BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

September 1, 2020

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Shift Cipher: Encryption, Decryption, Cracking

September 1, 2020

- Consider encrypting English text.
- Associate 'a' with 0; 'b' with 1; ...; 'z' with 25.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- Consider encrypting English text.
- Associate 'a' with 0; 'b' with 1; ...; 'z' with 25.

▶
$$s \in \{0, ..., 25\}$$
 (or could think of $s \in \{a, ..., z\}$).

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- Consider encrypting English text.
- Associate 'a' with 0; 'b' with 1; ...; 'z' with 25.

▶
$$s \in \{0, ..., 25\}$$
 (or could think of $s \in \{a, ..., z\}$).

To encrypt using key s, shift every letter of the plaintext by s positions (with wraparound).

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

I want to encode **Bill works at a zoo!** with a shift-3.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

I want to encode **Bill works at a zoo!** with a shift-3.

1. Do usual preprocessing: blocks of five, etc to get: billw orksa tazoo

I want to encode **Bill works at a zoo!** with a shift-3.

- 1. Do usual preprocessing: blocks of five, etc to get: billw orksa tazoo
- 2. Convert letters to numbers to get: 1-8-11-11-22 14-17-10-18-0 1

19-0-25-14-14

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

I want to encode **Bill works at a zoo!** with a shift-3.

- 1. Do usual preprocessing: blocks of five, etc to get: billw orksa tazoo
- 2. Convert letters to numbers to get: 1-8-11-11-22 14-17-10-18-0 19-0-25-14-14

 3. Add three to each number (wrap around) to get:

 4-11-14-14-25
 17-20-13-21-3
 22-3-2-17-17

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

I want to encode **Bill works at a zoo!** with a shift-3.

- 1. Do usual preprocessing: blocks of five, etc to get: billw orksa tazoo
- 2. Convert letters to numbers to get: 1-8-11-11-22 14-17-10-18-0 19-0-25-14-14
- 3. Add three to each number (wrap around) to get:

 4-11-14-14-25
 17-20-13-21-3
 22-3-2-17-17

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

4. Convert numbers to letters to get: elooz runvd wdcrr

The Shift Cipher: How do Decrypt

Bob knows Alice used shift-3. How does he decrypt?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The Shift Cipher: How do Decrypt

Bob knows Alice used shift-3. How does he decrypt? He does shift by -3 or can view as shift by 26 - 3 = 23.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Bob has to decode mrvkx dolnh vpo which was coded by shift-3.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Bob has to decode mrvkx dolnh vpo which was coded by shift-3.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

 1. Convert letters to numbers to get:

 12-17-21-10-23
 3-14-11-13-7
 21-15-14.

Bob has to decode mrvkx dolnh vpo which was coded by shift-3.

- 1. Convert letters to numbers to get:

 12-17-21-10-23
 3-14-11-13-7
 21-15-14.
- 2. Subtract 3 from each number (wrap around) to get: 9-14-18-7-20 0-11-8-10-4 18-12-11.

Bob has to decode mrvkx dolnh vpo which was coded by shift-3.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 1. Convert letters to numbers to get:

 12-17-21-10-23
 3-14-11-13-7
 21-15-14.
- 2. Subtract 3 from each number (wrap around) to get: 9-14-18-7-20 0-11-8-10-4 18-12-11.
- 3. Convert numbers to letters to get: joshu alike sml.

Bob has to decode mrvkx dolnh vpo which was coded by shift-3.

ション ふぼう メリン メリン しょうくしゃ

- 1. Convert letters to numbers to get:

 12-17-21-10-23
 3-14-11-13-7
 21-15-14.
- 2. Subtract 3 from each number (wrap around) to get: 9-14-18-7-20 0-11-8-10-4 18-12-11.
- 3. Convert numbers to letters to get: joshu alike sml.
- 4. Figure out spacing to get: Joshua likes ML.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - ���?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

• $x \equiv y \pmod{N}$ if and only if N divides x - y.

