
BILL RECORDED
LECTURE

October 19, 2020



REVIEW FOR
MIDTERM

October 19, 2020



SHIFT CIPHER

October 19, 2020



The Shift Cipher, Formally

I M = {all texts in lowercase English alphabet}
M for Message space.
All arithmetic mod 26.

I Choose uniform s ∈ K = {0, . . . , 25}. K for Keyspace.

I Encode (m1 . . .mt) as (m1 + s . . .mt + s).

I Decode (c1 . . . ct) as (c1 − s . . . ct − s).

I Can verify that correctness holds.



Freq Vectors

Let T be a long text. Length N. May or may not be coded.

Let Na be the number of a′s in T .
Let Nb be the number of b′s in T .
...

The Freq Vector of T is

~fT =

(
Na

N
,
Nb

N
, · · · , Nz

N

)



Freq Vectors

Let T be a long text. Length N. May or may not be coded.

Let Na be the number of a′s in T .
Let Nb be the number of b′s in T .
...

The Freq Vector of T is

~fT =

(
Na

N
,
Nb

N
, · · · , Nz

N

)



English Alphabet: {a, . . . , z}

I English freq shifted by 0 is ~f0
I For 1 ≤ i ≤ 25, English freq shifted by i is ~fi .

~f0 · ~f0 ∼ 0.065

max1≤i≤25 ~f0 · ~fi ∼ 0.038

Upshot
~f0 · ~f0 big
For i ∈ {1, . . . , 25}, ~f0 · ~fi small

Henceforth ~f0 will be denoted ~fE . E is for English



English Alphabet: {a, . . . , z}

I English freq shifted by 0 is ~f0
I For 1 ≤ i ≤ 25, English freq shifted by i is ~fi .

~f0 · ~f0 ∼ 0.065

max1≤i≤25 ~f0 · ~fi ∼ 0.038

Upshot
~f0 · ~f0 big
For i ∈ {1, . . . , 25}, ~f0 · ~fi small

Henceforth ~f0 will be denoted ~fE . E is for English



English Alphabet: {a, . . . , z}

I English freq shifted by 0 is ~f0
I For 1 ≤ i ≤ 25, English freq shifted by i is ~fi .

~f0 · ~f0 ∼ 0.065

max1≤i≤25 ~f0 · ~fi ∼ 0.038

Upshot
~f0 · ~f0 big
For i ∈ {1, . . . , 25}, ~f0 · ~fi small

Henceforth ~f0 will be denoted ~fE . E is for English



English Alphabet: {a, . . . , z}

I English freq shifted by 0 is ~f0
I For 1 ≤ i ≤ 25, English freq shifted by i is ~fi .

~f0 · ~f0 ∼ 0.065

max1≤i≤25 ~f0 · ~fi ∼ 0.038

Upshot
~f0 · ~f0 big
For i ∈ {1, . . . , 25}, ~f0 · ~fi small

Henceforth ~f0 will be denoted ~fE . E is for English



English Alphabet: {a, . . . , z}

I English freq shifted by 0 is ~f0
I For 1 ≤ i ≤ 25, English freq shifted by i is ~fi .

~f0 · ~f0 ∼ 0.065

max1≤i≤25 ~f0 · ~fi ∼ 0.038

Upshot
~f0 · ~f0 big
For i ∈ {1, . . . , 25}, ~f0 · ~fi small

Henceforth ~f0 will be denoted ~fE . E is for English



Is English

We describe a way to tell if a text Is English that we will use
throughout this course.

1. Input(T ) a text

2. Compute ~fT , the freq vector for T

3. Compute ~fE · ~fT . If ≈ 0.065 then output YES, else NO

Note: What if ~fT · ~fE = 0.061?

If shift cipher used, this will never happen.

If ‘simple’ ciphers used, this will never happen.

If ‘difficult’ cipher used, we may use different IS-ENGLISH function.



Is English

We describe a way to tell if a text Is English that we will use
throughout this course.

1. Input(T ) a text

2. Compute ~fT , the freq vector for T

3. Compute ~fE · ~fT . If ≈ 0.065 then output YES, else NO

Note: What if ~fT · ~fE = 0.061?

If shift cipher used, this will never happen.

If ‘simple’ ciphers used, this will never happen.

If ‘difficult’ cipher used, we may use different IS-ENGLISH function.



Is English

We describe a way to tell if a text Is English that we will use
throughout this course.

1. Input(T ) a text

2. Compute ~fT , the freq vector for T

3. Compute ~fE · ~fT . If ≈ 0.065 then output YES, else NO

Note: What if ~fT · ~fE = 0.061?

If shift cipher used, this will never happen.

If ‘simple’ ciphers used, this will never happen.

If ‘difficult’ cipher used, we may use different IS-ENGLISH function.



Is English

We describe a way to tell if a text Is English that we will use
throughout this course.

1. Input(T ) a text

2. Compute ~fT , the freq vector for T

3. Compute ~fE · ~fT . If ≈ 0.065 then output YES, else NO

Note: What if ~fT · ~fE = 0.061?

If shift cipher used, this will never happen.

If ‘simple’ ciphers used, this will never happen.

If ‘difficult’ cipher used, we may use different IS-ENGLISH function.



Is English

We describe a way to tell if a text Is English that we will use
throughout this course.

1. Input(T ) a text

2. Compute ~fT , the freq vector for T

3. Compute ~fE · ~fT . If ≈ 0.065 then output YES, else NO

Note: What if ~fT · ~fE = 0.061?

If shift cipher used, this will never happen.

If ‘simple’ ciphers used, this will never happen.

If ‘difficult’ cipher used, we may use different IS-ENGLISH function.



Is English

We describe a way to tell if a text Is English that we will use
throughout this course.

1. Input(T ) a text

2. Compute ~fT , the freq vector for T

3. Compute ~fE · ~fT . If ≈ 0.065 then output YES, else NO

Note: What if ~fT · ~fE = 0.061?

If shift cipher used, this will never happen.

If ‘simple’ ciphers used, this will never happen.

If ‘difficult’ cipher used, we may use different IS-ENGLISH function.



Cracking Shift Cipher

I Given T a long text that you KNOW was coded by shift.

I For s = 0 to 25
I Create Ts which is T shifted by s.
I If Is English(Ts)=YES then output Ts and stop. Else try next

value of s.

Note: No Near Misses. There will not be two values of s that are
both close to 0.065.



Cracking Shift Cipher

I Given T a long text that you KNOW was coded by shift.
I For s = 0 to 25

I Create Ts which is T shifted by s.

I If Is English(Ts)=YES then output Ts and stop. Else try next
value of s.

Note: No Near Misses. There will not be two values of s that are
both close to 0.065.



Cracking Shift Cipher

I Given T a long text that you KNOW was coded by shift.
I For s = 0 to 25

I Create Ts which is T shifted by s.
I If Is English(Ts)=YES then output Ts and stop. Else try next

value of s.

