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The Shift Cipher, Formally

I M = {all texts in lowercase English alphabet}
M for Message space.
All arithmetic mod 26.

I Choose uniform s ∈ K = {0, . . . , 25}. K for Keyspace.

I Encode (m1 . . .mt) as (m1 + s . . .mt + s).

I Decode (c1 . . . ct) as (c1 − s . . . ct − s).

I Can verify that correctness holds.



Freq Vectors

Let T be a long text. Length N. May or may not be coded.

Let Na be the number of a′s in T .
Let Nb be the number of b′s in T .
...

The Freq Vector of T is

~fT =

(
Na

N
,
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English Alphabet: {a, . . . , z}

I English freq shifted by 0 is ~f0
I For 1 ≤ i ≤ 25, English freq shifted by i is ~fi .

~f0 · ~f0 ∼ 0.065

max1≤i≤25 ~f0 · ~fi ∼ 0.038

Upshot
~f0 · ~f0 big
For i ∈ {1, . . . , 25}, ~f0 · ~fi small

Henceforth ~f0 will be denoted ~fE . E is for English



English Alphabet: {a, . . . , z}

I English freq shifted by 0 is ~f0
I For 1 ≤ i ≤ 25, English freq shifted by i is ~fi .

~f0 · ~f0 ∼ 0.065

max1≤i≤25 ~f0 · ~fi ∼ 0.038

Upshot
~f0 · ~f0 big
For i ∈ {1, . . . , 25}, ~f0 · ~fi small

Henceforth ~f0 will be denoted ~fE . E is for English



English Alphabet: {a, . . . , z}

I English freq shifted by 0 is ~f0
I For 1 ≤ i ≤ 25, English freq shifted by i is ~fi .

~f0 · ~f0 ∼ 0.065

max1≤i≤25 ~f0 · ~fi ∼ 0.038

Upshot
~f0 · ~f0 big
For i ∈ {1, . . . , 25}, ~f0 · ~fi small

Henceforth ~f0 will be denoted ~fE . E is for English



English Alphabet: {a, . . . , z}

I English freq shifted by 0 is ~f0
I For 1 ≤ i ≤ 25, English freq shifted by i is ~fi .

~f0 · ~f0 ∼ 0.065

max1≤i≤25 ~f0 · ~fi ∼ 0.038

Upshot
~f0 · ~f0 big
For i ∈ {1, . . . , 25}, ~f0 · ~fi small

Henceforth ~f0 will be denoted ~fE . E is for English



English Alphabet: {a, . . . , z}

I English freq shifted by 0 is ~f0
I For 1 ≤ i ≤ 25, English freq shifted by i is ~fi .

~f0 · ~f0 ∼ 0.065

max1≤i≤25 ~f0 · ~fi ∼ 0.038

Upshot
~f0 · ~f0 big
For i ∈ {1, . . . , 25}, ~f0 · ~fi small

Henceforth ~f0 will be denoted ~fE . E is for English



Is English

We describe a way to tell if a text Is English that we will use
throughout this course.

1. Input(T ) a text

2. Compute ~fT , the freq vector for T

3. Compute ~fE · ~fT . If ≈ 0.065 then output YES, else NO

Note: What if ~fT · ~fE = 0.061?

If shift cipher used, this will never happen.

If ‘simple’ ciphers used, this will never happen.

If ‘difficult’ cipher used, we may use different IS-ENGLISH function.
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Cracking Shift Cipher

I Given T a long text that you KNOW was coded by shift.

I For s = 0 to 25
I Create Ts which is T shifted by s.
I If Is English(Ts)=YES then output Ts and stop. Else try next

value of s.

Note: No Near Misses. There will not be two values of s that are
both close to 0.065.
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Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.

Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.
I For i = 0 to 25

I Create Ti which is T shifted as if σi maps to e.
I Compute ~g , the freq vector for Ti .
I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try

next value of i .

Note: Quite likely to succeed in the first try, or at least very early.
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Variants of the Shift Cipher

1. Σ = {a, . . . , z , 0, . . . , 9,+,−,×,÷} (e.g., Math textbooks).

