
BILL
RECORD THIS

LECTURE

September 16, 2020



Revisit GCD and Math
Notation

September 16, 2020



Revisit GCD Briefly

Two things about GCD I want to clarify.

I Why is GCD(x , 0) = x for x ≥ 1?

I When does the algorithm stop?



GCD(404,192): I Now Supply Last Step

404 = 2× 192 + 20

192 = 9× 20 + 12
20 = 1× 12 + 8
12 = 1× 8 + 4
8 = 4× 2 + 0 STOP WHEN GET 0. Go back one: 4 is GCD.

Lets look at what the algorithm actually does:
GCD(404, 192) = GCD(404− 2× 192, 192) = GCD(20, 192) =
GCD(20, 192− 9× 20) = GCD(20, 12) = GCD(20− 1× 12, 12) =
GCD(8, 12) = GCD(8, 12− 8) = GCD(8, 4) =
GCD(8− 2× 4, 4) = GCD(0, 4)

To make our formula GCD(x , y) = GCD(x − ky , x) work all the
way to 0, we define GCD(0, x) = x .



GCD(404,192): I Now Supply Last Step

404 = 2× 192 + 20
192 = 9× 20 + 12

20 = 1× 12 + 8
12 = 1× 8 + 4
8 = 4× 2 + 0 STOP WHEN GET 0. Go back one: 4 is GCD.

Lets look at what the algorithm actually does:
GCD(404, 192) = GCD(404− 2× 192, 192) = GCD(20, 192) =
GCD(20, 192− 9× 20) = GCD(20, 12) = GCD(20− 1× 12, 12) =
GCD(8, 12) = GCD(8, 12− 8) = GCD(8, 4) =
GCD(8− 2× 4, 4) = GCD(0, 4)

To make our formula GCD(x , y) = GCD(x − ky , x) work all the
way to 0, we define GCD(0, x) = x .



GCD(404,192): I Now Supply Last Step

404 = 2× 192 + 20
192 = 9× 20 + 12
20 = 1× 12 + 8

12 = 1× 8 + 4
8 = 4× 2 + 0 STOP WHEN GET 0. Go back one: 4 is GCD.

Lets look at what the algorithm actually does:
GCD(404, 192) = GCD(404− 2× 192, 192) = GCD(20, 192) =
GCD(20, 192− 9× 20) = GCD(20, 12) = GCD(20− 1× 12, 12) =
GCD(8, 12) = GCD(8, 12− 8) = GCD(8, 4) =
GCD(8− 2× 4, 4) = GCD(0, 4)

To make our formula GCD(x , y) = GCD(x − ky , x) work all the
way to 0, we define GCD(0, x) = x .



GCD(404,192): I Now Supply Last Step

404 = 2× 192 + 20
192 = 9× 20 + 12
20 = 1× 12 + 8
12 = 1× 8 + 4

8 = 4× 2 + 0 STOP WHEN GET 0. Go back one: 4 is GCD.

Lets look at what the algorithm actually does:
GCD(404, 192) = GCD(404− 2× 192, 192) = GCD(20, 192) =
GCD(20, 192− 9× 20) = GCD(20, 12) = GCD(20− 1× 12, 12) =
GCD(8, 12) = GCD(8, 12− 8) = GCD(8, 4) =
GCD(8− 2× 4, 4) = GCD(0, 4)

To make our formula GCD(x , y) = GCD(x − ky , x) work all the
way to 0, we define GCD(0, x) = x .



GCD(404,192): I Now Supply Last Step

404 = 2× 192 + 20
192 = 9× 20 + 12
20 = 1× 12 + 8
12 = 1× 8 + 4
8 = 4× 2 + 0 STOP WHEN GET 0. Go back one: 4 is GCD.

Lets look at what the algorithm actually does:
GCD(404, 192) = GCD(404− 2× 192, 192) = GCD(20, 192) =
GCD(20, 192− 9× 20) = GCD(20, 12) = GCD(20− 1× 12, 12) =
GCD(8, 12) = GCD(8, 12− 8) = GCD(8, 4) =
GCD(8− 2× 4, 4) = GCD(0, 4)

To make our formula GCD(x , y) = GCD(x − ky , x) work all the
way to 0, we define GCD(0, x) = x .



GCD(404,192): I Now Supply Last Step

404 = 2× 192 + 20
192 = 9× 20 + 12
20 = 1× 12 + 8
12 = 1× 8 + 4
8 = 4× 2 + 0 STOP WHEN GET 0. Go back one: 4 is GCD.

Lets look at what the algorithm actually does:

GCD(404, 192) = GCD(404− 2× 192, 192) = GCD(20, 192) =
GCD(20, 192− 9× 20) = GCD(20, 12) = GCD(20− 1× 12, 12) =
GCD(8, 12) = GCD(8, 12− 8) = GCD(8, 4) =
GCD(8− 2× 4, 4) = GCD(0, 4)

To make our formula GCD(x , y) = GCD(x − ky , x) work all the
way to 0, we define GCD(0, x) = x .



GCD(404,192): I Now Supply Last Step

404 = 2× 192 + 20
192 = 9× 20 + 12
20 = 1× 12 + 8
12 = 1× 8 + 4
8 = 4× 2 + 0 STOP WHEN GET 0. Go back one: 4 is GCD.

Lets look at what the algorithm actually does:
GCD(404, 192) = GCD(404− 2× 192, 192) = GCD(20, 192) =

GCD(20, 192− 9× 20) = GCD(20, 12) = GCD(20− 1× 12, 12) =
GCD(8, 12) = GCD(8, 12− 8) = GCD(8, 4) =
GCD(8− 2× 4, 4) = GCD(0, 4)

To make our formula GCD(x , y) = GCD(x − ky , x) work all the
way to 0, we define GCD(0, x) = x .



GCD(404,192): I Now Supply Last Step

404 = 2× 192 + 20
192 = 9× 20 + 12
20 = 1× 12 + 8
12 = 1× 8 + 4
8 = 4× 2 + 0 STOP WHEN GET 0. Go back one: 4 is GCD.

