
BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

The Shift Cipher

September 1, 2020

Shift Cipher: Encryption,
Decryption, Cracking

September 1, 2020

The Shift Cipher

I Consider encrypting English text.

I Associate ‘a’ with 0; ‘b’ with 1; . . . ; ‘z’ with 25.

I s ∈ {0, . . . , 25} (or could think of s ∈ {a, . . . , z}).

I To encrypt using key s, shift every letter of the plaintext by s
positions (with wraparound).

The Shift Cipher

I Consider encrypting English text.

I Associate ‘a’ with 0; ‘b’ with 1; . . . ; ‘z’ with 25.

I s ∈ {0, . . . , 25} (or could think of s ∈ {a, . . . , z}).

I To encrypt using key s, shift every letter of the plaintext by s
positions (with wraparound).

The Shift Cipher

I Consider encrypting English text.

I Associate ‘a’ with 0; ‘b’ with 1; . . . ; ‘z’ with 25.

I s ∈ {0, . . . , 25} (or could think of s ∈ {a, . . . , z}).

I To encrypt using key s, shift every letter of the plaintext by s
positions (with wraparound).

The Shift Cipher

I Consider encrypting English text.

I Associate ‘a’ with 0; ‘b’ with 1; . . . ; ‘z’ with 25.

I s ∈ {0, . . . , 25} (or could think of s ∈ {a, . . . , z}).

I To encrypt using key s, shift every letter of the plaintext by s
positions (with wraparound).

The Shift Cipher

I Consider encrypting English text.

I Associate ‘a’ with 0; ‘b’ with 1; . . . ; ‘z’ with 25.

I s ∈ {0, . . . , 25} (or could think of s ∈ {a, . . . , z}).

I To encrypt using key s, shift every letter of the plaintext by s
positions (with wraparound).

The Shift Cipher: Examples of Encryption

I want to encode Bill works at a zoo! with a shift-3.

1. Do usual preprocessing: blocks of five, etc to get:
billw orksa tazoo

2. Convert letters to numbers to get:
1-8-11-11-22 14-17-10-18-0 19-0-25-14-14

3. Add three to each number (wrap around) to get:
4-11-14-14-25 17-20-13-21-3 22-3-2-17-17

4. Convert numbers to letters to get:
elooz runvd wdcrr

The Shift Cipher: Examples of Encryption

I want to encode Bill works at a zoo! with a shift-3.

1. Do usual preprocessing: blocks of five, etc to get:
billw orksa tazoo

2. Convert letters to numbers to get:
1-8-11-11-22 14-17-10-18-0 19-0-25-14-14

3. Add three to each number (wrap around) to get:
4-11-14-14-25 17-20-13-21-3 22-3-2-17-17

4. Convert numbers to letters to get:
elooz runvd wdcrr

The Shift Cipher: Examples of Encryption

I want to encode Bill works at a zoo! with a shift-3.

1. Do usual preprocessing: blocks of five, etc to get:
billw orksa tazoo

2. Convert letters to numbers to get:
1-8-11-11-22 14-17-10-18-0 19-0-25-14-14

3. Add three to each number (wrap around) to get:
4-11-14-14-25 17-20-13-21-3 22-3-2-17-17

4. Convert numbers to letters to get:
elooz runvd wdcrr

The Shift Cipher: Examples of Encryption

I want to encode Bill works at a zoo! with a shift-3.

1. Do usual preprocessing: blocks of five, etc to get:
billw orksa tazoo

2. Convert letters to numbers to get:
1-8-11-11-22 14-17-10-18-0 19-0-25-14-14

3. Add three to each number (wrap around) to get:
4-11-14-14-25 17-20-13-21-3 22-3-2-17-17

4. Convert numbers to letters to get:
elooz runvd wdcrr

The Shift Cipher: Examples of Encryption

I want to encode Bill works at a zoo! with a shift-3.

1. Do usual preprocessing: blocks of five, etc to get:
billw orksa tazoo

2. Convert letters to numbers to get:
1-8-11-11-22 14-17-10-18-0 19-0-25-14-14

3. Add three to each number (wrap around) to get:
4-11-14-14-25 17-20-13-21-3 22-3-2-17-17

4. Convert numbers to letters to get:
elooz runvd wdcrr

The Shift Cipher: How do Decrypt

Bob knows Alice used shift-3. How does he decrypt?

He does shift by −3 or can view as shift by 26− 3 = 23.

The Shift Cipher: How do Decrypt

Bob knows Alice used shift-3. How does he decrypt?
He does shift by −3 or can view as shift by 26− 3 = 23.