Note: No Near Misses. There will not be two values of s that are
both close to 0.065.



Cracking Shift Cipher

I Given T a long text that you KNOW was coded by shift.
I For s = 0 to 25

I Create Ts which is T shifted by s.
I If Is English(Ts)=YES then output Ts and stop. Else try next

value of s.

Note: No Near Misses. There will not be two values of s that are
both close to 0.065.



Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.

Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.
I For i = 0 to 25

I Create Ti which is T shifted as if σi maps to e.
I Compute ~g , the freq vector for Ti .
I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try

next value of i .

Note: Quite likely to succeed in the first try, or at least very early.



Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.
Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.
I For i = 0 to 25

I Create Ti which is T shifted as if σi maps to e.
I Compute ~g , the freq vector for Ti .
I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try

next value of i .

Note: Quite likely to succeed in the first try, or at least very early.



Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.
Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.
I For i = 0 to 25

I Create Ti which is T shifted as if σi maps to e.
I Compute ~g , the freq vector for Ti .
I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try

next value of i .

Note: Quite likely to succeed in the first try, or at least very early.



Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.
Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.
I For i = 0 to 25

I Create Ti which is T shifted as if σi maps to e.
I Compute ~g , the freq vector for Ti .
I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try

next value of i .

Note: Quite likely to succeed in the first try, or at least very early.



Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.
Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.

I For i = 0 to 25
I Create Ti which is T shifted as if σi maps to e.
I Compute ~g , the freq vector for Ti .
I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try

next value of i .

Note: Quite likely to succeed in the first try, or at least very early.



Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.
Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.
I For i = 0 to 25

I Create Ti which is T shifted as if σi maps to e.
I Compute ~g , the freq vector for Ti .
I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try

next value of i .

Note: Quite likely to succeed in the first try, or at least very early.



Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.
Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.
I For i = 0 to 25

I Create Ti which is T shifted as if σi maps to e.

I Compute ~g , the freq vector for Ti .
I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try

next value of i .

Note: Quite likely to succeed in the first try, or at least very early.



Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.
Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.
I For i = 0 to 25

I Create Ti which is T shifted as if σi maps to e.
I Compute ~g , the freq vector for Ti .

I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try
next value of i .

Note: Quite likely to succeed in the first try, or at least very early.



Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.
Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.
I For i = 0 to 25

I Create Ti which is T shifted as if σi maps to e.
I Compute ~g , the freq vector for Ti .
I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try

next value of i .

Note: Quite likely to succeed in the first try, or at least very early.



Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.
Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.
I For i = 0 to 25

I Create Ti which is T shifted as if σi maps to e.
I Compute ~g , the freq vector for Ti .
I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try

next value of i .

Note: Quite likely to succeed in the first try, or at least very early.



Variants of the Shift Cipher

1. Σ = {a, . . . , z , 0, . . . , 9,+,−,×,÷} (e.g., Math textbooks).

2. Σ is some other language (e.g., Greek, Russian).

3. Σ = {0, . . . , 9} (e.g, Credit Cards).

4. Σ = {0, 1}8 (e.g., Ascii). Can use ⊕ instead of +s. Very fast!

These all have small key spaces and freq-of-symbol-use so can be
cracked.
Include other symbols depending on the branch of math. E.g., ∧,∨
for logic.



Kerckhoff’s principle

We made the comment We KNOW that SHIFT was used.
More generally we will always use the following assumption.
Kerckhoff’s principle:

I Eve knows The encryption scheme.

I Eve knows the alphabet and the language.

I Eve does not know the key

I The key is chosen at random.



Definition of a Secure Crypto System

m will be a message.

c is what is sent.
If the following holds then the system is secure.

(∀m, x , y , c)[Pr(m = x |c = y) = Pr(m = x)].

So seeing the y does not help Eve at all.
Is this info-theoretic security or comp-security? Discuss
Info-Theoretic If Eve has unlimited computing power she still
learns nothing.



Definition of a Secure Crypto System

m will be a message. c is what is sent.
If the following holds then the system is secure.

(∀m, x , y , c)[Pr(m = x |c = y) = Pr(m = x)].

So seeing the y does not help Eve at all.

Is this info-theoretic security or comp-security? Discuss
Info-Theoretic If Eve has unlimited computing power she still
learns nothing.



Definition of a Secure Crypto System

m will be a message. c is what is sent.
If the following holds then the system is secure.

(∀m, x , y , c)[Pr(m = x |c = y) = Pr(m = x)].

So seeing the y does not help Eve at all.
Is this info-theoretic security or comp-security? Discuss

Info-Theoretic If Eve has unlimited computing power she still
learns nothing.



Definition of a Secure Crypto System

m will be a message. c is what is sent.
If the following holds then the system is secure.

(∀m, x , y , c)[Pr(m = x |c = y) = Pr(m = x)].

So seeing the y does not help Eve at all.
Is this info-theoretic security or comp-security? Discuss
Info-Theoretic If Eve has unlimited computing power she still
learns nothing.



One-Letter Shift is Secure!

Alphabet is {x , y}. s ∈ {0, 1} randomly.
Pr(m = x) = px . Pr(m = y) = py .

Eve knows this.
Note that px + py = 1.

Pr(m = x |c = x) =
Pr(m = x ∧ c = x)

Pr(c = x)

Pr(m = x ∧ c = x) = Pr(m = x ∧ s = 0) = px × 1
2 = 0.5px

Pr(c = x) = Pr(m = x)Pr(s = 0) + Pr(m = y)Pr(s = 1) =
0.5px + 0.5py = 0.5(px + py )

Pr(m = x |c = x) =
0.5px

0.5(px + py )
= px



One-Letter Shift is Secure!

Alphabet is {x , y}. s ∈ {0, 1} randomly.
Pr(m = x) = px . Pr(m = y) = py . Eve knows this.

Note that px + py = 1.

Pr(m = x |c = x) =
Pr(m = x ∧ c = x)

Pr(c = x)

Pr(m = x ∧ c = x) = Pr(m = x ∧ s = 0) = px × 1
2 = 0.5px

Pr(c = x) = Pr(m = x)Pr(s = 0) + Pr(m = y)Pr(s = 1) =
0.5px + 0.5py = 0.5(px + py )

Pr(m = x |c = x) =
0.5px

0.5(px + py )
= px



One-Letter Shift is Secure!

Alphabet is {x , y}. s ∈ {0, 1} randomly.
Pr(m = x) = px . Pr(m = y) = py . Eve knows this.
Note that px + py = 1.

Pr(m = x |c = x) =
Pr(m = x ∧ c = x)

Pr(c = x)

Pr(m = x ∧ c = x) = Pr(m = x ∧ s = 0) = px × 1
2 = 0.5px

Pr(c = x) = Pr(m = x)Pr(s = 0) + Pr(m = y)Pr(s = 1) =
0.5px + 0.5py = 0.5(px + py )

Pr(m = x |c = x) =
0.5px

0.5(px + py )
= px



One-Letter Shift is Secure!