*ロト *昼 * * ミ * ミ * ミ * のへぐ

• $x \equiv y \pmod{N}$ if and only if N divides x - y.

• $[x \mod N]$ = the remainder when x is divided by N.

• $x \equiv y \pmod{N}$ if and only if N divides x - y.

• $[x \mod N] =$ the remainder when x is divided by N.

• i.e. the unique value $y \in \{0, ..., N-1\}$ such that $x \equiv y \pmod{N}$.

・ロト・日本・モト・モト・モー うへぐ

• $x \equiv y \pmod{N}$ if and only if N divides x - y.

• $[x \mod N] =$ the remainder when x is divided by N.

• i.e. the unique value $y \in \{0, ..., N-1\}$ such that $x \equiv y \pmod{N}$.

▶ 25 ≡ 35 (mod 10)

• $x \equiv y \pmod{N}$ if and only if N divides x - y.

• $[x \mod N] =$ the remainder when x is divided by N.

• i.e. the unique value $y \in \{0, ..., N-1\}$ such that $x \equiv y \pmod{N}$.

▶ 25 ≡ 35 (mod 10)

▶ 25 ≠ [35 mod 10]

• $x \equiv y \pmod{N}$ if and only if N divides x - y.

• $[x \mod N] =$ the remainder when x is divided by N.

 i.e. the unique value y ∈ {0,..., N − 1} such that x ≡ y (mod N).

- ▶ 25 ≡ 35 (mod 10)
- ▶ 25 ≠ [35 mod 10]
- ▶ 5 = [35 mod 10]

Modular Arithmetic II: Convention

Common usage:

 $100 \equiv 2 \pmod{7}$

Modular Arithmetic II: Convention

Common usage:

 $100 \equiv 2 \pmod{7}$

Commonly if we are in Mod n we have a large number on the left and then a number between 0 and n - 1 on the right.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Modular Arithmetic II: Convention

Common usage:

$$100 \equiv 2 \pmod{7}$$

Commonly if we are in Mod n we have a large number on the left and then a number between 0 and n - 1 on the right.

When dealing with mod n we assume the entire universe is $\{0, 1, \ldots, n-1\}$.

▲□▶▲□▶▲□▶▲□▶ ■ りへぐ

 \equiv is Mod 26 for this slide.

- \equiv is Mod 26 for this slide.
 - 1. Addition: x + y is easy: wrap around. E.g., $20 + 10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.

- \equiv is Mod 26 for this slide.
 - 1. Addition: x + y is easy: wrap around. E.g., $20 + 10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.

2. $-7 \equiv x$ where $0 \leq x \leq 25$.

- \equiv is Mod 26 for this slide.
 - 1. Addition: x + y is easy: wrap around. E.g., $20 + 10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.

ション ふぼう メリン メリン しょうくしゃ

2. $-7 \equiv x$ where $0 \leq x \leq 25$. **Pedantic** -y is the number such that $y + (-y) \equiv 0$.

- \equiv is Mod 26 for this slide.
 - 1. Addition: x + y is easy: wrap around. E.g., $20 + 10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.

ション ふぼう メリン メリン しょうくしゃ

2. $-7 \equiv x$ where $0 \leq x \leq 25$. **Pedantic** -y is the number such that $y + (-y) \equiv 0$. $-7 \equiv 19 \pmod{26}$ because $19 + 7 \equiv 0 \pmod{26}$.
- \equiv is Mod 26 for this slide.
 - 1. Addition: x + y is easy: wrap around. E.g., $20 + 10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.

2.
$$-7 \equiv x$$
 where $0 \leq x \leq 25$.
Pedantic $-y$ is the number such that $y + (-y) \equiv 0$.
 $-7 \equiv 19 \pmod{26}$ because $19 + 7 \equiv 0 \pmod{26}$.
Shortcut: $-y \equiv 26 - y$.

- \equiv is Mod 26 for this slide.
 - 1. Addition: x + y is easy: wrap around. E.g., $20 + 10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.