The Shift Cipher: An Example of Decrypt

Bob has to decode mrvkx dolnh vpo which was coded by shift-3.

1. Convert letters to numbers to get:
12-17-21-10-23 3-14-11-13-7 21-15-14.

2. Subtract 3 from each number (wrap around) to get:
9-14-18-7-20 0-11-8-10-4 18-12-11.

3. Convert numbers to letters to get: joshu alike sml.

4. Figure out spacing to get: Joshua likes ML.

The Shift Cipher: An Example of Decrypt

Bob has to decode mrvkx dolnh vpo which was coded by shift-3.

1. Convert letters to numbers to get:
12-17-21-10-23 3-14-11-13-7 21-15-14.

2. Subtract 3 from each number (wrap around) to get:
9-14-18-7-20 0-11-8-10-4 18-12-11.

3. Convert numbers to letters to get: joshu alike sml.

4. Figure out spacing to get: Joshua likes ML.

The Shift Cipher: An Example of Decrypt

Bob has to decode mrvkx dolnh vpo which was coded by shift-3.

1. Convert letters to numbers to get:
12-17-21-10-23 3-14-11-13-7 21-15-14.

2. Subtract 3 from each number (wrap around) to get:
9-14-18-7-20 0-11-8-10-4 18-12-11.

3. Convert numbers to letters to get: joshu alike sml.

4. Figure out spacing to get: Joshua likes ML.

The Shift Cipher: An Example of Decrypt

Bob has to decode mrvkx dolnh vpo which was coded by shift-3.

1. Convert letters to numbers to get:
12-17-21-10-23 3-14-11-13-7 21-15-14.

2. Subtract 3 from each number (wrap around) to get:
9-14-18-7-20 0-11-8-10-4 18-12-11.

3. Convert numbers to letters to get: joshu alike sml.

4. Figure out spacing to get: Joshua likes ML.

The Shift Cipher: An Example of Decrypt

Bob has to decode mrvkx dolnh vpo which was coded by shift-3.

1. Convert letters to numbers to get:
12-17-21-10-23 3-14-11-13-7 21-15-14.

2. Subtract 3 from each number (wrap around) to get:
9-14-18-7-20 0-11-8-10-4 18-12-11.

3. Convert numbers to letters to get: joshu alike sml.

4. Figure out spacing to get: Joshua likes ML.

The Shift Cipher: An Example of Decrypt

Bob has to decode mrvkx dolnh vpo which was coded by shift-3.

1. Convert letters to numbers to get:
12-17-21-10-23 3-14-11-13-7 21-15-14.

2. Subtract 3 from each number (wrap around) to get:
9-14-18-7-20 0-11-8-10-4 18-12-11.

3. Convert numbers to letters to get: joshu alike sml.

4. Figure out spacing to get: Joshua likes ML.

“Wrap Around” is Modular Arithmetic: Definitions

I x ≡ y (mod N) if and only if N divides x − y .

I [x mod N] = the remainder when x is divided by N.

I i.e. the unique value y ∈ {0, . . . ,N − 1} such that x ≡ y
(mod N).

I 25 ≡ 35 (mod 10)

I 25 6= [35 mod 10]

I 5 = [35 mod 10]

“Wrap Around” is Modular Arithmetic: Definitions

I x ≡ y (mod N) if and only if N divides x − y .

I [x mod N] = the remainder when x is divided by N.

I i.e. the unique value y ∈ {0, . . . ,N − 1} such that x ≡ y
(mod N).

I 25 ≡ 35 (mod 10)

I 25 6= [35 mod 10]

I 5 = [35 mod 10]

“Wrap Around” is Modular Arithmetic: Definitions

I x ≡ y (mod N) if and only if N divides x − y .

I [x mod N] = the remainder when x is divided by N.

I i.e. the unique value y ∈ {0, . . . ,N − 1} such that x ≡ y
(mod N).

I 25 ≡ 35 (mod 10)

I 25 6= [35 mod 10]

I 5 = [35 mod 10]

“Wrap Around” is Modular Arithmetic: Definitions

I x ≡ y (mod N) if and only if N divides x − y .

I [x mod N] = the remainder when x is divided by N.

I i.e. the unique value y ∈ {0, . . . ,N − 1} such that x ≡ y
(mod N).

I 25 ≡ 35 (mod 10)

I 25 6= [35 mod 10]

I 5 = [35 mod 10]

“Wrap Around” is Modular Arithmetic: Definitions

I x ≡ y (mod N) if and only if N divides x − y .

