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The Shift Cipher

I Consider encrypting English text.

I Associate ‘a’ with 0; ‘b’ with 1; . . . ; ‘z’ with 25.

I s ∈ {0, . . . , 25} (or could think of s ∈ {a, . . . , z}).

I To encrypt using key s, shift every letter of the plaintext by s
positions (with wraparound).
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The Shift Cipher: Examples of Encryption

I want to encode Bill works at a zoo! with a shift-3.

1. Do usual preprocessing: blocks of five, etc to get:
billw orksa tazoo

2. Convert letters to numbers to get:
1-8-11-11-22 14-17-10-18-0 19-0-25-14-14

3. Add three to each number (wrap around) to get:
4-11-14-14-25 17-20-13-21-3 22-3-2-17-17

4. Convert numbers to letters to get:
elooz runvd wdcrr
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The Shift Cipher: How do Decrypt

Bob knows Alice used shift-3. How does he decrypt?

He does shift by −3 or can view as shift by 26− 3 = 23.
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The Shift Cipher: An Example of Decrypt

Bob has to decode mrvkx dolnh vpo which was coded by shift-3.

1. Convert letters to numbers to get:
12-17-21-10-23 3-14-11-13-7 21-15-14.

2. Subtract 3 from each number (wrap around) to get:
9-14-18-7-20 0-11-8-10-4 18-12-11.

3. Convert numbers to letters to get: joshu alike sml.

4. Figure out spacing to get: Joshua likes ML.
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“Wrap Around” is Modular Arithmetic: Definitions

I x ≡ y (mod N) if and only if N divides x − y .

I [x mod N] = the remainder when x is divided by N.

I i.e. the unique value y ∈ {0, . . . ,N − 1} such that x ≡ y
(mod N).

I 25 ≡ 35 (mod 10)

I 25 6= [35 mod 10]

I 5 = [35 mod 10]
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Modular Arithmetic II: Convention

Common usage:

100 ≡ 2 (mod 7)

Commonly if we are in Mod n we have a large number on the left
and then a number between 0 and n − 1 on the right.

When dealing with mod n we assume the entire universe is
{0, 1, . . . , n − 1}.
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Modular Arithmetic: +,−,×

≡ is Mod 26 for this slide.

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut:−y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide



Modular Arithmetic: +,−,×

≡ is Mod 26 for this slide.

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut:−y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide



Modular Arithmetic: +,−,×

≡ is Mod 26 for this slide.

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.

Pedantic −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut:−y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide



Modular Arithmetic: +,−,×

≡ is Mod 26 for this slide.

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic −y is the number such that y + (−y) ≡ 0.

−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut:−y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide



Modular Arithmetic: +,−,×

≡ is Mod 26 for this slide.

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).

Shortcut:−y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide



Modular Arithmetic: +,−,×

≡ is Mod 26 for this slide.

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut:−y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide



Modular Arithmetic: +,−,×

≡ is Mod 26 for this slide.

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut:−y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.

Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide



Modular Arithmetic: +,−,×

≡ is Mod 26 for this slide.

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut:−y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide



Modular Arithmetic: +,−,×

≡ is Mod 26 for this slide.

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut:−y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide



Modular Arithmetic: +,−,×

≡ is Mod 26 for this slide.

1. Addition: x + y is easy: wrap around. E.g., 20 + 10 ≡ 30 ≡ 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut:−y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide



Modular Arithmetic: ÷

≡ is Mod 26 for this slide.
1
3 ≡ x where 0 ≤ x ≤ 25.

Pedantic 1
y is the number such that y × 1

y ≡ 1.
1
3 ≡ 9 since 9× 3 = 27 ≡ 1.
Shortcut: there is an algorithm that finds 1

y quickly.
We will study the algorithm later.

1
2 ≡ x where 0 ≤ x ≤ 25. Think about.
No such x exists.
Fact A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}
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The Shift Cipher, Formally

I M = {all texts in lowercase English alphabet}
M for Message space.
All arithmetic mod 26.

I Choose uniform s ∈ K = {0, . . . , 25}. K for Keyspace.

I Encode (m1 . . .mt) as (m1 + s . . .mt + s).

I Decode (c1 . . . ct) as (c1 − s . . . ct − s).

I Can verify that correctness holds.



Cracking the Shift Cipher

September 1, 2020



Is the Shift Cipher Secure?