Lets look at what the algorithm actually does:
GCD(404, 192) = GCD(404− 2× 192, 192) = GCD(20, 192) =
GCD(20, 192− 9× 20) = GCD(20, 12) = GCD(20− 1× 12, 12) =

GCD(8, 12) = GCD(8, 12− 8) = GCD(8, 4) =
GCD(8− 2× 4, 4) = GCD(0, 4)

To make our formula GCD(x , y) = GCD(x − ky , x) work all the
way to 0, we define GCD(0, x) = x .



GCD(404,192): I Now Supply Last Step

404 = 2× 192 + 20
192 = 9× 20 + 12
20 = 1× 12 + 8
12 = 1× 8 + 4
8 = 4× 2 + 0 STOP WHEN GET 0. Go back one: 4 is GCD.

Lets look at what the algorithm actually does:
GCD(404, 192) = GCD(404− 2× 192, 192) = GCD(20, 192) =
GCD(20, 192− 9× 20) = GCD(20, 12) = GCD(20− 1× 12, 12) =
GCD(8, 12) = GCD(8, 12− 8) = GCD(8, 4) =

GCD(8− 2× 4, 4) = GCD(0, 4)

To make our formula GCD(x , y) = GCD(x − ky , x) work all the
way to 0, we define GCD(0, x) = x .



GCD(404,192): I Now Supply Last Step

404 = 2× 192 + 20
192 = 9× 20 + 12
20 = 1× 12 + 8
12 = 1× 8 + 4
8 = 4× 2 + 0 STOP WHEN GET 0. Go back one: 4 is GCD.

Lets look at what the algorithm actually does:
GCD(404, 192) = GCD(404− 2× 192, 192) = GCD(20, 192) =
GCD(20, 192− 9× 20) = GCD(20, 12) = GCD(20− 1× 12, 12) =
GCD(8, 12) = GCD(8, 12− 8) = GCD(8, 4) =
GCD(8− 2× 4, 4) = GCD(0, 4)

To make our formula GCD(x , y) = GCD(x − ky , x) work all the
way to 0, we define GCD(0, x) = x .



GCD(404,192): I Now Supply Last Step

404 = 2× 192 + 20
192 = 9× 20 + 12
20 = 1× 12 + 8
12 = 1× 8 + 4
8 = 4× 2 + 0 STOP WHEN GET 0. Go back one: 4 is GCD.

Lets look at what the algorithm actually does:
GCD(404, 192) = GCD(404− 2× 192, 192) = GCD(20, 192) =
GCD(20, 192− 9× 20) = GCD(20, 12) = GCD(20− 1× 12, 12) =
GCD(8, 12) = GCD(8, 12− 8) = GCD(8, 4) =
GCD(8− 2× 4, 4) = GCD(0, 4)

To make our formula GCD(x , y) = GCD(x − ky , x) work all the
way to 0, we define GCD(0, x) = x .



Why is 51/2 =
√

5?

Why is

51/2 =
√

5?

Are we multiplying a number by itself half a time?

Discuss.No.

For a, b ∈ N we have

5a × 5b = 5a+b.

We want this rule to still apply when a, b ∈ Q. So we want

51/2 × 51/2 = 51/2+1/2 = 5

Hence we define 51/2 =
√

5 to make that rule work out.

Similar for 50 and 5−a.

How is 5π defined? Discuss.



Why is 51/2 =
√

5?

Why is

51/2 =
√

5?

Are we multiplying a number by itself half a time? Discuss.

No.

For a, b ∈ N we have

5a × 5b = 5a+b.

We want this rule to still apply when a, b ∈ Q. So we want

51/2 × 51/2 = 51/2+1/2 = 5

Hence we define 51/2 =
√

5 to make that rule work out.

Similar for 50 and 5−a.

How is 5π defined? Discuss.



Why is 51/2 =
√

5?

Why is

51/2 =
√

5?

Are we multiplying a number by itself half a time? Discuss.No.

For a, b ∈ N we have

5a × 5b = 5a+b.

We want this rule to still apply when a, b ∈ Q. So we want

51/2 × 51/2 = 51/2+1/2 = 5

Hence we define 51/2 =
√

5 to make that rule work out.

Similar for 50 and 5−a.

How is 5π defined? Discuss.



Why is 51/2 =
√

5?

Why is

51/2 =
√

5?

Are we multiplying a number by itself half a time? Discuss.No.

For a, b ∈ N we have

5a × 5b = 5a+b.

We want this rule to still apply when a, b ∈ Q. So we want

51/2 × 51/2 = 51/2+1/2 = 5

Hence we define 51/2 =
√

5 to make that rule work out.

Similar for 50 and 5−a.

How is 5π defined? Discuss.



Why is 51/2 =
√

5?

Why is

51/2 =
√

5?

Are we multiplying a number by itself half a time? Discuss.No.

For a, b ∈ N we have

5a × 5b = 5a+b.

We want this rule to still apply when a, b ∈ Q.

So we want

51/2 × 51/2 = 51/2+1/2 = 5

Hence we define 51/2 =
√

5 to make that rule work out.

Similar for 50 and 5−a.

How is 5π defined? Discuss.



Why is 51/2 =
√

5?

Why is

51/2 =
√

5?

Are we multiplying a number by itself half a time? Discuss.No.

For a, b ∈ N we have

5a × 5b = 5a+b.

We want this rule to still apply when a, b ∈ Q. So we want

51/2 × 51/2 = 51/2+1/2 = 5

Hence we define 51/2 =
√

5 to make that rule work out.

Similar for 50 and 5−a.

How is 5π defined? Discuss.



Why is 51/2 =
√

5?

Why is

51/2 =
√

5?

Are we multiplying a number by itself half a time? Discuss.No.

For a, b ∈ N we have

5a × 5b = 5a+b.

We want this rule to still apply when a, b ∈ Q. So we want

51/2 × 51/2 = 51/2+1/2 = 5

Hence we define 51/2 =
√

5 to make that rule work out.

Similar for 50 and 5−a.

How is 5π defined? Discuss.