I [x mod N] = the remainder when x is divided by N.

I i.e. the unique value y ∈ {0, . . . ,N − 1} such that x ≡ y
(mod N).

I 25 ≡ 35 (mod 10)

I 25 6= [35 mod 10]

I 5 = [35 mod 10]

“Wrap Around” is Modular Arithmetic: Definitions

I x ≡ y (mod N) if and only if N divides x − y .

I [x mod N] = the remainder when x is divided by N.

I i.e. the unique value y ∈ {0, . . . ,N − 1} such that x ≡ y
(mod N).

I 25 ≡ 35 (mod 10)

I 25 6= [35 mod 10]

I 5 = [35 mod 10]

“Wrap Around” is Modular Arithmetic: Definitions

I x ≡ y (mod N) if and only if N divides x − y .

I [x mod N] = the remainder when x is divided by N.

I i.e. the unique value y ∈ {0, . . . ,N − 1} such that x ≡ y
(mod N).

I 25 ≡ 35 (mod 10)

I 25 6= [35 mod 10]

I 5 = [35 mod 10]

Modular Arithmetic II: Convention

Common usage:

100 ≡ 2 (mod 7)

Commonly if we are in Mod n we have a large number on the left
and then a number between 0 and n − 1 on the right.

When dealing with mod n we assume the entire universe is
{0, 1, . . . , n − 1}.

Modular Arithmetic II: Convention

Common usage:

100 ≡ 2 (mod 7)

Commonly if we are in Mod n we have a large number on the left
and then a number between 0 and n − 1 on the right.

When dealing with mod n we assume the entire universe is
{0, 1, . . . , n − 1}.

Modular Arithmetic II: Convention

Common usage:

100 ≡ 2 (mod 7)

Commonly if we are in Mod n we have a large number on the left
and then a number between 0 and n − 1 on the right.

When dealing with mod n we assume the entire universe is
{0, 1, . . . , n − 1}.

Modular Arithmetic: +,−,×

≡ is Mod 26 for this slide.

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut:−y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide

Modular Arithmetic: +,−,×

≡ is Mod 26 for this slide.

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut:−y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide

Modular Arithmetic: +,−,×

≡ is Mod 26 for this slide.

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.

Pedantic −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut:−y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide

Modular Arithmetic: +,−,×

≡ is Mod 26 for this slide.

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic −y is the number such that y + (−y) ≡ 0.

−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut:−y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide

Modular Arithmetic: +,−,×

≡ is Mod 26 for this slide.

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).

Shortcut:−y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide

Modular Arithmetic: +,−,×

≡ is Mod 26 for this slide.

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut:−y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide

Modular Arithmetic: +,−,×

≡ is Mod 26 for this slide.

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut:−y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.

Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide

Modular Arithmetic: +,−,×

≡ is Mod 26 for this slide.

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut:−y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide

Modular Arithmetic: +,−,×

≡ is Mod 26 for this slide.

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut:−y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide

Modular Arithmetic: +,−,×

≡ is Mod 26 for this slide.

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut:−y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide

Modular Arithmetic: ÷

≡ is Mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.

Pedantic 1
y is the number such that y × 1

y ≡ 1.
1
3 ≡ 9 since 9× 3 = 27 ≡ 1.
Shortcut: there is an algorithm that finds 1

y quickly.
We will study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25. Think about.
No such x exists.
Fact A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Modular Arithmetic: ÷

≡ is Mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.
Pedantic 1

y is the number such that y × 1
y ≡ 1.

1
3 ≡ 9 since 9× 3 = 27 ≡ 1.
Shortcut: there is an algorithm that finds 1

y quickly.
We will study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25. Think about.
No such x exists.
Fact A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Modular Arithmetic: ÷

≡ is Mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.
Pedantic 1

y is the number such that y × 1
y ≡ 1.

1
3 ≡ 9 since 9× 3 = 27 ≡ 1.

Shortcut: there is an algorithm that finds 1
y quickly.

We will study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25. Think about.
No such x exists.
Fact A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Modular Arithmetic: ÷

≡ is Mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.
Pedantic 1

y is the number such that y × 1
y ≡ 1.

1
3 ≡ 9 since 9× 3 = 27 ≡ 1.
Shortcut:

there is an algorithm that finds 1
y quickly.

We will study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25. Think about.
No such x exists.
Fact A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Modular Arithmetic: ÷

≡ is Mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.
Pedantic 1

y is the number such that y × 1
y ≡ 1.