2. Σ is some other language (e.g., Greek, Russian).

3. Σ = {0, . . . , 9} (e.g, Credit Cards).

4. Σ = {0, 1}8 (e.g., Ascii). Can use ⊕ instead of +s. Very fast!

These all have small key spaces and freq-of-symbol-use so can be
cracked.
Include other symbols depending on the branch of math. E.g., ∧,∨
for logic.



Kerckhoff’s principle

We made the comment We KNOW that SHIFT was used.
More generally we will always use the following assumption.
Kerckhoff’s principle:

I Eve knows The encryption scheme.

I Eve knows the alphabet and the language.

I Eve does not know the key

I The key is chosen at random.



Definition of a Secure Crypto System

m will be a message.

c is what is sent.
If the following holds then the system is secure.

(∀m, x , y , c)[Pr(m = x |c = y) = Pr(m = x)].

So seeing the y does not help Eve at all.
Is this info-theoretic security or comp-security? Discuss
Info-Theoretic If Eve has unlimited computing power she still
learns nothing.
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One-Letter Shift is Secure!

Alphabet is {x , y}. s ∈ {0, 1} randomly.
Pr(m = x) = px . Pr(m = y) = py .

Eve knows this.
Note that px + py = 1.

Pr(m = x |c = x) =
Pr(m = x ∧ c = x)

Pr(c = x)

Pr(m = x ∧ c = x) = Pr(m = x ∧ s = 0) = px × 1
2 = 0.5px

Pr(c = x) = Pr(m = x)Pr(s = 0) + Pr(m = y)Pr(s = 1) =
0.5px + 0.5py = 0.5(px + py )

Pr(m = x |c = x) =
0.5px

0.5(px + py )
= px
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One-Letter Shift is Secure! (cont)

Alphabet is {x , y}. s ∈ {0, 1} randomly.
Pr(m = x) = px . Pr(m = y) = py .

Eve knows this.
Note that px + py = 1.
We showed

Pr(m = x |c = x) = px

One can show:

Pr(m = x |c = y) = px .

Pr(m = y |c = x) = py .

Pr(m = y |c = y) = py .

So seeing the ciphertext gives Eve NO INFORMATION.
Upshot The 1-letter shift Information-Theoretic Secure.
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Is 2-letter Shift Uncrackable?

Is 2-letter Shift Uncrackable? Discuss.

No. Alphabet is {X ,Y }.
If Eve sees XX then she knows that the original message was one of

{XX ,YY }

So Eve has learned something. HW will make this rigorous.
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Affine Cipher

Def The Affine cipher with a, b:

1. Encrypt via x → ax + b (mod 26). (a has to be rel prime to
26 so that a−1 (mod 26) exists.

2. Decrypt via x → a−1(x − b) (mod 26).

Limit on Keys (a, b) must be such that a has an inverse. More on
next page.
Easily cracked Only 312 keys. Use Is-English for each key.



The (a,b) for the Affine Cipher

Shift Cipher Key s could be anything in {0, . . . , 25}. 26 keys.

Affine Cipher Key a has to be rel prime to 26, b can be anything.

If alphabet is size n then how many a’s are usable?
The number of elts of {0, . . . , n − 1} that are rel prime to n.
Do we have another name for this? Yes: φ(n).

How to compute φ(n).

I n is small: list out all numbers ≤ n− 1 that are rel prime to n.

I If p is prime φ(p) = p − 1.
If p, q are prime then (HW 2, Prob 6) φ(pq) = φ(p)φ(q).
Can extend to get a formula for φ(pa11 · · · p

ak
k ).

Caveat: To really use it need to factor n.
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The Quadratic Cipher

Def The Quadratic cipher with a, b, c : Encrypt via
x → ax2 + bx + c (mod 26).

Does not work and was never used because:
No easy test for Invertibility (depends on def of easy).
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General Substitution Cipher

Def Gen Sub Cipher with perm f on {0, . . . , 25}.
1. Encrypt via x → f (x).