Why is 51/2 =
√

5?

Why is

51/2 =
√

5?

Are we multiplying a number by itself half a time? Discuss.No.

For a, b ∈ N we have

5a × 5b = 5a+b.

We want this rule to still apply when a, b ∈ Q. So we want

51/2 × 51/2 = 51/2+1/2 = 5

Hence we define 51/2 =
√

5 to make that rule work out.

Similar for 50 and 5−a.

How is 5π defined? Discuss.



Why is 51/2 =
√

5?

Why is

51/2 =
√

5?

Are we multiplying a number by itself half a time? Discuss.No.

For a, b ∈ N we have

5a × 5b = 5a+b.

We want this rule to still apply when a, b ∈ Q. So we want

51/2 × 51/2 = 51/2+1/2 = 5

Hence we define 51/2 =
√

5 to make that rule work out.

Similar for 50 and 5−a.

How is 5π defined?

Discuss.



Why is 51/2 =
√

5?

Why is

51/2 =
√

5?

Are we multiplying a number by itself half a time? Discuss.No.

For a, b ∈ N we have

5a × 5b = 5a+b.

We want this rule to still apply when a, b ∈ Q. So we want

51/2 × 51/2 = 51/2+1/2 = 5

Hence we define 51/2 =
√

5 to make that rule work out.

Similar for 50 and 5−a.

How is 5π defined? Discuss.



What is 5π?

We want

53.14159 < 5π < 53.141593.

We can replace with approximations to π that are lower and that
are higher.

So, with this in mind, how do we define 5π?

Let α1, α2, . . . , be an infinite sequence of rationals that cvg to π.
5π is defined to be limi→∞ 5αi .
Need to prove that all choices of sequences yield the same result.
We won’t do that here



What is 5π?

We want

53.14159 < 5π < 53.141593.

We can replace with approximations to π that are lower and that
are higher.

So, with this in mind, how do we define 5π?

Let α1, α2, . . . , be an infinite sequence of rationals that cvg to π.
5π is defined to be limi→∞ 5αi .
Need to prove that all choices of sequences yield the same result.
We won’t do that here



What is 5π?

We want

53.14159 < 5π < 53.141593.

We can replace with approximations to π that are lower and that
are higher.

So, with this in mind, how do we define 5π?

Let α1, α2, . . . , be an infinite sequence of rationals that cvg to π.
5π is defined to be limi→∞ 5αi .
Need to prove that all choices of sequences yield the same result.
We won’t do that here



What is 5π?

We want

53.14159 < 5π < 53.141593.

We can replace with approximations to π that are lower and that
are higher.

So, with this in mind, how do we define 5π?

Let α1, α2, . . . , be an infinite sequence of rationals that cvg to π.

5π is defined to be limi→∞ 5αi .
Need to prove that all choices of sequences yield the same result.
We won’t do that here



What is 5π?

We want

53.14159 < 5π < 53.141593.

We can replace with approximations to π that are lower and that
are higher.

So, with this in mind, how do we define 5π?

Let α1, α2, . . . , be an infinite sequence of rationals that cvg to π.
5π is defined to be limi→∞ 5αi .

Need to prove that all choices of sequences yield the same result.
We won’t do that here



What is 5π?

We want

53.14159 < 5π < 53.141593.

We can replace with approximations to π that are lower and that
are higher.

So, with this in mind, how do we define 5π?

Let α1, α2, . . . , be an infinite sequence of rationals that cvg to π.
5π is defined to be limi→∞ 5αi .
Need to prove that all choices of sequences yield the same result.
We won’t do that here



Upshot

Sometimes functions are defined on certain values not because its
the most natural way to do it, but because it makes prior rules
work out.

This is the case for

I GCD(x , 0) = x .

I 51/2 =
√

5.

I 1
2 ! =

√
π. Don’t ask me why. The answer it’s the Γ function

is (a) true, and (b) truly UNenlightening.



Upshot

Sometimes functions are defined on certain values not because its
the most natural way to do it, but because it makes prior rules
work out.

This is the case for

I GCD(x , 0) = x .

I 51/2 =
√

5.

I 1
2 ! =

√
π. Don’t ask me why. The answer it’s the Γ function

is (a) true, and (b) truly UNenlightening.



Upshot

Sometimes functions are defined on certain values not because its
the most natural way to do it, but because it makes prior rules
work out.

This is the case for

I GCD(x , 0) = x .

I 51/2 =
√

5.

I 1
2 ! =

√
π. Don’t ask me why. The answer it’s the Γ function

is (a) true, and (b) truly UNenlightening.



Upshot

Sometimes functions are defined on certain values not because its
the most natural way to do it, but because it makes prior rules
work out.

This is the case for

I GCD(x , 0) = x .

I 51/2 =
√

5.

I 1
2 ! =

√
π. Don’t ask me why. The answer it’s the Γ function

is (a) true, and (b) truly UNenlightening.



Upshot

Sometimes functions are defined on certain values not because its
the most natural way to do it, but because it makes prior rules
work out.

This is the case for

I GCD(x , 0) = x .

I 51/2 =
√

5.

I 1
2 ! =

√
π.

Don’t ask me why. The answer it’s the Γ function
is (a) true, and (b) truly UNenlightening.



Upshot

Sometimes functions are defined on certain values not because its
the most natural way to do it, but because it makes prior rules
work out.

This is the case for

I GCD(x , 0) = x .

I 51/2 =
√

5.

I 1
2 ! =

√
π. Don’t ask me why.

The answer it’s the Γ function
is (a) true, and (b) truly UNenlightening.



Upshot

Sometimes functions are defined on certain values not because its
the most natural way to do it, but because it makes prior rules
work out.

This is the case for

I GCD(x , 0) = x .

I 51/2 =
√

5.

I 1
2 ! =

√
π. Don’t ask me why. The answer it’s the Γ function

is

(a) true, and (b) truly UNenlightening.



Upshot

Sometimes functions are defined on certain values not because its
the most natural way to do it, but because it makes prior rules
work out.

This is the case for

I GCD(x , 0) = x .