1
3 ≡ 9 since 9× 3 = 27 ≡ 1.
Shortcut: there is an algorithm that finds 1

y quickly.

We will study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25. Think about.
No such x exists.
Fact A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Modular Arithmetic: ÷

≡ is Mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.
Pedantic 1

y is the number such that y × 1
y ≡ 1.

1
3 ≡ 9 since 9× 3 = 27 ≡ 1.
Shortcut: there is an algorithm that finds 1

y quickly.
We will study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25. Think about.
No such x exists.
Fact A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Modular Arithmetic: ÷

≡ is Mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.
Pedantic 1

y is the number such that y × 1
y ≡ 1.

1
3 ≡ 9 since 9× 3 = 27 ≡ 1.
Shortcut: there is an algorithm that finds 1

y quickly.
We will study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25.

Think about.
No such x exists.
Fact A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Modular Arithmetic: ÷

≡ is Mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.
Pedantic 1

y is the number such that y × 1
y ≡ 1.

1
3 ≡ 9 since 9× 3 = 27 ≡ 1.
Shortcut: there is an algorithm that finds 1

y quickly.
We will study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25. Think about.

No such x exists.
Fact A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Modular Arithmetic: ÷

≡ is Mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.
Pedantic 1

y is the number such that y × 1
y ≡ 1.

1
3 ≡ 9 since 9× 3 = 27 ≡ 1.
Shortcut: there is an algorithm that finds 1

y quickly.
We will study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25. Think about.
No such x exists.

Fact A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Modular Arithmetic: ÷

≡ is Mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.
Pedantic 1

y is the number such that y × 1
y ≡ 1.

1
3 ≡ 9 since 9× 3 = 27 ≡ 1.
Shortcut: there is an algorithm that finds 1

y quickly.
We will study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25. Think about.
No such x exists.
Fact A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

The Shift Cipher, Formally

I M = {all texts in lowercase English alphabet}
M for Message space.
All arithmetic mod 26.

I Choose uniform s ∈ K = {0, . . . , 25}. K for Keyspace.

I Encode (m1 . . .mt) as (m1 + s . . .mt + s).

I Decode (c1 . . . ct) as (c1 − s . . . ct − s).

I Can verify that correctness holds.

Cracking the Shift Cipher

September 1, 2020

Is the Shift Cipher Secure?

I No – only 26 possible keys!

I Given a ciphertext, try decrypting with every possible key

I Only one possibility will “make sense”

I Example of a “brute-force” or “exhaustive-search” attack

Example

I Ciphertext uryyb jbeyq

I Try every possible key. . .

I tqxxa iadxp

I spwwz hzcwo

I . . .
I hello world

Question: We can tell that hello world is correct but how can a
computer do that. Can we mechanize the process of picking out
the right one?

Example

I Ciphertext uryyb jbeyq

I Try every possible key. . .

I tqxxa iadxp

I spwwz hzcwo

I . . .
I hello world

Question: We can tell that hello world is correct but how can a
computer do that. Can we mechanize the process of picking out
the right one?

Letter Frequencies

Freq Vectors

Let T be a long text. Length N. May or may not be coded.

Let Na be the number of a′s in T .
Let Nb be the number of b′s in T .
...

The Freq Vector of T is

~fT =

(
Na

N
,
Nb

N
, · · · , Nz

N

)

Freq Vectors

Let T be a long text. Length N. May or may not be coded.

Let Na be the number of a′s in T .
Let Nb be the number of b′s in T .
...

The Freq Vector of T is

~fT =

(
Na

N
,
Nb

N
, · · · , Nz

N

)

How to Tell Is-English

Given a Text T you want to tell if it’s English or a Shift of
English. You do not want to read all 26 possible shifts of T .

Let ~fE be Freq Vector for English.
Let ~fT be Freq Vector for T .
How to tell if ~fT is close to ~fE? Ideas?

I
∑25

i=0 |fE ,i − fT ,i |
I
∑25

i=0(fE ,i − fT ,i)
2

These are good ideas but do not seem to work.

How to Tell Is-English

Given a Text T you want to tell if it’s English or a Shift of
English. You do not want to read all 26 possible shifts of T .

Let ~fE be Freq Vector for English.
Let ~fT be Freq Vector for T .

How to tell if ~fT is close to ~fE? Ideas?

I
∑25

i=0 |fE ,i − fT ,i |
I
∑25

i=0(fE ,i − fT ,i)
2

These are good ideas but do not seem to work.