2.
$$-7 \equiv x$$
 where $0 \leq x \leq 25$.
Pedantic $-y$ is the number such that $y + (-y) \equiv 0$.
 $-7 \equiv 19 \pmod{26}$ because $19 + 7 \equiv 0 \pmod{26}$.
Shortcut: $-y \equiv 26 - y$.

3. Mult: xy is easy: wrap around. E.g., $20 \times 10 \equiv 200 \equiv 18$.

- \equiv is Mod 26 for this slide.
 - 1. Addition: x + y is easy: wrap around. E.g., $20 + 10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.

2.
$$-7 \equiv x$$
 where $0 \leq x \leq 25$.
Pedantic $-y$ is the number such that $y + (-y) \equiv 0$.
 $-7 \equiv 19 \pmod{26}$ because $19 + 7 \equiv 0 \pmod{26}$.
Shortcut: $-y \equiv 26 - y$.

3. Mult: xy is easy: wrap around. E.g., $20 \times 10 \equiv 200 \equiv 18$. Shortcut to avoid big numbers:

- \equiv is Mod 26 for this slide.
 - 1. Addition: x + y is easy: wrap around. E.g., $20 + 10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.

2.
$$-7 \equiv x$$
 where $0 \leq x \leq 25$.
Pedantic $-y$ is the number such that $y + (-y) \equiv 0$.
 $-7 \equiv 19 \pmod{26}$ because $19 + 7 \equiv 0 \pmod{26}$.
Shortcut: $-y \equiv 26 - y$.

3. Mult: xy is easy: wrap around. E.g., $20 \times 10 \equiv 200 \equiv 18$. Shortcut to avoid big numbers:

$$20 \times 10 \equiv -6 \times 10 \equiv -2 \times 30 \equiv -2 \times 4 \equiv -8 \equiv 18.$$

- \equiv is Mod 26 for this slide.
 - 1. Addition: x + y is easy: wrap around. E.g., $20 + 10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.

2.
$$-7 \equiv x$$
 where $0 \leq x \leq 25$.
Pedantic $-y$ is the number such that $y + (-y) \equiv 0$.
 $-7 \equiv 19 \pmod{26}$ because $19 + 7 \equiv 0 \pmod{26}$.
Shortcut: $-y \equiv 26 - y$.

3. Mult: xy is easy: wrap around. E.g., $20 \times 10 \equiv 200 \equiv 18$. Shortcut to avoid big numbers:

$$20 \times 10 \equiv -6 \times 10 \equiv -2 \times 30 \equiv -2 \times 4 \equiv -8 \equiv 18.$$

ション ふぼう メリン メリン しょうくしゃ

4. Division: Next Slide

 $\equiv \text{ is Mod 26 for this slide.} \\ \frac{1}{3} \equiv x \text{ where } 0 \le x \le 25. \\$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 $\equiv \text{ is Mod 26 for this slide.} \\ \frac{1}{3} \equiv x \text{ where } 0 \le x \le 25. \\ \text{Pedantic } \frac{1}{y} \text{ is the number such that } y \times \frac{1}{y} \equiv 1. \\ \end{array}$

 $\equiv \text{ is Mod 26 for this slide.} \\ \frac{1}{3} \equiv x \text{ where } 0 \leq x \leq 25. \\ \text{Pedantic } \frac{1}{y} \text{ is the number such that } y \times \frac{1}{y} \equiv 1. \\ \frac{1}{3} \equiv 9 \text{ since } 9 \times 3 = 27 \equiv 1. \end{cases}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

 \equiv is Mod 26 for this slide. $\frac{1}{3} \equiv x$ where $0 \le x \le 25$. **Pedantic** $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1$. $\frac{1}{3} \equiv 9$ since $9 \times 3 = 27 \equiv 1$. Shortcut:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

 $\equiv \text{ is Mod 26 for this slide.} \\ \frac{1}{3} \equiv x \text{ where } 0 \leq x \leq 25. \\ \text{Pedantic } \frac{1}{y} \text{ is the number such that } y \times \frac{1}{y} \equiv 1. \\ \frac{1}{3} \equiv 9 \text{ since } 9 \times 3 = 27 \equiv 1. \\ \text{Shortcut: there is an algorithm that finds } \frac{1}{y} \text{ quickly.} \end{cases}$