I 51/2 =
√

5.

I 1
2 ! =

√
π. Don’t ask me why. The answer it’s the Γ function

is (a) true, and

(b) truly UNenlightening.



Upshot

Sometimes functions are defined on certain values not because its
the most natural way to do it, but because it makes prior rules
work out.

This is the case for

I GCD(x , 0) = x .

I 51/2 =
√

5.

I 1
2 ! =

√
π. Don’t ask me why. The answer it’s the Γ function

is (a) true, and (b) truly UNenlightening.



Gen Sub Cipher: How to
Really Crack

September 16, 2020



General Substitution Cipher

Def Gen Sub Cipher with perm f on {0, . . . , 25}.
1. Encrypt via x → f (x).

2. Decrypt via x → f −1(x).



Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T , counting repeats.

2. The 2-grams of T are just the contiguous pairs of letters in
T , counting repeats. Also called bigrams.

3. The 3-grams of T you can guess. Also called trigrams.

4. One usually talks about the freq of n-grams.



Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T , counting repeats.

2. The 2-grams of T are just the contiguous pairs of letters in
T , counting repeats. Also called bigrams.

3. The 3-grams of T you can guess. Also called trigrams.

4. One usually talks about the freq of n-grams.



Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T , counting repeats.

2. The 2-grams of T are just the contiguous pairs of letters in
T , counting repeats. Also called bigrams.

3. The 3-grams of T you can guess. Also called trigrams.

4. One usually talks about the freq of n-grams.



Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T , counting repeats.

2. The 2-grams of T are just the contiguous pairs of letters in
T , counting repeats. Also called bigrams.

3. The 3-grams of T you can guess. Also called trigrams.

4. One usually talks about the freq of n-grams.



Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T , counting repeats.

2. The 2-grams of T are just the contiguous pairs of letters in
T , counting repeats. Also called bigrams.

3. The 3-grams of T you can guess. Also called trigrams.

4. One usually talks about the freq of n-grams.



Example of 1-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.

The following 1-grams occur 2 times: h,l,n,p,w.

The following 1-grams occur 3 times: c,i,m.

The following 1-grams occur 4 times: r,s,t.

The following 1-gram occurs 6 times: o.

The following 1-gram occurs 9 times: e.



Example of 1-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.

The following 1-grams occur 2 times: h,l,n,p,w.

The following 1-grams occur 3 times: c,i,m.

The following 1-grams occur 4 times: r,s,t.

The following 1-gram occurs 6 times: o.

The following 1-gram occurs 9 times: e.



Example of 1-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.

The following 1-grams occur 2 times: h,l,n,p,w.

The following 1-grams occur 3 times: c,i,m.

The following 1-grams occur 4 times: r,s,t.

The following 1-gram occurs 6 times: o.

The following 1-gram occurs 9 times: e.



Example of 1-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.

The following 1-grams occur 2 times: h,l,n,p,w.

The following 1-grams occur 3 times: c,i,m.

The following 1-grams occur 4 times: r,s,t.

The following 1-gram occurs 6 times: o.

The following 1-gram occurs 9 times: e.



Example of 1-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.

The following 1-grams occur 2 times: h,l,n,p,w.

The following 1-grams occur 3 times: c,i,m.

The following 1-grams occur 4 times: r,s,t.

The following 1-gram occurs 6 times: o.

The following 1-gram occurs 9 times: e.



Example of 1-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.

The following 1-grams occur 2 times: h,l,n,p,w.

The following 1-grams occur 3 times: c,i,m.

The following 1-grams occur 4 times: r,s,t.

The following 1-gram occurs 6 times: o.

The following 1-gram occurs 9 times: e.



Example of 1-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.

The following 1-grams occur 2 times: h,l,n,p,w.

The following 1-grams occur 3 times: c,i,m.

The following 1-grams occur 4 times: r,s,t.

The following 1-gram occurs 6 times: o.

The following 1-gram occurs 9 times: e.



Example of 2-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 2-grams occur 2 times: me, or.

The following 2-grams occur 1 time: ev, ve, er, rn, no, ot, ti, ic,
eh, ho, ow, ws, so, et, ti, im, es, sp, pe, eo, op, pl, le, eu, us, se,
em, ma, at, th, hw, wo, ds, in, nc, co, rr, re, ec, ct, tl, ly.



Example of 2-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 2-grams occur 2 times: me, or.

The following 2-grams occur 1 time: ev, ve, er, rn, no, ot, ti, ic,
eh, ho, ow, ws, so, et, ti, im, es, sp, pe, eo, op, pl, le, eu, us, se,
em, ma, at, th, hw, wo, ds, in, nc, co, rr, re, ec, ct, tl, ly.



Example of 2-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 2-grams occur 2 times: me, or.

The following 2-grams occur 1 time: ev, ve, er, rn, no, ot, ti, ic,
eh, ho, ow, ws, so, et, ti, im, es, sp, pe, eo, op, pl, le, eu, us, se,
em, ma, at, th, hw, wo, ds, in, nc, co, rr, re, ec, ct, tl, ly.



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.

I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).

R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Stats for 1-Gram, 2-Gram, 3-Gram, 4-Gram

1. 1-grams: fE · fE ∼ 0.065.

2. 2-grams: fE · fE ∼ 0.0067.

3. 3-grams: fE · fE ∼ 0.0011.

4. 4-grams: fE · fE ∼ 0.00023.



Stats for 1-Gram, 2-Gram, 3-Gram, 4-Gram

1. 1-grams: fE · fE ∼ 0.065.

2. 2-grams: fE · fE ∼ 0.0067.

3. 3-grams: fE · fE ∼ 0.0011.

4. 4-grams: fE · fE ∼ 0.00023.



Stats for 1-Gram, 2-Gram, 3-Gram, 4-Gram

1. 1-grams: fE · fE ∼ 0.065.

2. 2-grams: fE · fE ∼ 0.0067.

3. 3-grams: fE · fE ∼ 0.0011.

4. 4-grams: fE · fE ∼ 0.00023.



Stats for 1-Gram, 2-Gram, 3-Gram, 4-Gram

1. 1-grams: fE · fE ∼ 0.065.