How to Tell Is-English

Given a Text T you want to tell if it’s English or a Shift of
English. You do not want to read all 26 possible shifts of T .

Let ~fE be Freq Vector for English.
Let ~fT be Freq Vector for T .
How to tell if ~fT is close to ~fE?

Ideas?

I
∑25

i=0 |fE ,i − fT ,i |
I
∑25

i=0(fE ,i − fT ,i)
2

These are good ideas but do not seem to work.

How to Tell Is-English

Given a Text T you want to tell if it’s English or a Shift of
English. You do not want to read all 26 possible shifts of T .

Let ~fE be Freq Vector for English.
Let ~fT be Freq Vector for T .
How to tell if ~fT is close to ~fE? Ideas?

I
∑25

i=0 |fE ,i − fT ,i |
I
∑25

i=0(fE ,i − fT ,i)
2

These are good ideas but do not seem to work.

How to Tell Is-English

Given a Text T you want to tell if it’s English or a Shift of
English. You do not want to read all 26 possible shifts of T .

Let ~fE be Freq Vector for English.
Let ~fT be Freq Vector for T .
How to tell if ~fT is close to ~fE? Ideas?

I
∑25

i=0 |fE ,i − fT ,i |
I
∑25

i=0(fE ,i − fT ,i)
2

These are good ideas but do not seem to work.

How to Tell Is-English

Given a Text T you want to tell if it’s English or a Shift of
English. You do not want to read all 26 possible shifts of T .

Let ~fE be Freq Vector for English.
Let ~fT be Freq Vector for T .
How to tell if ~fT is close to ~fE? Ideas?

I
∑25

i=0 |fE ,i − fT ,i |
I
∑25

i=0(fE ,i − fT ,i)
2

These are good ideas but do not seem to work.

Vorlons Alphabet: {a,b, c,d}

I Vorlon freq shifted by 0 is ~f0 = {0.5, 0.3, 0.1, 0.1}.
I Vorlon freq shifted by 1 is ~f1 = {0.1, 0.5, 0.3, 0.1}.
I Vorlon freq shifted by 2 is ~f2 = {0.1, 0.1, 0.5, 0.3}.
I Vorlon freq shifted by 3 is ~f3 = {0.3, 0.1, 0.1, 0.5}.

~f0 · ~f0 = 0.52 + 0.32 + 0.12 + 0.12 = 0.36
~f0 · ~f1 = 0.5 ∗ 0.1 + 0.3 ∗ 0.5 + 0.1 ∗ 0.3 + 0.1 ∗ 0.1 = 0.24
~f0 · ~f2 = 0.5 ∗ 0.1 + 0.3 ∗ 0.1 + 0.1 ∗ 0.5 + 0.1 ∗ 0.3 = 0.16
~f0 · ~f3 = 0.5 ∗ 0.3 + 0.3 ∗ 0.1 + 0.1 ∗ 0.1 + 0.1 ∗ 0.5 = 0.24
Upshot
~f0 · ~f0 big
For i ∈ {1, 2, 3}, ~f0 · ~fi small

Vorlons Alphabet: {a,b, c,d}

I Vorlon freq shifted by 0 is ~f0 = {0.5, 0.3, 0.1, 0.1}.
I Vorlon freq shifted by 1 is ~f1 = {0.1, 0.5, 0.3, 0.1}.
I Vorlon freq shifted by 2 is ~f2 = {0.1, 0.1, 0.5, 0.3}.
I Vorlon freq shifted by 3 is ~f3 = {0.3, 0.1, 0.1, 0.5}.

~f0 · ~f0 = 0.52 + 0.32 + 0.12 + 0.12 = 0.36

~f0 · ~f1 = 0.5 ∗ 0.1 + 0.3 ∗ 0.5 + 0.1 ∗ 0.3 + 0.1 ∗ 0.1 = 0.24
~f0 · ~f2 = 0.5 ∗ 0.1 + 0.3 ∗ 0.1 + 0.1 ∗ 0.5 + 0.1 ∗ 0.3 = 0.16
~f0 · ~f3 = 0.5 ∗ 0.3 + 0.3 ∗ 0.1 + 0.1 ∗ 0.1 + 0.1 ∗ 0.5 = 0.24
Upshot
~f0 · ~f0 big
For i ∈ {1, 2, 3}, ~f0 · ~fi small

Vorlons Alphabet: {a,b, c,d}

I Vorlon freq shifted by 0 is ~f0 = {0.5, 0.3, 0.1, 0.1}.
I Vorlon freq shifted by 1 is ~f1 = {0.1, 0.5, 0.3, 0.1}.
I Vorlon freq shifted by 2 is ~f2 = {0.1, 0.1, 0.5, 0.3}.
I Vorlon freq shifted by 3 is ~f3 = {0.3, 0.1, 0.1, 0.5}.