2. Decrypt via x → f −1(x).

PRO Very Large Key Space: 26!, so brute force not an option.
CON 100 years ago Hard to use, so we will look at alternatives
that take a short seed and get a random looking perm.
CON today Crackable. We discuss how later.



Keyword-Shift Cipher. Key is (Word,Shift)

Σ = {a, . . . , k}. Key: (jack, 4).

Alice then does the following:

1. List out the key word and then the remaining letters:

j a c k b d e f g h i

2. Now do Shift 4 on this:

f g h i j a c k b d e

This is where a, b, c, . . . go, so:

a b c d e f g h i j k
f g h i j a c k b d e
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UPSHOT

1. From short key got random looking perm (in its day, not now).

2. Keyword Mixed cipher is similar, probably better, but we skip.



Keyword-Shift vs Truly Random

Alice and Eve play the following game:

Game: Σ = {a, b, . . . , z}. L is length of keyword, L = 6.

1. Alice flips a fair coin.

If T then Alice gen rand perm of Σ and sends to Eve.
If H then Alice gen rand word w ∈ Σ6, with 6 diff letters, rand
s ∈ Z25, creates a perm using Keyword-Shift with w , s, and
sends to Eve.

2. Eve says RP (Rand Perm) if she thinks Alice flipped T, KS
(Keyword-Shift) if she thinks Alice flipped H. If Eve is correct
she wins! If not then Alice wins!

Alice has no strategy in this game.
Eve can have a strategy. If Eve is unlimited then she can do quite
well.
We measure how good the Keyword-Shift is by the
probability that an optimal Eve can win.
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Unlimited Eve Strategy

Assume Eve has unlimited computational power.

Before Eve plays the game she does the following:

I For every word w ∈ Σ6 (all diff letters) and shift
s ∈ {0, . . . , 25} find the perm generated by keyword-Shift.

I Store all L = 26× 25× 24× 23× 22× 21× 26 perms:
σ1, σ2, . . . , σL.

I Note that the number of perms is ∼ 109.

I Note that 26! ∼ 1026.

Eve’s strategy:
Alice gives Eve perm τ . If τ is one of the σi then Eve says KS,
otherwise Eve says RP.
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Unlimited Eve Analysis

I If KS then Eve will guess it correctly.

I If RP then the prob Eve gets it wrong is the prob that perm
just happens to be one of the σi :

∼ 109

1026
=

1

1017

Prob Eve right is 1− 1
1017

= 0.9999999999999999 = L.

Prob Eve wins is
Pr(KS)× 1 + Pr(RP)× L = 1

2 × 1 + 1
2 × L = 1

2(1 + L) = L′

which is very close to 1.
Upshot Unlimited Eve wins most of the time.
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Strategy for Comp Limited Eve

1. Eve gets τ .

2. If τ has 3 consecutive letters (e.g., p, q, r) then say KS, else
say RP. (We do not count wrap around.)
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Prob that Limited Eve Wins

If KS then Eve is correct (we omit this part).

If RP then prob Eve wrong is prob a rand perm has 3 cons lets.

I Number of perms: 26!

I Number of perms with 3 consecutive letters:

Pick the space to begin the 3 cons lets: 24 (a, . . . , x)

Pick the let to put there (also determines the next 2 lets): 26

Permute remaining 23 letters in remaining 23 places: 23!

We have counted some perms ≥ 2 times. So
Numb of perms with 3 cons lets is ≤ 24× 26× 23!.

Prob that Alice picks perm with 3 cons lets is

≤ 24× 26× 23!

26!
=

1

25
= 0.04

Prob that Eve wins is ≥ 1− 0.04 = 0.96.

Prob Eve wins is 1
2 × 1 + 1

2 × 0.096 = 0.98
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Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T , counting repeats.

2. The 2-grams of T are just the contiguous pairs of letters in
T , counting repeats. Also called bigrams.

3. The 3-grams of T you can guess. Also called trigrams.

4. One usually talks about the freq of n-grams.
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Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.

I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).

R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.

σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )
The parameters R and I need to be picked carefully.
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