2. 2-grams: fE · fE ∼ 0.0067.

3. 3-grams: fE · fE ∼ 0.0011.

4. 4-grams: fE · fE ∼ 0.00023.



Stats for 1-Gram, 2-Gram, 3-Gram, 4-Gram

1. 1-grams: fE · fE ∼ 0.065.

2. 2-grams: fE · fE ∼ 0.0067.

3. 3-grams: fE · fE ∼ 0.0011.

4. 4-grams: fE · fE ∼ 0.00023.



Contrast Shift to Gen Sub

To crack shift went through all 26 shifts σ:

1. If fσ(T ) · fE is large then σ is correct shift. Large ∼ 0.065.

2. If fσ(T ) · fE is small then σ is incorrect shift. Small ∼ 0.035.

3. Important Will always be large or small. So we have a gap.

Lets try this with gen sub, ignoring the issue of 26! perms.
To crack gen sub shift went through all 26! perm σ:

1. If fσ(T ) · fE is large then σ is correct perm. Large ∼ 0.065.

2. If fσ(T ) · fE is small then σ is incorrect perm. Small. Hmmm?

3. We have a problem. If σ only changed a few letters around,
then likely fE · fσ(T ) will be large. We do not have a gap!

What to do?



Contrast Shift to Gen Sub

To crack shift went through all 26 shifts σ:

1. If fσ(T ) · fE is large then σ is correct shift. Large ∼ 0.065.

2. If fσ(T ) · fE is small then σ is incorrect shift. Small ∼ 0.035.

3. Important Will always be large or small. So we have a gap.

Lets try this with gen sub, ignoring the issue of 26! perms.
To crack gen sub shift went through all 26! perm σ:

1. If fσ(T ) · fE is large then σ is correct perm. Large ∼ 0.065.

2. If fσ(T ) · fE is small then σ is incorrect perm. Small. Hmmm?

3. We have a problem. If σ only changed a few letters around,
then likely fE · fσ(T ) will be large. We do not have a gap!

What to do?



Contrast Shift to Gen Sub

To crack shift went through all 26 shifts σ:

1. If fσ(T ) · fE is large then σ is correct shift. Large ∼ 0.065.

2. If fσ(T ) · fE is small then σ is incorrect shift. Small ∼ 0.035.

3. Important Will always be large or small. So we have a gap.

Lets try this with gen sub, ignoring the issue of 26! perms.
To crack gen sub shift went through all 26! perm σ:

1. If fσ(T ) · fE is large then σ is correct perm. Large ∼ 0.065.

2. If fσ(T ) · fE is small then σ is incorrect perm. Small. Hmmm?

3. We have a problem. If σ only changed a few letters around,
then likely fE · fσ(T ) will be large. We do not have a gap!

What to do?



Contrast Shift to Gen Sub

To crack shift went through all 26 shifts σ:

1. If fσ(T ) · fE is large then σ is correct shift. Large ∼ 0.065.

2. If fσ(T ) · fE is small then σ is incorrect shift. Small ∼ 0.035.

3. Important Will always be large or small. So we have a gap.

Lets try this with gen sub, ignoring the issue of 26! perms.
To crack gen sub shift went through all 26! perm σ:

1. If fσ(T ) · fE is large then σ is correct perm. Large ∼ 0.065.

2. If fσ(T ) · fE is small then σ is incorrect perm. Small. Hmmm?

3. We have a problem. If σ only changed a few letters around,
then likely fE · fσ(T ) will be large. We do not have a gap!

What to do?



Contrast Shift to Gen Sub

To crack shift went through all 26 shifts σ:

1. If fσ(T ) · fE is large then σ is correct shift. Large ∼ 0.065.

2. If fσ(T ) · fE is small then σ is incorrect shift. Small ∼ 0.035.

3. Important Will always be large or small. So we have a gap.

Lets try this with gen sub, ignoring the issue of 26! perms.
To crack gen sub shift went through all 26! perm σ:

1. If fσ(T ) · fE is large then σ is correct perm. Large ∼ 0.065.

2. If fσ(T ) · fE is small then σ is incorrect perm. Small. Hmmm?

3. We have a problem. If σ only changed a few letters around,
then likely fE · fσ(T ) will be large. We do not have a gap!

What to do?



Contrast Shift to Gen Sub

To crack shift went through all 26 shifts σ:

1. If fσ(T ) · fE is large then σ is correct shift. Large ∼ 0.065.

2. If fσ(T ) · fE is small then σ is incorrect shift. Small ∼ 0.035.

3. Important Will always be large or small. So we have a gap.

Lets try this with gen sub, ignoring the issue of 26! perms.
To crack gen sub shift went through all 26! perm σ:

1. If fσ(T ) · fE is large then σ is correct perm. Large ∼ 0.065.

2. If fσ(T ) · fE is small then σ is incorrect perm. Small. Hmmm?

3. We have a problem. If σ only changed a few letters around,
then likely fE · fσ(T ) will be large. We do not have a gap!

What to do?



Contrast Shift to Gen Sub

To crack shift went through all 26 shifts σ:

1. If fσ(T ) · fE is large then σ is correct shift. Large ∼ 0.065.

2. If fσ(T ) · fE is small then σ is incorrect shift. Small ∼ 0.035.

3. Important Will always be large or small. So we have a gap.

Lets try this with gen sub, ignoring the issue of 26! perms.
To crack gen sub shift went through all 26! perm σ:

1. If fσ(T ) · fE is large then σ is correct perm. Large ∼ 0.065.

2. If fσ(T ) · fE is small then σ is incorrect perm. Small.

Hmmm?

3. We have a problem. If σ only changed a few letters around,
then likely fE · fσ(T ) will be large. We do not have a gap!

What to do?