Alphabet is {x , y}. s ∈ {0, 1} randomly.
Pr(m = x) = px . Pr(m = y) = py . Eve knows this.
Note that px + py = 1.

Pr(m = x |c = x) =
Pr(m = x ∧ c = x)

Pr(c = x)

Pr(m = x ∧ c = x) = Pr(m = x ∧ s = 0) = px × 1
2 = 0.5px

Pr(c = x) = Pr(m = x)Pr(s = 0) + Pr(m = y)Pr(s = 1) =
0.5px + 0.5py = 0.5(px + py )

Pr(m = x |c = x) =
0.5px

0.5(px + py )
= px



One-Letter Shift is Secure!

Alphabet is {x , y}. s ∈ {0, 1} randomly.
Pr(m = x) = px . Pr(m = y) = py . Eve knows this.
Note that px + py = 1.

Pr(m = x |c = x) =
Pr(m = x ∧ c = x)

Pr(c = x)

Pr(m = x ∧ c = x) = Pr(m = x ∧ s = 0) = px × 1
2 = 0.5px

Pr(c = x) = Pr(m = x)Pr(s = 0) + Pr(m = y)Pr(s = 1) =
0.5px + 0.5py = 0.5(px + py )

Pr(m = x |c = x) =
0.5px

0.5(px + py )
= px



One-Letter Shift is Secure!

Alphabet is {x , y}. s ∈ {0, 1} randomly.
Pr(m = x) = px . Pr(m = y) = py . Eve knows this.
Note that px + py = 1.

Pr(m = x |c = x) =
Pr(m = x ∧ c = x)

Pr(c = x)

Pr(m = x ∧ c = x) = Pr(m = x ∧ s = 0) = px × 1
2 = 0.5px

Pr(c = x) = Pr(m = x)Pr(s = 0) + Pr(m = y)Pr(s = 1) =
0.5px + 0.5py = 0.5(px + py )

Pr(m = x |c = x) =
0.5px

0.5(px + py )
= px



One-Letter Shift is Secure!

Alphabet is {x , y}. s ∈ {0, 1} randomly.
Pr(m = x) = px . Pr(m = y) = py . Eve knows this.
Note that px + py = 1.

Pr(m = x |c = x) =
Pr(m = x ∧ c = x)

Pr(c = x)

Pr(m = x ∧ c = x) = Pr(m = x ∧ s = 0) = px × 1
2 = 0.5px

Pr(c = x) = Pr(m = x)Pr(s = 0) + Pr(m = y)Pr(s = 1) =
0.5px + 0.5py = 0.5(px + py )

Pr(m = x |c = x) =
0.5px

0.5(px + py )
= px



One-Letter Shift is Secure! (cont)

Alphabet is {x , y}. s ∈ {0, 1} randomly.
Pr(m = x) = px . Pr(m = y) = py .

Eve knows this.
Note that px + py = 1.
We showed

Pr(m = x |c = x) = px

One can show:

Pr(m = x |c = y) = px .

Pr(m = y |c = x) = py .

Pr(m = y |c = y) = py .

So seeing the ciphertext gives Eve NO INFORMATION.
Upshot The 1-letter shift Information-Theoretic Secure.



One-Letter Shift is Secure! (cont)

Alphabet is {x , y}. s ∈ {0, 1} randomly.
Pr(m = x) = px . Pr(m = y) = py . Eve knows this.

Note that px + py = 1.
We showed

Pr(m = x |c = x) = px

One can show:

Pr(m = x |c = y) = px .

Pr(m = y |c = x) = py .

Pr(m = y |c = y) = py .

So seeing the ciphertext gives Eve NO INFORMATION.
Upshot The 1-letter shift Information-Theoretic Secure.



One-Letter Shift is Secure! (cont)

Alphabet is {x , y}. s ∈ {0, 1} randomly.
Pr(m = x) = px . Pr(m = y) = py . Eve knows this.
Note that px + py = 1.
We showed

Pr(m = x |c = x) = px

One can show:

Pr(m = x |c = y) = px .

Pr(m = y |c = x) = py .

Pr(m = y |c = y) = py .

So seeing the ciphertext gives Eve NO INFORMATION.
Upshot The 1-letter shift Information-Theoretic Secure.



One-Letter Shift is Secure! (cont)

Alphabet is {x , y}. s ∈ {0, 1} randomly.
Pr(m = x) = px . Pr(m = y) = py . Eve knows this.
Note that px + py = 1.
We showed

Pr(m = x |c = x) = px

One can show:

Pr(m = x |c = y) = px .

Pr(m = y |c = x) = py .

Pr(m = y |c = y) = py .

So seeing the ciphertext gives Eve NO INFORMATION.
Upshot The 1-letter shift Information-Theoretic Secure.



One-Letter Shift is Secure! (cont)

Alphabet is {x , y}. s ∈ {0, 1} randomly.
Pr(m = x) = px . Pr(m = y) = py . Eve knows this.
Note that px + py = 1.
We showed

Pr(m = x |c = x) = px

One can show:

Pr(m = x |c = y) = px .

Pr(m = y |c = x) = py .

Pr(m = y |c = y) = py .

So seeing the ciphertext gives Eve NO INFORMATION.
Upshot The 1-letter shift Information-Theoretic Secure.



Is 2-letter Shift Uncrackable?

Is 2-letter Shift Uncrackable? Discuss.

No. Alphabet is {X ,Y }.
If Eve sees XX then she knows that the original message was one of

{XX ,YY }

So Eve has learned something. HW will make this rigorous.



Is 2-letter Shift Uncrackable?

Is 2-letter Shift Uncrackable? Discuss.
No. Alphabet is {X ,Y }.

If Eve sees XX then she knows that the original message was one of

{XX ,YY }

So Eve has learned something. HW will make this rigorous.



Is 2-letter Shift Uncrackable?

Is 2-letter Shift Uncrackable? Discuss.
No. Alphabet is {X ,Y }.
If Eve sees XX then she knows that the original message was one of

{XX ,YY }

So Eve has learned something. HW will make this rigorous.



Summary

I Alice and Bob use shift s unif, 1-letter. Secure

I Alice and Bob use shift s bias, 1-letter. Insecure

I Alice and Bob use shift s unif, 2-letters. Insecure



Summary

I Alice and Bob use shift s unif, 1-letter.

Secure

I Alice and Bob use shift s bias, 1-letter. Insecure

I Alice and Bob use shift s unif, 2-letters. Insecure



Summary

I Alice and Bob use shift s unif, 1-letter. Secure

I Alice and Bob use shift s bias, 1-letter. Insecure

I Alice and Bob use shift s unif, 2-letters. Insecure



Summary

I Alice and Bob use shift s unif, 1-letter. Secure

I Alice and Bob use shift s bias, 1-letter.