= is Mod 26 for this slide. $<math display="block"> \frac{1}{3} = x \text{ where } 0 \le x \le 25.$ Pedantic $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1$. $\frac{1}{3} \equiv 9 \text{ since } 9 \times 3 = 27 \equiv 1.$ Shortcut: there is an algorithm that finds $\frac{1}{y}$ quickly. We will study the algorithm later.

= is Mod 26 for this slide. $<math display="block"> \frac{1}{3} = x \text{ where } 0 \le x \le 25.$ Pedantic $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1$. $\frac{1}{3} \equiv 9 \text{ since } 9 \times 3 = 27 \equiv 1.$ Shortcut: there is an algorithm that finds $\frac{1}{y}$ quickly. We will study the algorithm later.

$$\frac{1}{2} \equiv x$$
 where $0 \leq x \leq 25$.

= is Mod 26 for this slide. $<math display="block"> \frac{1}{3} = x \text{ where } 0 \le x \le 25.$ Pedantic $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1$. $\frac{1}{3} \equiv 9 \text{ since } 9 \times 3 = 27 \equiv 1.$ Shortcut: there is an algorithm that finds $\frac{1}{y}$ quickly. We will study the algorithm later.

ション ふぼう メリン メリン しょうくしゃ

 $\frac{1}{2} \equiv x$ where $0 \leq x \leq 25$. Think about.

= is Mod 26 for this slide. $<math display="block"> \frac{1}{3} = x \text{ where } 0 \le x \le 25.$ Pedantic $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1$. $\frac{1}{3} \equiv 9 \text{ since } 9 \times 3 = 27 \equiv 1.$ Shortcut: there is an algorithm that finds $\frac{1}{y}$ quickly. We will study the algorithm later.

ション ふぼう メリン メリン しょうくしゃ

 $\frac{1}{2} \equiv x$ where $0 \le x \le 25$. Think about. No such x exists.

= is Mod 26 for this slide. $<math display="block"> \frac{1}{3} = x \text{ where } 0 \le x \le 25.$ Pedantic $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1.$ $\frac{1}{3} \equiv 9 \text{ since } 9 \times 3 = 27 \equiv 1.$ Shortcut: there is an algorithm that finds $\frac{1}{y}$ quickly. We will study the algorithm later.

 $\frac{1}{2} \equiv x$ where $0 \le x \le 25$. Think about. No such x exists.

Fact A number y has an inverse mod 26 if y and 26 have no common factors. Numbers that have an inverse mod 26:

 $\{1,3,5,7,9,11,15,17,19,21,23,25\}$

The Shift Cipher, Formally

M = {all texts in lowercase English alphabet}
 M for Message space.
 All arithmetic mod 26.

• Choose uniform $s \in \mathcal{K} = \{0, \dots, 25\}$. \mathcal{K} for Keyspace.

• Encode
$$(m_1 ... m_t)$$
 as $(m_1 + s ... m_t + s)$.

• Decode
$$(c_1 \ldots c_t)$$
 as $(c_1 - s \ldots c_t - s)$.

Can verify that correctness holds.

Cracking the Shift Cipher

September 1, 2020

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Is the Shift Cipher Secure?

No – only 26 possible keys!

Given a ciphertext, try decrypting with every possible key

- Only one possibility will "make sense"
- ▶ Example of a "brute-force" or "exhaustive-search" attack

Example

Ciphertext uryyb jbeyq

- Try every possible key...
 - tqxxa iadxp

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Example

Ciphertext uryyb jbeyq

- Try every possible key...
 - tqxxa iadxp
 - spwwz hzcwo
 - hello world

Question: We can tell that **hello world** is correct but how can a computer do that. Can we mechanize the process of picking out **the right one**?