Contrast Shift to Gen Sub

To crack shift went through all 26 shifts σ:

1. If fσ(T ) · fE is large then σ is correct shift. Large ∼ 0.065.

2. If fσ(T ) · fE is small then σ is incorrect shift. Small ∼ 0.035.

3. Important Will always be large or small. So we have a gap.

Lets try this with gen sub, ignoring the issue of 26! perms.
To crack gen sub shift went through all 26! perm σ:

1. If fσ(T ) · fE is large then σ is correct perm. Large ∼ 0.065.

2. If fσ(T ) · fE is small then σ is incorrect perm. Small. Hmmm?

3. We have a problem. If σ only changed a few letters around,
then likely fE · fσ(T ) will be large. We do not have a gap!

What to do?



Contrast Shift to Gen Sub

To crack shift went through all 26 shifts σ:

1. If fσ(T ) · fE is large then σ is correct shift. Large ∼ 0.065.

2. If fσ(T ) · fE is small then σ is incorrect shift. Small ∼ 0.035.

3. Important Will always be large or small. So we have a gap.

Lets try this with gen sub, ignoring the issue of 26! perms.
To crack gen sub shift went through all 26! perm σ:

1. If fσ(T ) · fE is large then σ is correct perm. Large ∼ 0.065.

2. If fσ(T ) · fE is small then σ is incorrect perm. Small. Hmmm?

3. We have a problem. If σ only changed a few letters around,
then likely fE · fσ(T ) will be large. We do not have a gap!

What to do?



What to do if there is no Gap?

1. Use n-grams instead of 1-grams. This does not close the Gap
but will help anyway.

2. Rather than view the Is-English program as a YES-NO, view
it as comparative:

T1 looks more like English than T2.



What to do if there is no Gap?

1. Use n-grams instead of 1-grams. This does not close the Gap
but will help anyway.

2. Rather than view the Is-English program as a YES-NO, view
it as comparative:

T1 looks more like English than T2.



What to do if there is no Gap?

1. Use n-grams instead of 1-grams. This does not close the Gap
but will help anyway.

2. Rather than view the Is-English program as a YES-NO, view
it as comparative:

T1 looks more like English than T2.



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.

σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit

For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.

Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped

If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR

Pick the σr with min goodr or have human look at all σr (T )



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )



Finding Parameters: A Chicken-and-Egg Problem

An old question:
What came first, the chicken or the egg?

Our Problem We need parameters I and R so the answer looks
like English. But we then need a notion of Is English that does
not use a gap. Need a program to tell us that it looks like English.

We Trebekked It!
On the TV show JEOPARDY Alex Trebek gives you the answer
and you have to figure out the question.

Same here.

We find the parameters for texts where we know the answers.



Finding Parameters: A Chicken-and-Egg Problem

An old question:
What came first, the chicken or the egg?

Our Problem We need parameters I and R so the answer looks
like English. But we then need a notion of Is English that does
not use a gap. Need a program to tell us that it looks like English.

We Trebekked It!
On the TV show JEOPARDY Alex Trebek gives you the answer
and you have to figure out the question.

Same here.

We find the parameters for texts where we know the answers.



Finding Parameters: A Chicken-and-Egg Problem

An old question:
What came first, the chicken or the egg?

Our Problem We need parameters I and R so the answer looks
like English. But we then need a notion of Is English that does
not use a gap. Need a program to tell us that it looks like English.

We Trebekked It!

On the TV show JEOPARDY Alex Trebek gives you the answer
and you have to figure out the question.

Same here.

We find the parameters for texts where we know the answers.



Finding Parameters: A Chicken-and-Egg Problem

An old question:
What came first, the chicken or the egg?

Our Problem We need parameters I and R so the answer looks
like English. But we then need a notion of Is English that does
not use a gap. Need a program to tell us that it looks like English.

We Trebekked It!
On the TV show JEOPARDY Alex Trebek gives you the answer
and you have to figure out the question.

Same here.

We find the parameters for texts where we know the answers.



Finding Parameters: A Chicken-and-Egg Problem

An old question:
What came first, the chicken or the egg?

Our Problem We need parameters I and R so the answer looks
like English. But we then need a notion of Is English that does
not use a gap. Need a program to tell us that it looks like English.

We Trebekked It!
On the TV show JEOPARDY Alex Trebek gives you the answer
and you have to figure out the question.

Same here.

We find the parameters for texts where we know the answers.



Finding Parameters: A Chicken-and-Egg Problem

An old question:
What came first, the chicken or the egg?

Our Problem We need parameters I and R so the answer looks
like English. But we then need a notion of Is English that does
not use a gap. Need a program to tell us that it looks like English.

We Trebekked It!
On the TV show JEOPARDY Alex Trebek gives you the answer
and you have to figure out the question.

Same here.

We find the parameters for texts where we know the answers.



Finding the Parameters

Do the following a large number of times:

1. Take a text T of ∼ 10, 000 characters.

2. Take a random perm σ.

3. Compute σ(T ). (Note- We know σ and T )

4. Run the n-gram algorithm but with no bound on the number
of iterations. Stop when either

4.1 Get original text T , or
4.2 Swaps do not improve how close to English (could be in local

min). In this case try again.

5. Keep track of how how many iterations suffice and how many
redos suffice.



Finding the Parameters

Do the following a large number of times:

1. Take a text T of ∼ 10, 000 characters.

2. Take a random perm σ.

3. Compute σ(T ). (Note- We know σ and T )

4. Run the n-gram algorithm but with no bound on the number
of iterations. Stop when either

4.1 Get original text T , or
4.2 Swaps do not improve how close to English (could be in local

min). In this case try again.

5. Keep track of how how many iterations suffice and how many
redos suffice.



Finding the Parameters

Do the following a large number of times:

1. Take a text T of ∼ 10, 000 characters.

2. Take a random perm σ.

3. Compute σ(T ). (Note- We know σ and T )

4. Run the n-gram algorithm but with no bound on the number
of iterations. Stop when either

4.1 Get original text T , or
4.2 Swaps do not improve how close to English (could be in local

min). In this case try again.

5. Keep track of how how many iterations suffice and how many
redos suffice.



Finding the Parameters

Do the following a large number of times:

1. Take a text T of ∼ 10, 000 characters.

2. Take a random perm σ.

3. Compute σ(T ). (Note- We know σ and T )

4. Run the n-gram algorithm but with no bound on the number
of iterations. Stop when either

4.1 Get original text T , or
4.2 Swaps do not improve how close to English (could be in local

min). In this case try again.