Insecure

I Alice and Bob use shift s unif, 2-letters. Insecure



Summary

I Alice and Bob use shift s unif, 1-letter. Secure

I Alice and Bob use shift s bias, 1-letter. Insecure

I Alice and Bob use shift s unif, 2-letters. Insecure



Summary

I Alice and Bob use shift s unif, 1-letter. Secure

I Alice and Bob use shift s bias, 1-letter. Insecure

I Alice and Bob use shift s unif, 2-letters.

Insecure



Summary

I Alice and Bob use shift s unif, 1-letter. Secure

I Alice and Bob use shift s bias, 1-letter. Insecure

I Alice and Bob use shift s unif, 2-letters. Insecure



Summary

I Alice and Bob use shift s unif, 1-letter. Secure

I Alice and Bob use shift s bias, 1-letter. Insecure

I Alice and Bob use shift s unif, 2-letters. Insecure



Other Single Letter
Ciphers

October 19, 2020



Affine Cipher

Def The Affine cipher with a, b:

1. Encrypt via x → ax + b (mod 26). (a has to be rel prime to
26 so that a−1 (mod 26) exists.

2. Decrypt via x → a−1(x − b) (mod 26).

Limit on Keys (a, b) must be such that a has an inverse. More on
next page.
Easily cracked Only 312 keys. Use Is-English for each key.



The (a,b) for the Affine Cipher

Shift Cipher Key s could be anything in {0, . . . , 25}. 26 keys.

Affine Cipher Key a has to be rel prime to 26, b can be anything.

If alphabet is size n then how many a’s are usable?
The number of elts of {0, . . . , n − 1} that are rel prime to n.
Do we have another name for this? Yes: φ(n).

How to compute φ(n).

I n is small: list out all numbers ≤ n− 1 that are rel prime to n.

I If p is prime φ(p) = p − 1.
If p, q are prime then (HW 2, Prob 6) φ(pq) = φ(p)φ(q).
Can extend to get a formula for φ(pa11 · · · p

ak
k ).

Caveat: To really use it need to factor n.



The (a,b) for the Affine Cipher

Shift Cipher Key s could be anything in {0, . . . , 25}. 26 keys.

Affine Cipher Key a has to be rel prime to 26, b can be anything.

If alphabet is size n then how many a’s are usable?
The number of elts of {0, . . . , n − 1} that are rel prime to n.
Do we have another name for this? Yes: φ(n).

How to compute φ(n).

I n is small: list out all numbers ≤ n− 1 that are rel prime to n.

I If p is prime φ(p) = p − 1.
If p, q are prime then (HW 2, Prob 6) φ(pq) = φ(p)φ(q).
Can extend to get a formula for φ(pa11 · · · p

ak
k ).

Caveat: To really use it need to factor n.



The (a,b) for the Affine Cipher

Shift Cipher Key s could be anything in {0, . . . , 25}. 26 keys.

Affine Cipher Key a has to be rel prime to 26, b can be anything.

If alphabet is size n then how many a’s are usable?

The number of elts of {0, . . . , n − 1} that are rel prime to n.
Do we have another name for this? Yes: φ(n).

How to compute φ(n).

I n is small: list out all numbers ≤ n− 1 that are rel prime to n.

I If p is prime φ(p) = p − 1.
If p, q are prime then (HW 2, Prob 6) φ(pq) = φ(p)φ(q).
Can extend to get a formula for φ(pa11 · · · p

ak
k ).

Caveat: To really use it need to factor n.



The (a,b) for the Affine Cipher

Shift Cipher Key s could be anything in {0, . . . , 25}. 26 keys.

Affine Cipher Key a has to be rel prime to 26, b can be anything.

If alphabet is size n then how many a’s are usable?
The number of elts of {0, . . . , n − 1} that are rel prime to n.
Do we have another name for this?

Yes: φ(n).

How to compute φ(n).

I n is small: list out all numbers ≤ n− 1 that are rel prime to n.

I If p is prime φ(p) = p − 1.
If p, q are prime then (HW 2, Prob 6) φ(pq) = φ(p)φ(q).
Can extend to get a formula for φ(pa11 · · · p

ak
k ).

Caveat: To really use it need to factor n.



The (a,b) for the Affine Cipher

Shift Cipher Key s could be anything in {0, . . . , 25}. 26 keys.

Affine Cipher Key a has to be rel prime to 26, b can be anything.

If alphabet is size n then how many a’s are usable?
The number of elts of {0, . . . , n − 1} that are rel prime to n.
Do we have another name for this? Yes: φ(n).

How to compute φ(n).

I n is small: list out all numbers ≤ n− 1 that are rel prime to n.

I If p is prime φ(p) = p − 1.
If p, q are prime then (HW 2, Prob 6) φ(pq) = φ(p)φ(q).
Can extend to get a formula for φ(pa11 · · · p

ak
k ).

Caveat: To really use it need to factor n.



The (a,b) for the Affine Cipher

Shift Cipher Key s could be anything in {0, . . . , 25}. 26 keys.

Affine Cipher Key a has to be rel prime to 26, b can be anything.

If alphabet is size n then how many a’s are usable?
The number of elts of {0, . . . , n − 1} that are rel prime to n.
Do we have another name for this? Yes: φ(n).

How to compute φ(n).

I n is small: list out all numbers ≤ n− 1 that are rel prime to n.

I If p is prime φ(p) = p − 1.
If p, q are prime then (HW 2, Prob 6) φ(pq) = φ(p)φ(q).
Can extend to get a formula for φ(pa11 · · · p

ak
k ).

Caveat: To really use it need to factor n.



The (a,b) for the Affine Cipher

Shift Cipher Key s could be anything in {0, . . . , 25}. 26 keys.

Affine Cipher Key a has to be rel prime to 26, b can be anything.

If alphabet is size n then how many a’s are usable?
The number of elts of {0, . . . , n − 1} that are rel prime to n.
Do we have another name for this? Yes: φ(n).

How to compute φ(n).

I n is small: list out all numbers ≤ n− 1 that are rel prime to n.

I If p is prime φ(p) = p − 1.
If p, q are prime then (HW 2, Prob 6) φ(pq) = φ(p)φ(q).
Can extend to get a formula for φ(pa11 · · · p

ak
k ).

Caveat: To really use it need to factor n.



The (a,b) for the Affine Cipher

Shift Cipher Key s could be anything in {0, . . . , 25}. 26 keys.

Affine Cipher Key a has to be rel prime to 26, b can be anything.

If alphabet is size n then how many a’s are usable?
The number of elts of {0, . . . , n − 1} that are rel prime to n.
Do we have another name for this? Yes: φ(n).

How to compute φ(n).

I n is small: list out all numbers ≤ n− 1 that are rel prime to n.

I If p is prime φ(p) = p − 1.