~f0 · ~f0 = 0.52 + 0.32 + 0.12 + 0.12 = 0.36
~f0 · ~f1 = 0.5 ∗ 0.1 + 0.3 ∗ 0.5 + 0.1 ∗ 0.3 + 0.1 ∗ 0.1 = 0.24

~f0 · ~f2 = 0.5 ∗ 0.1 + 0.3 ∗ 0.1 + 0.1 ∗ 0.5 + 0.1 ∗ 0.3 = 0.16
~f0 · ~f3 = 0.5 ∗ 0.3 + 0.3 ∗ 0.1 + 0.1 ∗ 0.1 + 0.1 ∗ 0.5 = 0.24
Upshot
~f0 · ~f0 big
For i ∈ {1, 2, 3}, ~f0 · ~fi small

Vorlons Alphabet: {a,b, c,d}

I Vorlon freq shifted by 0 is ~f0 = {0.5, 0.3, 0.1, 0.1}.
I Vorlon freq shifted by 1 is ~f1 = {0.1, 0.5, 0.3, 0.1}.
I Vorlon freq shifted by 2 is ~f2 = {0.1, 0.1, 0.5, 0.3}.
I Vorlon freq shifted by 3 is ~f3 = {0.3, 0.1, 0.1, 0.5}.

~f0 · ~f0 = 0.52 + 0.32 + 0.12 + 0.12 = 0.36
~f0 · ~f1 = 0.5 ∗ 0.1 + 0.3 ∗ 0.5 + 0.1 ∗ 0.3 + 0.1 ∗ 0.1 = 0.24
~f0 · ~f2 = 0.5 ∗ 0.1 + 0.3 ∗ 0.1 + 0.1 ∗ 0.5 + 0.1 ∗ 0.3 = 0.16

~f0 · ~f3 = 0.5 ∗ 0.3 + 0.3 ∗ 0.1 + 0.1 ∗ 0.1 + 0.1 ∗ 0.5 = 0.24
Upshot
~f0 · ~f0 big
For i ∈ {1, 2, 3}, ~f0 · ~fi small

Vorlons Alphabet: {a,b, c,d}

I Vorlon freq shifted by 0 is ~f0 = {0.5, 0.3, 0.1, 0.1}.
I Vorlon freq shifted by 1 is ~f1 = {0.1, 0.5, 0.3, 0.1}.
I Vorlon freq shifted by 2 is ~f2 = {0.1, 0.1, 0.5, 0.3}.
I Vorlon freq shifted by 3 is ~f3 = {0.3, 0.1, 0.1, 0.5}.

~f0 · ~f0 = 0.52 + 0.32 + 0.12 + 0.12 = 0.36
~f0 · ~f1 = 0.5 ∗ 0.1 + 0.3 ∗ 0.5 + 0.1 ∗ 0.3 + 0.1 ∗ 0.1 = 0.24
~f0 · ~f2 = 0.5 ∗ 0.1 + 0.3 ∗ 0.1 + 0.1 ∗ 0.5 + 0.1 ∗ 0.3 = 0.16
~f0 · ~f3 = 0.5 ∗ 0.3 + 0.3 ∗ 0.1 + 0.1 ∗ 0.1 + 0.1 ∗ 0.5 = 0.24

Upshot
~f0 · ~f0 big
For i ∈ {1, 2, 3}, ~f0 · ~fi small

Vorlons Alphabet: {a,b, c,d}

I Vorlon freq shifted by 0 is ~f0 = {0.5, 0.3, 0.1, 0.1}.
I Vorlon freq shifted by 1 is ~f1 = {0.1, 0.5, 0.3, 0.1}.
I Vorlon freq shifted by 2 is ~f2 = {0.1, 0.1, 0.5, 0.3}.
I Vorlon freq shifted by 3 is ~f3 = {0.3, 0.1, 0.1, 0.5}.