5. Keep track of how how many iterations suffice and how many
redos suffice.



Finding the Parameters

Do the following a large number of times:

1. Take a text T of ∼ 10, 000 characters.

2. Take a random perm σ.

3. Compute σ(T ). (Note- We know σ and T )

4. Run the n-gram algorithm but with no bound on the number
of iterations. Stop when either

4.1 Get original text T , or
4.2 Swaps do not improve how close to English (could be in local

min). In this case try again.

5. Keep track of how how many iterations suffice and how many
redos suffice.



Finding the Parameters

Do the following a large number of times:

1. Take a text T of ∼ 10, 000 characters.

2. Take a random perm σ.

3. Compute σ(T ). (Note- We know σ and T )

4. Run the n-gram algorithm but with no bound on the number
of iterations. Stop when either

4.1 Get original text T , or

4.2 Swaps do not improve how close to English (could be in local
min). In this case try again.

5. Keep track of how how many iterations suffice and how many
redos suffice.



Finding the Parameters

Do the following a large number of times:

1. Take a text T of ∼ 10, 000 characters.

2. Take a random perm σ.

3. Compute σ(T ). (Note- We know σ and T )

4. Run the n-gram algorithm but with no bound on the number
of iterations. Stop when either

4.1 Get original text T , or
4.2 Swaps do not improve how close to English (could be in local

min). In this case try again.

5. Keep track of how how many iterations suffice and how many
redos suffice.



Finding the Parameters

Do the following a large number of times:

1. Take a text T of ∼ 10, 000 characters.

2. Take a random perm σ.

3. Compute σ(T ). (Note- We know σ and T )

4. Run the n-gram algorithm but with no bound on the number
of iterations. Stop when either

4.1 Get original text T , or
4.2 Swaps do not improve how close to English (could be in local

min). In this case try again.

5. Keep track of how how many iterations suffice and how many
redos suffice.



David Zhen Found the Parameters

UMCP ugrad CS major David Zhen worked with me on this over
the summer.

The next three slides show the parameters he found.

He used a Mac-Book Pro with 2.2 Ghz 6-core Intel Core i7
processor and 16 GB of RAM.

In English: a normal computer that an ugrad can buy and use.

He ran the program to find parameters on 150 texts of size approx
10,000 characters:

For each text he generated 1 random perm (will rerun with more
later).



David Zhen Found the Parameters

UMCP ugrad CS major David Zhen worked with me on this over
the summer.

The next three slides show the parameters he found.

He used a Mac-Book Pro with 2.2 Ghz 6-core Intel Core i7
processor and 16 GB of RAM.

In English: a normal computer that an ugrad can buy and use.

He ran the program to find parameters on 150 texts of size approx
10,000 characters:

For each text he generated 1 random perm (will rerun with more
later).



David Zhen Found the Parameters

UMCP ugrad CS major David Zhen worked with me on this over
the summer.

The next three slides show the parameters he found.

He used a Mac-Book Pro with 2.2 Ghz 6-core Intel Core i7
processor and 16 GB of RAM.

In English: a normal computer that an ugrad can buy and use.

He ran the program to find parameters on 150 texts of size approx
10,000 characters:

For each text he generated 1 random perm (will rerun with more
later).



David Zhen Found the Parameters

UMCP ugrad CS major David Zhen worked with me on this over
the summer.

The next three slides show the parameters he found.

He used a Mac-Book Pro with 2.2 Ghz 6-core Intel Core i7
processor and 16 GB of RAM.

In English: a normal computer that an ugrad can buy and use.

He ran the program to find parameters on 150 texts of size approx
10,000 characters:

For each text he generated 1 random perm (will rerun with more
later).



David Zhen Found the Parameters

UMCP ugrad CS major David Zhen worked with me on this over
the summer.

The next three slides show the parameters he found.

He used a Mac-Book Pro with 2.2 Ghz 6-core Intel Core i7
processor and 16 GB of RAM.

In English: a normal computer that an ugrad can buy and use.

He ran the program to find parameters on 150 texts of size approx
10,000 characters:

For each text he generated 1 random perm (will rerun with more
later).



David Zhen Found the Parameters

UMCP ugrad CS major David Zhen worked with me on this over
the summer.

The next three slides show the parameters he found.

He used a Mac-Book Pro with 2.2 Ghz 6-core Intel Core i7
processor and 16 GB of RAM.

In English: a normal computer that an ugrad can buy and use.

He ran the program to find parameters on 150 texts of size approx
10,000 characters:

For each text he generated 1 random perm (will rerun with more
later).



Parameters for 1-Grams

Nothing worked.



Parameters for 1-Grams

Nothing worked.



Parameters for 2-Grams

Nothing worked.



Parameters for 3-Grams

1. The average time to get within 1-2 swaps was 1 minute.

2. The min time was 50 seconds, the max time was 3.5 minutes.

3. Seems hard to get those 1-2 swaps right.

4. The average number of iterations was 900. The MAX number
of iterations was 1902. TAKE I = 2000.

5. The average number of redos the program needed to get
within 2 swaps was 1.14. The max number of times was 3.
TAKE R = 4.



Parameters for 3-Grams

1. The average time to get within 1-2 swaps was 1 minute.

2. The min time was 50 seconds, the max time was 3.5 minutes.

3. Seems hard to get those 1-2 swaps right.

4. The average number of iterations was 900. The MAX number
of iterations was 1902. TAKE I = 2000.

5. The average number of redos the program needed to get
within 2 swaps was 1.14. The max number of times was 3.
TAKE R = 4.



Parameters for 3-Grams

1. The average time to get within 1-2 swaps was 1 minute.

2. The min time was 50 seconds, the max time was 3.5 minutes.

3. Seems hard to get those 1-2 swaps right.

4. The average number of iterations was 900. The MAX number
of iterations was 1902. TAKE I = 2000.

5. The average number of redos the program needed to get
within 2 swaps was 1.14. The max number of times was 3.
TAKE R = 4.