If p, q are prime then (HW 2, Prob 6) φ(pq) = φ(p)φ(q).
Can extend to get a formula for φ(pa11 · · · p

ak
k ).

Caveat: To really use it need to factor n.



The (a,b) for the Affine Cipher

Shift Cipher Key s could be anything in {0, . . . , 25}. 26 keys.

Affine Cipher Key a has to be rel prime to 26, b can be anything.

If alphabet is size n then how many a’s are usable?
The number of elts of {0, . . . , n − 1} that are rel prime to n.
Do we have another name for this? Yes: φ(n).

How to compute φ(n).

I n is small: list out all numbers ≤ n− 1 that are rel prime to n.

I If p is prime φ(p) = p − 1.
If p, q are prime then (HW 2, Prob 6) φ(pq) = φ(p)φ(q).

Can extend to get a formula for φ(pa11 · · · p
ak
k ).

Caveat: To really use it need to factor n.



The (a,b) for the Affine Cipher

Shift Cipher Key s could be anything in {0, . . . , 25}. 26 keys.

Affine Cipher Key a has to be rel prime to 26, b can be anything.

If alphabet is size n then how many a’s are usable?
The number of elts of {0, . . . , n − 1} that are rel prime to n.
Do we have another name for this? Yes: φ(n).

How to compute φ(n).

I n is small: list out all numbers ≤ n− 1 that are rel prime to n.

I If p is prime φ(p) = p − 1.
If p, q are prime then (HW 2, Prob 6) φ(pq) = φ(p)φ(q).
Can extend to get a formula for φ(pa11 · · · p

ak
k ).

Caveat: To really use it need to factor n.



The (a,b) for the Affine Cipher

Shift Cipher Key s could be anything in {0, . . . , 25}. 26 keys.

Affine Cipher Key a has to be rel prime to 26, b can be anything.

If alphabet is size n then how many a’s are usable?
The number of elts of {0, . . . , n − 1} that are rel prime to n.
Do we have another name for this? Yes: φ(n).

How to compute φ(n).

I n is small: list out all numbers ≤ n− 1 that are rel prime to n.

I If p is prime φ(p) = p − 1.
If p, q are prime then (HW 2, Prob 6) φ(pq) = φ(p)φ(q).
Can extend to get a formula for φ(pa11 · · · p

ak
k ).

Caveat: To really use it need to factor n.



The Quadratic Cipher

Def The Quadratic cipher with a, b, c : Encrypt via
x → ax2 + bx + c (mod 26).

Does not work and was never used because:
No easy test for Invertibility (depends on def of easy).



The Quadratic Cipher

Def The Quadratic cipher with a, b, c : Encrypt via
x → ax2 + bx + c (mod 26).
Does not work and was never used because:

No easy test for Invertibility (depends on def of easy).



General Substitution Cipher

Def Gen Sub Cipher with perm f on {0, . . . , 25}.
1. Encrypt via x → f (x).

2. Decrypt via x → f −1(x).

PRO Very Large Key Space: 26!, so brute force not an option.
CON 100 years ago Hard to use, so we will look at alternatives
that take a short seed and get a random looking perm.
CON today Crackable. We discuss how later.



Keyword-Shift Cipher. Key is (Word,Shift)

Σ = {a, . . . , k}. Key: (jack, 4).

Alice then does the following:

1. List out the key word and then the remaining letters:

j a c k b d e f g h i

2. Now do Shift 4 on this:

f g h i j a c k b d e

This is where a, b, c, . . . go, so:

a b c d e f g h i j k
f g h i j a c k b d e



Keyword-Shift Cipher. Key is (Word,Shift)

Σ = {a, . . . , k}. Key: (jack, 4).
Alice then does the following:

1. List out the key word and then the remaining letters:

j a c k b d e f g h i

2. Now do Shift 4 on this:

f g h i j a c k b d e

This is where a, b, c, . . . go, so:

a b c d e f g h i j k
f g h i j a c k b d e



Keyword-Shift Cipher. Key is (Word,Shift)

Σ = {a, . . . , k}. Key: (jack, 4).
Alice then does the following:

1. List out the key word and then the remaining letters:

j a c k b d e f g h i

2. Now do Shift 4 on this:

f g h i j a c k b d e

This is where a, b, c, . . . go, so:

a b c d e f g h i j k
f g h i j a c k b d e



Keyword-Shift Cipher. Key is (Word,Shift)

Σ = {a, . . . , k}. Key: (jack, 4).
Alice then does the following:

1. List out the key word and then the remaining letters:

j a c k b d e f g h i

2. Now do Shift 4 on this:

f g h i j a c k b d e

This is where a, b, c, . . . go, so:

a b c d e f g h i j k
f g h i j a c k b d e



UPSHOT

1. From short key got random looking perm (in its day, not now).

2. Keyword Mixed cipher is similar, probably better, but we skip.



Keyword-Shift vs Truly Random

Alice and Eve play the following game:

Game: Σ = {a, b, . . . , z}. L is length of keyword, L = 6.

1. Alice flips a fair coin.

If T then Alice gen rand perm of Σ and sends to Eve.
If H then Alice gen rand word w ∈ Σ6, with 6 diff letters, rand
s ∈ Z25, creates a perm using Keyword-Shift with w , s, and
sends to Eve.

2. Eve says RP (Rand Perm) if she thinks Alice flipped T, KS
(Keyword-Shift) if she thinks Alice flipped H. If Eve is correct
she wins! If not then Alice wins!

Alice has no strategy in this game.
Eve can have a strategy. If Eve is unlimited then she can do quite
well.
We measure how good the Keyword-Shift is by the
probability that an optimal Eve can win.



Keyword-Shift vs Truly Random

Alice and Eve play the following game:
Game: Σ = {a, b, . . . , z}. L is length of keyword, L = 6.

1. Alice flips a fair coin.

If T then Alice gen rand perm of Σ and sends to Eve.
If H then Alice gen rand word w ∈ Σ6, with 6 diff letters, rand
s ∈ Z25, creates a perm using Keyword-Shift with w , s, and
sends to Eve.

2. Eve says RP (Rand Perm) if she thinks Alice flipped T, KS
(Keyword-Shift) if she thinks Alice flipped H. If Eve is correct
she wins! If not then Alice wins!

Alice has no strategy in this game.
Eve can have a strategy. If Eve is unlimited then she can do quite
well.
We measure how good the Keyword-Shift is by the
probability that an optimal Eve can win.



Keyword-Shift vs Truly Random

Alice and Eve play the following game:
Game: Σ = {a, b, . . . , z}. L is length of keyword, L = 6.

1. Alice flips a fair coin.

If T then Alice gen rand perm of Σ and sends to Eve.
If H then Alice gen rand word w ∈ Σ6, with 6 diff letters, rand
s ∈ Z25, creates a perm using Keyword-Shift with w , s, and
sends to Eve.