Letter Frequencies

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 … 釣んで

Freq Vectors

Let T be a long text. Length N. May or may not be coded.

Let N_a be the number of a's in T. Let N_b be the number of b's in T.

Freq Vectors

Let T be a long text. Length N. May or may not be coded.

Let N_a be the number of a's in T. Let N_b be the number of b's in T.

The **Freq Vector of** T is

$$\vec{f_T} = \left(\frac{N_a}{N}, \frac{N_b}{N}, \cdots, \frac{N_z}{N}\right)$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Given a Text T you want to tell if it's **English** or a **Shift of English**. You do not want to **read** all 26 possible shifts of T. Let $\vec{f_E}$ be Freq Vector for English.

Let $\vec{f_T}$ be Freq Vector for T.

ション ふぼう メリン メリン しょうくしゃ

Let $\vec{f_E}$ be Freq Vector for English. Let $\vec{f_T}$ be Freq Vector for T. How to tell if $\vec{f_T}$ is close to $\vec{f_E}$?

Let $\vec{f_E}$ be Freq Vector for English. Let $\vec{f_T}$ be Freq Vector for T. How to tell if $\vec{f_T}$ is close to $\vec{f_E}$? Ideas?

Let $\vec{f_E}$ be Freq Vector for English. Let $\vec{f_T}$ be Freq Vector for T. How to tell if $\vec{f_T}$ is close to $\vec{f_E}$? Ideas?

$$\sum_{i=0}^{25} |f_{E,i} - f_{T,i}|$$

$$\sum_{i=0}^{25} (f_{E,i} - f_{T,i})^2$$

Let $\vec{f_E}$ be Freq Vector for English. Let $\vec{f_T}$ be Freq Vector for *T*. How to tell if $\vec{f_T}$ is close to $\vec{f_E}$? Ideas?

$$\sum_{i=0}^{25} |f_{E,i} - f_{T,i}|$$

$$\sum_{i=0}^{25} (f_{E,i} - f_{T,i})^2$$

These are good ideas but do not seem to work.

- Vorlon freq shifted by 0 is $\vec{f_0} = \{0.5, 0.3, 0.1, 0.1\}.$
- Vorlon freq shifted by 1 is $\vec{f_1} = \{0.1, 0.5, 0.3, 0.1\}.$
- Vorlon freq shifted by 2 is $\vec{f}_2 = \{0.1, 0.1, 0.5, 0.3\}.$
- Vorlon freq shifted by 3 is $\vec{f}_3 = \{0.3, 0.1, 0.1, 0.5\}.$

• Vorlon freq shifted by 0 is $\vec{f_0} = \{0.5, 0.3, 0.1, 0.1\}.$

- Vorlon freq shifted by 1 is $\vec{f_1} = \{0.1, 0.5, 0.3, 0.1\}.$
- Vorlon freq shifted by 2 is $\vec{f}_2 = \{0.1, 0.1, 0.5, 0.3\}.$
- Vorlon freq shifted by 3 is $\vec{f}_3 = \{0.3, 0.1, 0.1, 0.5\}.$

$$\vec{f_0}\cdot\vec{f_0}=0.5^2+0.3^2+0.1^2+0.1^2=0.36$$

• Vorlon freq shifted by 0 is $\vec{f_0} = \{0.5, 0.3, 0.1, 0.1\}.$

- Vorlon freq shifted by 1 is $\vec{f_1} = \{0.1, 0.5, 0.3, 0.1\}.$
- Vorlon freq shifted by 2 is $\vec{f}_2 = \{0.1, 0.1, 0.5, 0.3\}.$
- Vorlon freq shifted by 3 is $\vec{f}_3 = \{0.3, 0.1, 0.1, 0.5\}.$

$$\vec{f_0} \cdot \vec{f_0} = 0.5^2 + 0.3^2 + 0.1^2 + 0.1^2 = 0.36 \\ \vec{f_0} \cdot \vec{f_1} = 0.5 * 0.1 + 0.3 * 0.5 + 0.1 * 0.3 + 0.1 * 0.1 = 0.24$$