I No – only 26 possible keys!

I Given a ciphertext, try decrypting with every possible key

I Only one possibility will “make sense”

I Example of a “brute-force” or “exhaustive-search” attack



Example

I Ciphertext uryyb jbeyq

I Try every possible key. . .

I tqxxa iadxp

I spwwz hzcwo

I . . .
I hello world

Question: We can tell that hello world is correct but how can a
computer do that. Can we mechanize the process of picking out
the right one?
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Letter Frequencies



Freq Vectors

Let T be a long text. Length N. May or may not be coded.

Let Na be the number of a′s in T .
Let Nb be the number of b′s in T .
...

The Freq Vector of T is

~fT =

(
Na

N
,
Nb

N
, · · · , Nz

N

)
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How to Tell Is-English

Given a Text T you want to tell if it’s English or a Shift of
English. You do not want to read all 26 possible shifts of T .

Let ~fE be Freq Vector for English.
Let ~fT be Freq Vector for T .
How to tell if ~fT is close to ~fE? Ideas?

I
∑25

i=0 |fE ,i − fT ,i |
I
∑25

i=0(fE ,i − fT ,i )
2

These are good ideas but do not seem to work.
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Vorlons Alphabet: {a,b, c,d}

I Vorlon freq shifted by 0 is ~f0 = {0.5, 0.3, 0.1, 0.1}.
I Vorlon freq shifted by 1 is ~f1 = {0.1, 0.5, 0.3, 0.1}.
I Vorlon freq shifted by 2 is ~f2 = {0.1, 0.1, 0.5, 0.3}.
I Vorlon freq shifted by 3 is ~f3 = {0.3, 0.1, 0.1, 0.5}.

~f0 · ~f0 = 0.52 + 0.32 + 0.12 + 0.12 = 0.36
~f0 · ~f1 = 0.5 ∗ 0.1 + 0.3 ∗ 0.5 + 0.1 ∗ 0.3 + 0.1 ∗ 0.1 = 0.24
~f0 · ~f2 = 0.5 ∗ 0.1 + 0.3 ∗ 0.1 + 0.1 ∗ 0.5 + 0.1 ∗ 0.3 = 0.16
~f0 · ~f3 = 0.5 ∗ 0.3 + 0.3 ∗ 0.1 + 0.1 ∗ 0.1 + 0.1 ∗ 0.5 = 0.24
Upshot
~f0 · ~f0 big
For i ∈ {1, 2, 3}, ~f0 · ~fi small
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English Alphabet: {a, . . . , z}

I English freq shifted by 0 is ~f0
I For 1 ≤ i ≤ 25, English freq shifted by i is ~fi .

~f0 · ~f0 ∼ 0.065

max1≤i≤25 ~f0 · ~fi ∼ 0.038

Upshot
~f0 · ~f0 big
For i ∈ {1, . . . , 25}, ~f0 · ~fi small

Henceforth ~f0 will be denoted ~fE . E is for English
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Is English

We describe a way to tell if a text Is English that we will use
throughout this course.

1. Input(T ) a text

2. Compute ~fT , the freq vector for T

3. Compute ~fE · ~fT . If ≈ 0.065 then output YES, else NO

Note: What if ~fT · ~fE = 0.061?

If shift cipher used, this will never happen.

If ‘simple’ ciphers used, this will never happen.

If ‘difficult’ cipher used, we may use different IS-ENGLISH function.
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Cracking Shift Cipher

I Given T a long text that you KNOW was coded by shift.

I For s = 0 to 25
I Create Ts which is T shifted by s.
I If Is English(Ts)=YES then output Ts and stop. Else try next

value of s.

Note: No Near Misses. There will not be two values of s that are
both close to 0.065.
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Speeding Up Cracking of Shift Cipher

In the last slide we tried all shifts in order.

Can do better: Most common letter is probably e. If not then 2nd
most. . ..

I Given T a long text that you KNOW was coded by shift.

I Find frequencies of all letters, form vector ~f .

I Sort vector. So most common letter is σ0, next is σ1, etc.
I For i = 0 to 25

I Create Ti which is T shifted as if σi maps to e.
I Compute ~g , the freq vector for Ti .
I Compute ~g · ~fE . If ≈ 0.065 then stop: Ti is your text. Else try

next value of i .

Note: Quite likely to succeed in the first try, or at least very early.
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