2. Eve says RP (Rand Perm) if she thinks Alice flipped T, KS
(Keyword-Shift) if she thinks Alice flipped H. If Eve is correct
she wins! If not then Alice wins!

Alice has no strategy in this game.
Eve can have a strategy. If Eve is unlimited then she can do quite
well.
We measure how good the Keyword-Shift is by the
probability that an optimal Eve can win.



Keyword-Shift vs Truly Random

Alice and Eve play the following game:
Game: Σ = {a, b, . . . , z}. L is length of keyword, L = 6.

1. Alice flips a fair coin.

If T then Alice gen rand perm of Σ and sends to Eve.

If H then Alice gen rand word w ∈ Σ6, with 6 diff letters, rand
s ∈ Z25, creates a perm using Keyword-Shift with w , s, and
sends to Eve.

2. Eve says RP (Rand Perm) if she thinks Alice flipped T, KS
(Keyword-Shift) if she thinks Alice flipped H. If Eve is correct
she wins! If not then Alice wins!

Alice has no strategy in this game.
Eve can have a strategy. If Eve is unlimited then she can do quite
well.
We measure how good the Keyword-Shift is by the
probability that an optimal Eve can win.



Keyword-Shift vs Truly Random

Alice and Eve play the following game:
Game: Σ = {a, b, . . . , z}. L is length of keyword, L = 6.

1. Alice flips a fair coin.

If T then Alice gen rand perm of Σ and sends to Eve.
If H then Alice gen rand word w ∈ Σ6, with 6 diff letters, rand
s ∈ Z25, creates a perm using Keyword-Shift with w , s, and
sends to Eve.

2. Eve says RP (Rand Perm) if she thinks Alice flipped T, KS
(Keyword-Shift) if she thinks Alice flipped H. If Eve is correct
she wins! If not then Alice wins!

Alice has no strategy in this game.
Eve can have a strategy. If Eve is unlimited then she can do quite
well.
We measure how good the Keyword-Shift is by the
probability that an optimal Eve can win.



Keyword-Shift vs Truly Random

Alice and Eve play the following game:
Game: Σ = {a, b, . . . , z}. L is length of keyword, L = 6.

1. Alice flips a fair coin.

If T then Alice gen rand perm of Σ and sends to Eve.
If H then Alice gen rand word w ∈ Σ6, with 6 diff letters, rand
s ∈ Z25, creates a perm using Keyword-Shift with w , s, and
sends to Eve.

2. Eve says RP (Rand Perm) if she thinks Alice flipped T, KS
(Keyword-Shift) if she thinks Alice flipped H. If Eve is correct
she wins! If not then Alice wins!

Alice has no strategy in this game.

Eve can have a strategy. If Eve is unlimited then she can do quite
well.
We measure how good the Keyword-Shift is by the
probability that an optimal Eve can win.



Keyword-Shift vs Truly Random

Alice and Eve play the following game:
Game: Σ = {a, b, . . . , z}. L is length of keyword, L = 6.

1. Alice flips a fair coin.

If T then Alice gen rand perm of Σ and sends to Eve.
If H then Alice gen rand word w ∈ Σ6, with 6 diff letters, rand
s ∈ Z25, creates a perm using Keyword-Shift with w , s, and
sends to Eve.

2. Eve says RP (Rand Perm) if she thinks Alice flipped T, KS
(Keyword-Shift) if she thinks Alice flipped H. If Eve is correct
she wins! If not then Alice wins!

Alice has no strategy in this game.
Eve can have a strategy. If Eve is unlimited then she can do quite
well.

We measure how good the Keyword-Shift is by the
probability that an optimal Eve can win.



Keyword-Shift vs Truly Random

Alice and Eve play the following game:
Game: Σ = {a, b, . . . , z}. L is length of keyword, L = 6.

1. Alice flips a fair coin.

If T then Alice gen rand perm of Σ and sends to Eve.
If H then Alice gen rand word w ∈ Σ6, with 6 diff letters, rand
s ∈ Z25, creates a perm using Keyword-Shift with w , s, and
sends to Eve.

2. Eve says RP (Rand Perm) if she thinks Alice flipped T, KS
(Keyword-Shift) if she thinks Alice flipped H. If Eve is correct
she wins! If not then Alice wins!

Alice has no strategy in this game.
Eve can have a strategy. If Eve is unlimited then she can do quite
well.
We measure how good the Keyword-Shift is by the
probability that an optimal Eve can win.



Unlimited Eve Strategy

Assume Eve has unlimited computational power.

Before Eve plays the game she does the following:

I For every word w ∈ Σ6 (all diff letters) and shift
s ∈ {0, . . . , 25} find the perm generated by keyword-Shift.

I Store all L = 26× 25× 24× 23× 22× 21× 26 perms:
σ1, σ2, . . . , σL.

I Note that the number of perms is ∼ 109.

I Note that 26! ∼ 1026.

Eve’s strategy:
Alice gives Eve perm τ . If τ is one of the σi then Eve says KS,
otherwise Eve says RP.



Unlimited Eve Strategy

Assume Eve has unlimited computational power.
Before Eve plays the game she does the following:

I For every word w ∈ Σ6 (all diff letters) and shift
s ∈ {0, . . . , 25} find the perm generated by keyword-Shift.

I Store all L = 26× 25× 24× 23× 22× 21× 26 perms:
σ1, σ2, . . . , σL.

I Note that the number of perms is ∼ 109.

I Note that 26! ∼ 1026.

Eve’s strategy:
Alice gives Eve perm τ . If τ is one of the σi then Eve says KS,
otherwise Eve says RP.



Unlimited Eve Strategy

Assume Eve has unlimited computational power.
Before Eve plays the game she does the following:

I For every word w ∈ Σ6 (all diff letters) and shift
s ∈ {0, . . . , 25} find the perm generated by keyword-Shift.

I Store all L = 26× 25× 24× 23× 22× 21× 26 perms:
σ1, σ2, . . . , σL.

I Note that the number of perms is ∼ 109.

I Note that 26! ∼ 1026.

Eve’s strategy:
Alice gives Eve perm τ . If τ is one of the σi then Eve says KS,
otherwise Eve says RP.



Unlimited Eve Strategy

Assume Eve has unlimited computational power.
Before Eve plays the game she does the following:

I For every word w ∈ Σ6 (all diff letters) and shift
s ∈ {0, . . . , 25} find the perm generated by keyword-Shift.

I Store all L = 26× 25× 24× 23× 22× 21× 26 perms:
σ1, σ2, . . . , σL.

I Note that the number of perms is ∼ 109.

I Note that 26! ∼ 1026.

Eve’s strategy:
Alice gives Eve perm τ . If τ is one of the σi then Eve says KS,
otherwise Eve says RP.



Unlimited Eve Strategy

Assume Eve has unlimited computational power.
Before Eve plays the game she does the following:

I For every word w ∈ Σ6 (all diff letters) and shift
s ∈ {0, . . . , 25} find the perm generated by keyword-Shift.

