$.
2. Alice computes $\phi(N)=\phi(p q)=(p-1)(q-1)$. Denote by R
3. Alice picks an $e \in\left\{\frac{R}{3}, \ldots, \frac{2 R}{3}\right\}$ that is relatively prime to R. Alice finds d such that $e d \equiv 1(\bmod R)$.
4. Alice broadcasts (N, e). (Bob and Eve both see it.)

RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes $N=p q$.
2. Alice computes $\phi(N)=\phi(p q)=(p-1)(q-1)$. Denote by R
3. Alice picks an $e \in\left\{\frac{R}{3}, \ldots, \frac{2 R}{3}\right\}$ that is relatively prime to R. Alice finds d such that $e d \equiv 1(\bmod R)$.
4. Alice broadcasts (N, e). (Bob and Eve both see it.)
5. Bob: To send $m \in\{1, \ldots, N-1\}$, send $m^{e}(\bmod N)$.

RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes $N=p q$.
2. Alice computes $\phi(N)=\phi(p q)=(p-1)(q-1)$. Denote by R
3. Alice picks an $e \in\left\{\frac{R}{3}, \ldots, \frac{2 R}{3}\right\}$ that is relatively prime to R. Alice finds d such that $e d \equiv 1(\bmod R)$.
4. Alice broadcasts (N, e). (Bob and Eve both see it.)
5. Bob: To send $m \in\{1, \ldots, N-1\}$, send $m^{e}(\bmod N)$.
6. If Alice gets $m^{e}(\bmod N)$ she computes

$$
\left(m^{e}\right)^{d} \equiv m^{e d} \equiv m^{e d} \quad(\bmod R) \equiv m^{1} \quad(\bmod R) \equiv m
$$

Hardness Assumption for RSA

Recall If Alice and Bob do RSA and Eve observes:

Hardness Assumption for RSA

Recall If Alice and Bob do RSA and Eve observes:

1. Eve sees $\left(N, e, m^{e}\right)$. The message is m.

Hardness Assumption for RSA

Recall If Alice and Bob do RSA and Eve observes:

1. Eve sees $\left(N, e, m^{e}\right)$. The message is m.
2. Eve knows that there exists primes p, q such that $N=p q$, but she does not know what p, q are.

Hardness Assumption for RSA

Recall If Alice and Bob do RSA and Eve observes:

1. Eve sees $\left(N, e, m^{e}\right)$. The message is m.
2. Eve knows that there exists primes p, q such that $N=p q$, but she does not know what p, q are.
3. Eve knows that e is relatively prime to $(p-1)(q-1)$.

Hardness Assumption for RSA

Recall If Alice and Bob do RSA and Eve observes:

1. Eve sees $\left(N, e, m^{e}\right)$. The message is m.
2. Eve knows that there exists primes p, q such that $N=p q$, but she does not know what p, q are.
3. Eve knows that e is relatively prime to $(p-1)(q-1)$.

Definition: Let f be $f\left(N, e, m^{e}\right)=m$, where $N=p q$ and e has an inverse $\bmod (p-1)(q-1)$.
Hardness assumption (HA): f is hard to compute.

Plain RSA Bytes!

The RSA given above is referred to as Plain RSA. Insecure! m is always coded as $m^{e}(\bmod N)$.

Make secure by padding: $m \in\{0,1\}^{L_{1}}, r \in\{0,1\}^{L_{2}}$.
To send $m \in\{0,1\}^{L_{1}}$, pick rand $r \in\{0,1\}^{L_{2}}$, send $(r m)^{e}$. (NOTE- $r m$ means r CONCAT with m here and elsewhere.)
DEC: Alice finds $r m$ and takes rightmost L_{1} bits.
Caveat: RSA still has issues when used in real world. They have been fixed. Maybe.

Attacks on RSA

1. We just did Factoring Algorithms: Jevons, Pollard ρ.
2. There are other factoring algorithms: Quad Sieve, Number Field Sieve.
3. There are other mathematical attacks. We did not cover them but could have.
4. There are also hardware and sociology attacks. We did not cover them, and could not have.

Factoring Algorithms： Pollard ρ

Pollard ρ Algorithm

Define $f_{c}(x) \leftarrow x * x+c$. Looks random.
$x \leftarrow \operatorname{RAND}(0, N-1), c \leftarrow \operatorname{RAND}(0, N-1), y \leftarrow f_{c}(x)$ while TRUE

$$
\begin{aligned}
& x \leftarrow f_{c}(x) \\
& y \leftarrow f_{c}\left(f_{c}(y)\right) \\
& d \leftarrow G C D(x-y, N)
\end{aligned}
$$

if $d \neq 1$ and $d \neq N$ then break
output(d)