~f0 · ~f0 = 0.52 + 0.32 + 0.12 + 0.12 = 0.36
~f0 · ~f1 = 0.5 ∗ 0.1 + 0.3 ∗ 0.5 + 0.1 ∗ 0.3 + 0.1 ∗ 0.1 = 0.24
~f0 · ~f2 = 0.5 ∗ 0.1 + 0.3 ∗ 0.1 + 0.1 ∗ 0.5 + 0.1 ∗ 0.3 = 0.16
~f0 · ~f3 = 0.5 ∗ 0.3 + 0.3 ∗ 0.1 + 0.1 ∗ 0.1 + 0.1 ∗ 0.5 = 0.24
Upshot
~f0 · ~f0 big
For i ∈ {1, 2, 3}, ~f0 · ~fi small

English Alphabet: {a, . . . , z}

I English freq shifted by 0 is ~f0
I For 1 ≤ i ≤ 25, English freq shifted by i is ~fi .

~f0 · ~f0 ∼ 0.065

max1≤i≤25 ~f0 · ~fi ∼ 0.038

Upshot
~f0 · ~f0 big
For i ∈ {1, . . . , 25}, ~f0 · ~fi small

Henceforth ~f0 will be denoted ~fE . E is for English

English Alphabet: {a, . . . , z}

I English freq shifted by 0 is ~f0
I For 1 ≤ i ≤ 25, English freq shifted by i is ~fi .

~f0 · ~f0 ∼ 0.065

max1≤i≤25 ~f0 · ~fi ∼ 0.038

Upshot
~f0 · ~f0 big
For i ∈ {1, . . . , 25}, ~f0 · ~fi small

Henceforth ~f0 will be denoted ~fE . E is for English

English Alphabet: {a, . . . , z}

I English freq shifted by 0 is ~f0
I For 1 ≤ i ≤ 25, English freq shifted by i is ~fi .

~f0 · ~f0 ∼ 0.065

max1≤i≤25 ~f0 · ~fi ∼ 0.038

Upshot
~f0 · ~f0 big
For i ∈ {1, . . . , 25}, ~f0 · ~fi small

Henceforth ~f0 will be denoted ~fE . E is for English

English Alphabet: {a, . . . , z}

I English freq shifted by 0 is ~f0
I For 1 ≤ i ≤ 25, English freq shifted by i is ~fi .

~f0 · ~f0 ∼ 0.065

max1≤i≤25 ~f0 · ~fi ∼ 0.038

Upshot
~f0 · ~f0 big
For i ∈ {1, . . . , 25}, ~f0 · ~fi small

Henceforth ~f0 will be denoted ~fE . E is for English

English Alphabet: {a, . . . , z}

I English freq shifted by 0 is ~f0
I For 1 ≤ i ≤ 25, English freq shifted by i is ~fi .

~f0 · ~f0 ∼ 0.065

max1≤i≤25 ~f0 · ~fi ∼ 0.038

Upshot
~f0 · ~f0 big
For i ∈ {1, . . . , 25}, ~f0 · ~fi small

Henceforth ~f0 will be denoted ~fE . E is for English

Is English

We describe a way to tell if a text Is English that we will use
throughout this course.

1. Input(T) a text

2. Compute ~fT , the freq vector for T

3. Compute ~fE · ~fT . If ≈ 0.065 then output YES, else NO

Note: What if ~fT · ~fE = 0.061?

If shift cipher used, this will never happen.

If ‘simple’ ciphers used, this will never happen.

If ‘difficult’ cipher used, we may use different IS-ENGLISH function.

Is English

We describe a way to tell if a text Is English that we will use
throughout this course.

1. Input(T) a text

2. Compute ~fT , the freq vector for T

3. Compute ~fE · ~fT . If ≈ 0.065 then output YES, else NO

Note: What if ~fT · ~fE = 0.061?

If shift cipher used, this will never happen.

If ‘simple’ ciphers used, this will never happen.

If ‘difficult’ cipher used, we may use different IS-ENGLISH function.

Is English

We describe a way to tell if a text Is English that we will use
throughout this course.

1. Input(T) a text

2. Compute ~fT , the freq vector for T

3. Compute ~fE · ~fT . If ≈ 0.065 then output YES, else NO

Note: What if ~fT · ~fE = 0.061?

If shift cipher used, this will never happen.

If ‘simple’ ciphers used, this will never happen.

If ‘difficult’ cipher used, we may use different IS-ENGLISH function.

Is English

We describe a way to tell if a text Is English that we will use
throughout this course.

1. Input(T) a text

2. Compute ~fT , the freq vector for T

3. Compute ~fE · ~fT . If ≈ 0.065 then output YES, else NO

Note: What if ~fT · ~fE = 0.061?

If shift cipher used, this will never happen.

If ‘simple’ ciphers used, this will never happen.