• Vorlon freq shifted by 0 is $\vec{f_0} = \{0.5, 0.3, 0.1, 0.1\}.$

- Vorlon freq shifted by 1 is $\vec{f_1} = \{0.1, 0.5, 0.3, 0.1\}.$
- Vorlon freq shifted by 2 is $\vec{f}_2 = \{0.1, 0.1, 0.5, 0.3\}.$
- Vorlon freq shifted by 3 is $\vec{f}_3 = \{0.3, 0.1, 0.1, 0.5\}.$

$$\begin{split} \vec{f_0} \cdot \vec{f_0} &= 0.5^2 + 0.3^2 + 0.1^2 + 0.1^2 = 0.36 \\ \vec{f_0} \cdot \vec{f_1} &= 0.5 * 0.1 + 0.3 * 0.5 + 0.1 * 0.3 + 0.1 * 0.1 = 0.24 \\ \vec{f_0} \cdot \vec{f_2} &= 0.5 * 0.1 + 0.3 * 0.1 + 0.1 * 0.5 + 0.1 * 0.3 = 0.16 \end{split}$$

• Vorlon freq shifted by 0 is $\vec{f_0} = \{0.5, 0.3, 0.1, 0.1\}.$

- Vorlon freq shifted by 1 is $\vec{f_1} = \{0.1, 0.5, 0.3, 0.1\}.$
- Vorlon freq shifted by 2 is $\vec{f}_2 = \{0.1, 0.1, 0.5, 0.3\}.$
- Vorlon freq shifted by 3 is $\vec{f}_3 = \{0.3, 0.1, 0.1, 0.5\}.$

$$\vec{f_0} \cdot \vec{f_0} = 0.5^2 + 0.3^2 + 0.1^2 + 0.1^2 = 0.36$$

$$\vec{f_0} \cdot \vec{f_1} = 0.5 * 0.1 + 0.3 * 0.5 + 0.1 * 0.3 + 0.1 * 0.1 = 0.24$$

$$\vec{f_0} \cdot \vec{f_2} = 0.5 * 0.1 + 0.3 * 0.1 + 0.1 * 0.5 + 0.1 * 0.3 = 0.16$$

$$\vec{f_0} \cdot \vec{f_3} = 0.5 * 0.3 + 0.3 * 0.1 + 0.1 * 0.1 + 0.1 * 0.5 = 0.24$$

• Vorlon freq shifted by 0 is $\vec{f_0} = \{0.5, 0.3, 0.1, 0.1\}.$

- Vorlon freq shifted by 1 is $\vec{f_1} = \{0.1, 0.5, 0.3, 0.1\}.$
- Vorlon freq shifted by 2 is $\vec{f}_2 = \{0.1, 0.1, 0.5, 0.3\}.$
- Vorlon freq shifted by 3 is $\vec{f}_3 = \{0.3, 0.1, 0.1, 0.5\}.$

$$\vec{f_0} \cdot \vec{f_0} = 0.5^2 + 0.3^2 + 0.1^2 + 0.1^2 = 0.36$$

$$\vec{f_0} \cdot \vec{f_1} = 0.5 * 0.1 + 0.3 * 0.5 + 0.1 * 0.3 + 0.1 * 0.1 = 0.24$$

$$\vec{f_0} \cdot \vec{f_2} = 0.5 * 0.1 + 0.3 * 0.1 + 0.1 * 0.5 + 0.1 * 0.3 = 0.16$$

$$\vec{f_0} \cdot \vec{f_3} = 0.5 * 0.3 + 0.3 * 0.1 + 0.1 * 0.1 + 0.1 * 0.5 = 0.24$$

Upshot

$$\vec{f_0} \cdot \vec{f_0} \text{ big}$$

For $i \in \{1, 2, 3\}, \ \vec{f_0} \cdot \vec{f_i} \text{ small}$

English Alphabet: $\{a, \ldots, z\}$

English freq shifted by 0 is $\vec{f_0}$

For $1 \le i \le 25$, English freq shifted by i is $\vec{f_i}$.

