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Affine Cipher
Recall: Shift cipher with shift s:

1. Encrypt via x → x + s (mod 26).
2. Decrypt via x → x − s (mod 26).

We replace x + s with more elaborate functions.

Def The Affine cipher with a, b:

1. Encrypt via x → ax + b (mod 26).
2. Decrypt via x → a−1(x − b) (mod 26).

Does this work? Vote YES or NO or OTHER. Answer: OTHER
2x + 1 does not work: 0 and 13 both map to 1.
Need the map to be a bijection so it will have an inverse.

Condition on a, b so that x → ax + b is a bij: a rel prime to 26.
Condition on a, b so that a has an inv mod 26: a rel prime to 26.
This is achieved by making a relatively prime to 26.
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Shift vs Affine

Shift: Key space is size 26.

Affine: Key space is
{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25} × {0, . . . , 25} which has
12× 26 = 312 elements.

In an Earlier Era Affine would be harder to crack than Shift.

Today They are both easy to crack.

Both Need: The Is-English algorithm. Reading through 312
transcripts to see which one looks like English would take A LOT
of time!
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Key Length of Shift and Affine Ciphers

Let’s look at the keys for Shift and Affine.

1. Shift cipher key in {0, . . . , 25}. 5 bits.

2. Affine cipher Key in
{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25} × {0, . . . , 25}. 312 keys,
need 9 bits.



Affine Cipher: Need to Know Inverses Mod m

If Alice and Bob use the Affine Cipher with alphabet of size m:

1. Alice picks a, b and must make sure that a is rel prime to m.

2. Bob must compute the inverse of a mod m in order to decode.

3. If Alice wants to also get messages and decode them, she also
has to compute the inverse of a mod m in order to decode.
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Examples of Numbers Rel Prime to |Σ|

If Σ = {a, . . . , z} (size 26) then, as we saw, the set is

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25} 12 possibilities

If Σ = {a, . . . , z , 0, . . . , 9} (size 36) then, as we saw, the set is

{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35} 12 possibilities

If Σ = {a, . . . , z , 0, . . . , 9,#} (size 37) then, as we saw, the set is

{1, . . . , 36} 36 possibilities

If given m, want to know how many elements in {1, . . . ,m− 1} are
relatively prime to m.
Will be on HW.
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The Most Used Algorithm In Crypto!

Finding Inverses Given a, find a−1 (mod n).
There is a fast algorithm for this problem.
This algorithm is used a lot:

1. Affine cipher over alphabet of size n, need to know if a has an
inverse, and if so, what it is.

2. (Later) Cracking psuedo-random ciphers.

3. (Later) Implementing RSA.

4. (Later) Cracking RSA.

5. (Later) Factoring Algorithms.

6. Many Many Others!
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Greatest Common Divisor (GCD)

We first need to look at GCD.
GCD(m, n) is the largest number that divides m AND n.
Examples
GCD(10, 15) =

5
GCD(11, 15) =1
GCD(12, 15) =3
GCD(13, 15) =1
GCD(14, 15) =1
GCD(15, 15) =15
GCD(15, 24) =3
GCD(15, 25) =5
GCD(15, 30) =15
GCD(15, 0) =15
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GCD(404,192) The Long Way

d div both 404 and 192
IFF
d div 404 and 404− 192 = 212.

d is largest divisor of both 404 and 192
IFF
d is largest divisor of 404 and 404− 192 = 212.

Idea: Keep subtracting smaller from larger:
GCD(404, 192) = GCD(404− 192, 192) = GCD(212, 192)
= GCD(212− 192, 192) = GCD(20, 192).
Could keep going, but will be subtracting 20’s for a while.

Idea: Subtract LOTS of 20’s. Largest x :192− 20x ≥ 0, x = 9.
= GCD(20, 192−20×9 = 12) = GCD(20−12, 12) = GCD(8, 12)
= GCD(8, 12− 8 = 4) = GCD(8− 2× 4, 4) = GCD(0, 4) = 4.
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GCD(404,192) The Short Way and More Info

404 = 2× 192 + 20

192 = 9× 20 + 12
20 = 1× 12 + 8
12 = 1× 8 + 4
8 = 4× 2 + 0 STOP HERE and go back one: 4 is the GCD.
Can use this to write 4 as a combination of 404 and 192
Write 4 as a combo of 12’s and 8’s:
4 = 12− 1× 8
Write 8 as a combo of 20’s and 12’s:
4 = 12− 1× (20− 12) = 2× 12− 1× 20
Write 12 as combo of 192’s and 20’s:
4 = 2× (192− 9× 20)− 1× 20 = 2× 192− 19× 20
Write 20 as a combo of 404 and 192:
4 = 2× 192− 19× (404− 2× 192) = 39× 192− 19× 404
Upshot: GCD(m,n) is a combo of m and n
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A More Interesting Case: GCD(38,101)

101 = 2× 38 + 25

38 = 1× 25 + 13
25 = 1× 13 + 12
13 = 12 + 1
12 = 12× 1 + 0. Go back one: 1 is the GCD.

1 = 13− 12 = 13− (25− 13) = 2× 13− 25
1 = 2(38− 25)− 25 = 2× 38− 3× 25
1 = 2× 38− 3× (101− 2× 38) = 8× 38− 3× 101
1 = 8× 38− 3× 101
Why is this interesting? Hint: What was our original goal?
Take both sides mod 101
1 ≡ 8× 38 (mod 101)
8 is the inverse of 38 mod 101
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How to find inverse of m mod n

Given m, n with m < n we want to know

I Is there an inverse of m mod n

I If so then find it

1. Find GCD(m, n). If it is NOT 1 then NO inverse.

2. If it IS 1 then use the work you did to find GCD(m, n) to find
a, b ∈ Z

am + bn = 1

am ≡ 1 (mod n)

3. a is the inverse of m mod n. Not quite: (1) a might be
negative (2) a might be > n. That won’t do! Take a (mod n).
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The Quadratic Ciphers
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The Quadratic Cipher

Def The Quadratic cipher with a, b, c : Encrypt via
x → ax2 + bx + c (mod 26).

Does this work? Vote YES or NO. Answer: NO

No easy test for Invertibility (depends on def of easy).
How Easy?: Given a quadratic f (x) one could compute
f (0), . . . , f (25) all mod 26 and see if all are different.

1. This takes to long.

2. The security is not good enough to justify taking this long
setting it up.
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