If ‘difficult’ cipher used, we may use different IS-ENGLISH function.

Is English

We describe a way to tell if a text Is English that we will use
throughout this course.

1. Input(T) a text

2. Compute ~fT , the freq vector for T

3. Compute ~fE · ~fT . If ≈ 0.065 then output YES, else NO

Note: What if ~fT · ~fE = 0.061?

If shift cipher used, this will never happen.

If ‘simple’ ciphers used, this will never happen.

If ‘difficult’ cipher used, we may use different IS-ENGLISH function.

Is English

We describe a way to tell if a text Is English that we will use
throughout this course.

1. Input(T) a text

2. Compute ~fT , the freq vector for T

3. Compute ~fE · ~fT . If ≈ 0.065 then output YES, else NO

Note: What if ~fT · ~fE = 0.061?

If shift cipher used, this will never happen.

If ‘simple’ ciphers used, this will never happen.

If ‘difficult’ cipher used, we may use different IS-ENGLISH function.

Cracking Shift Cipher

I Given T a long text that you KNOW was coded by shift.

I For s = 0 to 25
I Create Ts which is T shifted by s.
I If Is English(Ts)=YES then output Ts and stop. Else try next

value of s.

Note: No Near Misses. There will not be two values of s that are
both close to 0.065.

Cracking Shift Cipher

I Given T a long text that you KNOW was coded by shift.
I For s = 0 to 25

I Create Ts which is T shifted by s.

I If Is English(Ts)=YES then output Ts and stop. Else try next
value of s.

Note: No Near Misses. There will not be two values of s that are
both close to 0.065.

Cracking Shift Cipher

I Given T a long text that you KNOW was coded by shift.
I For s = 0 to 25

I Create Ts which is T shifted by s.
I If Is English(Ts)=YES then output Ts and stop. Else try next

value of s.

Note: No Near Misses. There will not be two values of s that are
both close to 0.065.

Cracking Shift Cipher

I Given T a long text that you KNOW was coded by shift.
I For s = 0 to 25

I Create Ts which is T shifted by s.
I If Is English(Ts)=YES then output Ts and stop. Else try next

value of s.

Note: No Near Misses. There will not be two values of s that are
both close to 0.065.

Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.

Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.
I For i = 0 to 25

I Create Ti which is T shifted as if σi maps to e.
I Compute ~g , the freq vector for Ti .
I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try

next value of i .

Note: Quite likely to succeed in the first try, or at least very early.

Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.
Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.
I For i = 0 to 25

I Create Ti which is T shifted as if σi maps to e.
I Compute ~g , the freq vector for Ti .
I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try

next value of i .

Note: Quite likely to succeed in the first try, or at least very early.

Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.
Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.
I For i = 0 to 25

I Create Ti which is T shifted as if σi maps to e.
I Compute ~g , the freq vector for Ti .
I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try

next value of i .

Note: Quite likely to succeed in the first try, or at least very early.

Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.
Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.
I For i = 0 to 25

I Create Ti which is T shifted as if σi maps to e.
I Compute ~g , the freq vector for Ti .
I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try

next value of i .

Note: Quite likely to succeed in the first try, or at least very early.

Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.
Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.

I For i = 0 to 25
I Create Ti which is T shifted as if σi maps to e.
I Compute ~g , the freq vector for Ti .
I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try

next value of i .

Note: Quite likely to succeed in the first try, or at least very early.

Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.
Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.
I For i = 0 to 25

I Create Ti which is T shifted as if σi maps to e.
I Compute ~g , the freq vector for Ti .
I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try

next value of i .

Note: Quite likely to succeed in the first try, or at least very early.

Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.
Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.
I For i = 0 to 25

I Create Ti which is T shifted as if σi maps to e.

I Compute ~g , the freq vector for Ti .
I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try

next value of i .

Note: Quite likely to succeed in the first try, or at least very early.

Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.
Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.
I For i = 0 to 25

I Create Ti which is T shifted as if σi maps to e.
I Compute ~g , the freq vector for Ti .

I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try
next value of i .

Note: Quite likely to succeed in the first try, or at least very early.

Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.
Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.
I For i = 0 to 25

I Create Ti which is T shifted as if σi maps to e.
I Compute ~g , the freq vector for Ti .
I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try

next value of i .

Note: Quite likely to succeed in the first try, or at least very early.

Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.
Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.
I For i = 0 to 25

I Create Ti which is T shifted as if σi maps to e.
I Compute ~g , the freq vector for Ti .
I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try

next value of i .

Note: Quite likely to succeed in the first try, or at least very early.