• English freq shifted by 0 is $\vec{f_0}$

For $1 \le i \le 25$, English freq shifted by i is $\vec{f_i}$.

 $\vec{f_0}\cdot\vec{f_0}\sim 0.065$

• English freq shifted by 0 is $\vec{f_0}$ • For $1 \le i \le 25$, English freq shifted by i is $\vec{f_i}$. $\vec{f_0} \cdot \vec{f_0} \sim 0.065$ $\max_{1 \le i \le 25} \vec{f_0} \cdot \vec{f_i} \sim 0.038$

► English freq shifted by 0 is $\vec{f_0}$ ► For $1 \le i \le 25$, English freq shifted by i is $\vec{f_i}$. $\vec{f_0} \cdot \vec{f_0} \sim 0.065$ max_{1≤i≤25} $\vec{f_0} \cdot \vec{f_i} \sim 0.038$ Upshot $\vec{f_0} \cdot \vec{f_0}$ big For $i \in \{1, ..., 25\}$, $\vec{f_0} \cdot \vec{f_i}$ small

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□▶ ◆□◆

English freq shifted by 0 is $\vec{f_0}$ For 1 < i < 25, English freq shifted by i is $\vec{f_i}$. $\vec{f_0} \cdot \vec{f_0} \sim 0.065$ $\max_{1 \le i \le 25} \vec{f_0} \cdot \vec{f_i} \sim 0.038$ Upshot $\vec{f}_0 \cdot \vec{f}_0$ big For $i \in \{1, ..., 25\}$, $\vec{f_0} \cdot \vec{f_i}$ small **Henceforth** \vec{f}_0 will be denoted \vec{f}_F . E is for English

We describe a way to tell if a text **Is English** that we will use throughout this course.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We describe a way to tell if a text **Is English** that we will use throughout this course.

- 1. Input(T) a text
- 2. Compute $\vec{f_T}$, the freq vector for T
- 3. Compute $\vec{f_E} \cdot \vec{f_T}$. If ≈ 0.065 then output YES, else NO

We describe a way to tell if a text **Is English** that we will use throughout this course.

- 1. Input(T) a text
- 2. Compute $\vec{f_T}$, the freq vector for T
- 3. Compute $\vec{f_E} \cdot \vec{f_T}$. If ≈ 0.065 then output YES, else NO

ション ふぼう メリン メリン しょうくしゃ

Note: What if $\vec{f_T} \cdot \vec{f_E} = 0.061$?

We describe a way to tell if a text **Is English** that we will use throughout this course.

- 1. Input(T) a text
- 2. Compute $\vec{f_T}$, the freq vector for T
- 3. Compute $\vec{f_E} \cdot \vec{f_T}$. If ≈ 0.065 then output YES, else NO

Note: What if $\vec{f_T} \cdot \vec{f_E} = 0.061$?

If shift cipher used, this will never happen.

We describe a way to tell if a text **Is English** that we will use throughout this course.

- 1. Input(T) a text
- 2. Compute $\vec{f_T}$, the freq vector for T
- 3. Compute $\vec{f_E} \cdot \vec{f_T}$. If ≈ 0.065 then output YES, else NO

Note: What if $\vec{f_T} \cdot \vec{f_E} = 0.061$?

If shift cipher used, this will never happen.

If 'simple' ciphers used, this will never happen.

We describe a way to tell if a text **Is English** that we will use throughout this course.

- 1. Input(T) a text
- 2. Compute $\vec{f_T}$, the freq vector for T
- 3. Compute $\vec{f_E} \cdot \vec{f_T}$. If ≈ 0.065 then output YES, else NO

Note: What if $\vec{f_T} \cdot \vec{f_E} = 0.061$?

If shift cipher used, this will never happen.

If 'simple' ciphers used, this will never happen.

If 'difficult' cipher used, we may use different IS-ENGLISH function.

▶ Given *T* a long text that you KNOW was coded by shift.