I Store all L = 26× 25× 24× 23× 22× 21× 26 perms:
σ1, σ2, . . . , σL.

I Note that the number of perms is ∼ 109.

I Note that 26! ∼ 1026.

Eve’s strategy:
Alice gives Eve perm τ . If τ is one of the σi then Eve says KS,
otherwise Eve says RP.



Unlimited Eve Strategy

Assume Eve has unlimited computational power.
Before Eve plays the game she does the following:

I For every word w ∈ Σ6 (all diff letters) and shift
s ∈ {0, . . . , 25} find the perm generated by keyword-Shift.

I Store all L = 26× 25× 24× 23× 22× 21× 26 perms:
σ1, σ2, . . . , σL.

I Note that the number of perms is ∼ 109.

I Note that 26! ∼ 1026.

Eve’s strategy:
Alice gives Eve perm τ . If τ is one of the σi then Eve says KS,
otherwise Eve says RP.



Unlimited Eve Strategy

Assume Eve has unlimited computational power.
Before Eve plays the game she does the following:

I For every word w ∈ Σ6 (all diff letters) and shift
s ∈ {0, . . . , 25} find the perm generated by keyword-Shift.

I Store all L = 26× 25× 24× 23× 22× 21× 26 perms:
σ1, σ2, . . . , σL.

I Note that the number of perms is ∼ 109.

I Note that 26! ∼ 1026.

Eve’s strategy:

Alice gives Eve perm τ . If τ is one of the σi then Eve says KS,
otherwise Eve says RP.



Unlimited Eve Strategy

Assume Eve has unlimited computational power.
Before Eve plays the game she does the following:

I For every word w ∈ Σ6 (all diff letters) and shift
s ∈ {0, . . . , 25} find the perm generated by keyword-Shift.

I Store all L = 26× 25× 24× 23× 22× 21× 26 perms:
σ1, σ2, . . . , σL.

I Note that the number of perms is ∼ 109.

I Note that 26! ∼ 1026.

Eve’s strategy:
Alice gives Eve perm τ . If τ is one of the σi then Eve says KS,
otherwise Eve says RP.



Unlimited Eve Analysis

I If KS then Eve will guess it correctly.

I If RP then the prob Eve gets it wrong is the prob that perm
just happens to be one of the σi :

∼ 109

1026
=

1

1017

Prob Eve right is 1− 1
1017

= 0.9999999999999999 = L.

Prob Eve wins is
Pr(KS)× 1 + Pr(RP)× L = 1

2 × 1 + 1
2 × L = 1

2(1 + L) = L′

which is very close to 1.
Upshot Unlimited Eve wins most of the time.



Unlimited Eve Analysis

I If KS then Eve will guess it correctly.

I If RP then the prob Eve gets it wrong is the prob that perm
just happens to be one of the σi :

∼ 109

1026
=

1

1017

Prob Eve right is 1− 1
1017

= 0.9999999999999999 = L.

Prob Eve wins is
Pr(KS)× 1 + Pr(RP)× L = 1

2 × 1 + 1
2 × L = 1

2(1 + L) = L′

which is very close to 1.
Upshot Unlimited Eve wins most of the time.



Unlimited Eve Analysis

I If KS then Eve will guess it correctly.

I If RP then the prob Eve gets it wrong is the prob that perm
just happens to be one of the σi :

∼ 109

1026
=

1

1017

Prob Eve right is 1− 1
1017

= 0.9999999999999999 = L.

Prob Eve wins is
Pr(KS)× 1 + Pr(RP)× L = 1

2 × 1 + 1
2 × L = 1

2(1 + L) = L′

which is very close to 1.
Upshot Unlimited Eve wins most of the time.



Unlimited Eve Analysis

I If KS then Eve will guess it correctly.

I If RP then the prob Eve gets it wrong is the prob that perm
just happens to be one of the σi :

∼ 109

1026
=

1

1017

Prob Eve right is 1− 1
1017

= 0.9999999999999999 = L.

Prob Eve wins is
Pr(KS)× 1 + Pr(RP)× L = 1

2 × 1 + 1
2 × L = 1

2(1 + L) = L′

which is very close to 1.
Upshot Unlimited Eve wins most of the time.



Unlimited Eve Analysis

I If KS then Eve will guess it correctly.

I If RP then the prob Eve gets it wrong is the prob that perm
just happens to be one of the σi :

∼ 109

1026
=

1

1017

Prob Eve right is 1− 1
1017

= 0.9999999999999999 = L.

Prob Eve wins is
Pr(KS)× 1 + Pr(RP)× L = 1

2 × 1 + 1
2 × L = 1

2(1 + L) = L′

which is very close to 1.
Upshot Unlimited Eve wins most of the time.



Strategy for Comp Limited Eve

1. Eve gets τ .

2. If τ has 3 consecutive letters (e.g., p, q, r) then say KS, else
say RP. (We do not count wrap around.)



Strategy for Comp Limited Eve

1. Eve gets τ .

2. If τ has 3 consecutive letters (e.g., p, q, r) then say KS, else
say RP. (We do not count wrap around.)



Strategy for Comp Limited Eve

1. Eve gets τ .

2. If τ has 3 consecutive letters (e.g., p, q, r) then say KS, else
say RP. (We do not count wrap around.)



Prob that Limited Eve Wins

If KS then Eve is correct (we omit this part).

If RP then prob Eve wrong is prob a rand perm has 3 cons lets.

I Number of perms: 26!

I Number of perms with 3 consecutive letters:

Pick the space to begin the 3 cons lets: 24 (a, . . . , x)

Pick the let to put there (also determines the next 2 lets): 26

Permute remaining 23 letters in remaining 23 places: 23!

We have counted some perms ≥ 2 times. So
Numb of perms with 3 cons lets is ≤ 24× 26× 23!.

Prob that Alice picks perm with 3 cons lets is

≤ 24× 26× 23!

26!
=

1

25
= 0.04

Prob that Eve wins is ≥ 1− 0.04 = 0.96.

Prob Eve wins is 1
2 × 1 + 1

2 × 0.096 = 0.98



Prob that Limited Eve Wins

If KS then Eve is correct (we omit this part).
If RP then prob Eve wrong is prob a rand perm has 3 cons lets.

I Number of perms: 26!

I Number of perms with 3 consecutive letters:

Pick the space to begin the 3 cons lets: 24 (a, . . . , x)

Pick the let to put there (also determines the next 2 lets): 26

Permute remaining 23 letters in remaining 23 places: 23!

We have counted some perms ≥ 2 times. So
Numb of perms with 3 cons lets is ≤ 24× 26× 23!.

Prob that Alice picks perm with 3 cons lets is

≤ 24× 26× 23!

26!
=

1

25
= 0.04

Prob that Eve wins is ≥ 1− 0.04 = 0.96.