▶ Given *T* a long text that you KNOW was coded by shift.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For s = 0 to 25

• Create T_s which is T shifted by s.

▶ Given *T* a long text that you KNOW was coded by shift.

- For s = 0 to 25
 - Create T_s which is T shifted by s.
 - ▶ If Is English(T_s)=YES then output T_s and stop. Else try next value of s.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

- Given T a long text that you KNOW was coded by shift.
- For s = 0 to 25
 - Create T_s which is T shifted by s.
 - ▶ If Is English(T_s)=YES then output T_s and stop. Else try next value of s.

Note: No Near Misses. There will not be two values of s that are both close to 0.065.

In the last slide we tried *all* shifts in order.

In the last slide we tried *all* shifts in order. Can do better: Most common letter is probably *e*. If not then 2nd most. . ..

In the last slide we tried *all* shifts in order.

Can do better: Most common letter is probably *e*. If not then 2nd most....

▶ Given *T* a long text that you KNOW was coded by shift.

In the last slide we tried *all* shifts in order.

Can do better: Most common letter is probably *e*. If not then 2nd most....

- Given T a long text that you KNOW was coded by shift.
- Find frequencies of all letters, form vector \vec{f} .

In the last slide we tried *all* shifts in order.

Can do better: Most common letter is probably *e*. If not then 2nd most....

- ▶ Given *T* a long text that you KNOW was coded by shift.
- Find frequencies of all letters, form vector \vec{f} .
- Sort vector. So most common letter is σ_0 , next is σ_1 , etc.

In the last slide we tried *all* shifts in order.

Can do better: Most common letter is probably *e*. If not then 2nd most....

- ▶ Given *T* a long text that you KNOW was coded by shift.
- Find frequencies of all letters, form vector \vec{f} .
- Sort vector. So most common letter is σ_0 , next is σ_1 , etc.

For i = 0 to 25

In the last slide we tried *all* shifts in order.

Can do better: Most common letter is probably *e*. If not then 2nd most....

- ▶ Given *T* a long text that you KNOW was coded by shift.
- Find frequencies of all letters, form vector \vec{f} .
- Sort vector. So most common letter is σ_0 , next is σ_1 , etc.

For i = 0 to 25

• Create T_i which is T shifted as if σ_i maps to e.

In the last slide we tried *all* shifts in order.

Can do better: Most common letter is probably *e*. If not then 2nd most....

- ▶ Given *T* a long text that you KNOW was coded by shift.
- Find frequencies of all letters, form vector \vec{f} .
- Sort vector. So most common letter is σ_0 , next is σ_1 , etc.

- For i = 0 to 25
 - Create T_i which is T shifted as if σ_i maps to e.
 - Compute \vec{g} , the freq vector for T_i .

In the last slide we tried *all* shifts in order.

Can do better: Most common letter is probably *e*. If not then 2nd most....

- Given T a long text that you KNOW was coded by shift.
- Find frequencies of all letters, form vector \vec{f} .
- Sort vector. So most common letter is σ_0 , next is σ_1 , etc.
- For i = 0 to 25
 - Create T_i which is T shifted as if σ_i maps to e.
 - Compute \vec{g} , the freq vector for T_i .
 - Compute g
 → f_E. If ≈ 0.065 then stop: T_i is your text. Else try next value of i.

In the last slide we tried *all* shifts in order.

Can do better: Most common letter is probably *e*. If not then 2nd most....

- ▶ Given *T* a long text that you KNOW was coded by shift.
- Find frequencies of all letters, form vector \vec{f} .
- Sort vector. So most common letter is σ_0 , next is σ_1 , etc.
- For i = 0 to 25
 - Create T_i which is T shifted as if σ_i maps to e.
 - Compute \vec{g} , the freq vector for T_i .
 - Compute g
 → f_E. If ≈ 0.065 then stop: T_i is your text. Else try next value of i.

ション ふぼう メリン メリン しょうくしゃ

Note: Quite likely to succeed in the first try, or at least very early.