Prob Eve wins is 1
2 × 1 + 1

2 × 0.096 = 0.98



Prob that Limited Eve Wins

If KS then Eve is correct (we omit this part).
If RP then prob Eve wrong is prob a rand perm has 3 cons lets.

I Number of perms: 26!

I Number of perms with 3 consecutive letters:

Pick the space to begin the 3 cons lets: 24 (a, . . . , x)

Pick the let to put there (also determines the next 2 lets): 26

Permute remaining 23 letters in remaining 23 places: 23!

We have counted some perms ≥ 2 times. So
Numb of perms with 3 cons lets is ≤ 24× 26× 23!.

Prob that Alice picks perm with 3 cons lets is

≤ 24× 26× 23!

26!
=

1

25
= 0.04

Prob that Eve wins is ≥ 1− 0.04 = 0.96.

Prob Eve wins is 1
2 × 1 + 1

2 × 0.096 = 0.98



Prob that Limited Eve Wins

If KS then Eve is correct (we omit this part).
If RP then prob Eve wrong is prob a rand perm has 3 cons lets.

I Number of perms: 26!

I Number of perms with 3 consecutive letters:

Pick the space to begin the 3 cons lets: 24 (a, . . . , x)

Pick the let to put there (also determines the next 2 lets): 26

Permute remaining 23 letters in remaining 23 places: 23!

We have counted some perms ≥ 2 times. So
Numb of perms with 3 cons lets is ≤ 24× 26× 23!.

Prob that Alice picks perm with 3 cons lets is

≤ 24× 26× 23!

26!
=

1

25
= 0.04

Prob that Eve wins is ≥ 1− 0.04 = 0.96.

Prob Eve wins is 1
2 × 1 + 1

2 × 0.096 = 0.98



Prob that Limited Eve Wins

If KS then Eve is correct (we omit this part).
If RP then prob Eve wrong is prob a rand perm has 3 cons lets.

I Number of perms: 26!

I Number of perms with 3 consecutive letters:

Pick the space to begin the 3 cons lets: 24 (a, . . . , x)

Pick the let to put there (also determines the next 2 lets): 26

Permute remaining 23 letters in remaining 23 places: 23!

We have counted some perms ≥ 2 times. So
Numb of perms with 3 cons lets is ≤ 24× 26× 23!.

Prob that Alice picks perm with 3 cons lets is

≤ 24× 26× 23!

26!
=

1

25
= 0.04

Prob that Eve wins is ≥ 1− 0.04 = 0.96.

Prob Eve wins is 1
2 × 1 + 1

2 × 0.096 = 0.98



Prob that Limited Eve Wins

If KS then Eve is correct (we omit this part).
If RP then prob Eve wrong is prob a rand perm has 3 cons lets.

I Number of perms: 26!

I Number of perms with 3 consecutive letters:

Pick the space to begin the 3 cons lets: 24 (a, . . . , x)

Pick the let to put there (also determines the next 2 lets): 26

Permute remaining 23 letters in remaining 23 places: 23!

We have counted some perms ≥ 2 times. So
Numb of perms with 3 cons lets is ≤ 24× 26× 23!.

Prob that Alice picks perm with 3 cons lets is

≤ 24× 26× 23!

26!
=

1

25
= 0.04

Prob that Eve wins is ≥ 1− 0.04 = 0.96.

Prob Eve wins is 1
2 × 1 + 1

2 × 0.096 = 0.98



Prob that Limited Eve Wins

If KS then Eve is correct (we omit this part).
If RP then prob Eve wrong is prob a rand perm has 3 cons lets.

I Number of perms: 26!

I Number of perms with 3 consecutive letters:

Pick the space to begin the 3 cons lets: 24 (a, . . . , x)

Pick the let to put there (also determines the next 2 lets): 26

Permute remaining 23 letters in remaining 23 places: 23!

We have counted some perms ≥ 2 times. So
Numb of perms with 3 cons lets is ≤ 24× 26× 23!.

Prob that Alice picks perm with 3 cons lets is

≤ 24× 26× 23!

26!
=

1

25
= 0.04

Prob that Eve wins is ≥ 1− 0.04 = 0.96.

Prob Eve wins is 1
2 × 1 + 1

2 × 0.096 = 0.98



Prob that Limited Eve Wins

If KS then Eve is correct (we omit this part).
If RP then prob Eve wrong is prob a rand perm has 3 cons lets.

I Number of perms: 26!

I Number of perms with 3 consecutive letters:

Pick the space to begin the 3 cons lets: 24 (a, . . . , x)

Pick the let to put there (also determines the next 2 lets): 26

Permute remaining 23 letters in remaining 23 places: 23!

We have counted some perms ≥ 2 times. So
Numb of perms with 3 cons lets is ≤ 24× 26× 23!.

Prob that Alice picks perm with 3 cons lets is

≤ 24× 26× 23!

26!
=

1

25
= 0.04

Prob that Eve wins is ≥ 1− 0.04 = 0.96.

Prob Eve wins is 1
2 × 1 + 1

2 × 0.096 = 0.98



Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T , counting repeats.

2. The 2-grams of T are just the contiguous pairs of letters in
T , counting repeats. Also called bigrams.

3. The 3-grams of T you can guess. Also called trigrams.

4. One usually talks about the freq of n-grams.



Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T , counting repeats.

2. The 2-grams of T are just the contiguous pairs of letters in
T , counting repeats. Also called bigrams.

3. The 3-grams of T you can guess. Also called trigrams.

4. One usually talks about the freq of n-grams.



Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T , counting repeats.

2. The 2-grams of T are just the contiguous pairs of letters in
T , counting repeats. Also called bigrams.

3. The 3-grams of T you can guess. Also called trigrams.

4. One usually talks about the freq of n-grams.



Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T , counting repeats.

2. The 2-grams of T are just the contiguous pairs of letters in
T , counting repeats. Also called bigrams.

3. The 3-grams of T you can guess. Also called trigrams.

4. One usually talks about the freq of n-grams.



Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T , counting repeats.

2. The 2-grams of T are just the contiguous pairs of letters in
T , counting repeats. Also called bigrams.

3. The 3-grams of T you can guess. Also called trigrams.

4. One usually talks about the freq of n-grams.



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.

I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).

R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.

σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )
The parameters R and I need to be picked carefully.



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )
The parameters R and I need to be picked carefully.



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )
The parameters R and I need to be picked carefully.



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit

For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )
The parameters R and I need to be picked carefully.



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )
The parameters R and I need to be picked carefully.



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.

Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )
The parameters R and I need to be picked carefully.



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped

If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )
The parameters R and I need to be picked carefully.



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )
The parameters R and I need to be picked carefully.



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR

Pick the σr with min goodr or have human look at all σr (T )
The parameters R and I need to be picked carefully.



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )

The parameters R and I need to be picked carefully.



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )
The parameters R and I need to be picked carefully.