Parameters for 3-Grams

1. The average time to get within 1-2 swaps was 1 minute.

2. The min time was 50 seconds, the max time was 3.5 minutes.

3. Seems hard to get those 1-2 swaps right.

4. The average number of iterations was 900. The MAX number
of iterations was 1902. TAKE I = 2000.

5. The average number of redos the program needed to get
within 2 swaps was 1.14. The max number of times was 3.
TAKE R = 4.



Parameters for 3-Grams

1. The average time to get within 1-2 swaps was 1 minute.

2. The min time was 50 seconds, the max time was 3.5 minutes.

3. Seems hard to get those 1-2 swaps right.

4. The average number of iterations was 900. The MAX number
of iterations was 1902. TAKE I = 2000.

5. The average number of redos the program needed to get
within 2 swaps was 1.14. The max number of times was 3.
TAKE R = 4.



Parameters for 3-Grams

1. The average time to get within 1-2 swaps was 1 minute.

2. The min time was 50 seconds, the max time was 3.5 minutes.

3. Seems hard to get those 1-2 swaps right.

4. The average number of iterations was 900. The MAX number
of iterations was 1902. TAKE I = 2000.

5. The average number of redos the program needed to get
within 2 swaps was 1.14. The max number of times was 3.
TAKE R = 4.



4-Grams

1. The average time to get it perfect was 6 minutes.

2. The min time was 4 minutes, the max time was 30 minutes.

3. The average number of iterations was 1000. The MAX
number of iterations was 1966. TAKE I = 2000.

4. The average number of REDOS to get it perfects was 1.3.
The max number of times was 7. TAKE R = 8



4-Grams

1. The average time to get it perfect was 6 minutes.

2. The min time was 4 minutes, the max time was 30 minutes.

3. The average number of iterations was 1000. The MAX
number of iterations was 1966. TAKE I = 2000.

4. The average number of REDOS to get it perfects was 1.3.
The max number of times was 7. TAKE R = 8



4-Grams

1. The average time to get it perfect was 6 minutes.

2. The min time was 4 minutes, the max time was 30 minutes.

3. The average number of iterations was 1000. The MAX
number of iterations was 1966. TAKE I = 2000.

4. The average number of REDOS to get it perfects was 1.3.
The max number of times was 7. TAKE R = 8



4-Grams

1. The average time to get it perfect was 6 minutes.

2. The min time was 4 minutes, the max time was 30 minutes.

3. The average number of iterations was 1000. The MAX
number of iterations was 1966. TAKE I = 2000.

4. The average number of REDOS to get it perfects was 1.3.
The max number of times was 7. TAKE R = 8



4-Grams

1. The average time to get it perfect was 6 minutes.

2. The min time was 4 minutes, the max time was 30 minutes.

3. The average number of iterations was 1000. The MAX
number of iterations was 1966. TAKE I = 2000.

4. The average number of REDOS to get it perfects was 1.3.
The max number of times was 7. TAKE R = 8



History of this Approach

1. There was a paper that claimed to be able to use ML to crack
Gen Sub cipher.

2. In Summer 2020 I had ugrad David Zhen look at the paper
and code it up. (There were students on the project.)

3. When he finished and explained it to me I said
you can do all of that without ML

and sketched an algorithm.

4. David coded up my algorithm and it did not work. My
mistake: I thought we needed parameters for gaps.

5. David came up with the current algorithm.

6. Zan found that our algorithm was already known, which did
not surprise me. We discuss this on the next slide.

7. Does ML really help crypto? Not sure.



History of this Approach

1. There was a paper that claimed to be able to use ML to crack
Gen Sub cipher.

2. In Summer 2020 I had ugrad David Zhen look at the paper
and code it up. (There were students on the project.)

3. When he finished and explained it to me I said
you can do all of that without ML

and sketched an algorithm.

4. David coded up my algorithm and it did not work. My
mistake: I thought we needed parameters for gaps.

5. David came up with the current algorithm.

6. Zan found that our algorithm was already known, which did
not surprise me. We discuss this on the next slide.

7. Does ML really help crypto? Not sure.



History of this Approach

1. There was a paper that claimed to be able to use ML to crack
Gen Sub cipher.

2. In Summer 2020 I had ugrad David Zhen look at the paper
and code it up. (There were students on the project.)

3. When he finished and explained it to me I said
you can do all of that without ML

and sketched an algorithm.

4. David coded up my algorithm and it did not work. My
mistake: I thought we needed parameters for gaps.

5. David came up with the current algorithm.

6. Zan found that our algorithm was already known, which did
not surprise me. We discuss this on the next slide.

7. Does ML really help crypto? Not sure.



History of this Approach

1. There was a paper that claimed to be able to use ML to crack
Gen Sub cipher.

2. In Summer 2020 I had ugrad David Zhen look at the paper
and code it up. (There were students on the project.)

3. When he finished and explained it to me I said
you can do all of that without ML

and sketched an algorithm.

4. David coded up my algorithm and it did not work. My
mistake: I thought we needed parameters for gaps.

5. David came up with the current algorithm.

6. Zan found that our algorithm was already known, which did
not surprise me. We discuss this on the next slide.

7. Does ML really help crypto? Not sure.



History of this Approach

1. There was a paper that claimed to be able to use ML to crack
Gen Sub cipher.

2. In Summer 2020 I had ugrad David Zhen look at the paper
and code it up. (There were students on the project.)

3. When he finished and explained it to me I said
you can do all of that without ML

and sketched an algorithm.

4. David coded up my algorithm and it did not work. My
mistake: I thought we needed parameters for gaps.

5. David came up with the current algorithm.

6. Zan found that our algorithm was already known, which did
not surprise me. We discuss this on the next slide.

7. Does ML really help crypto? Not sure.



History of this Approach

1. There was a paper that claimed to be able to use ML to crack
Gen Sub cipher.

2. In Summer 2020 I had ugrad David Zhen look at the paper
and code it up. (There were students on the project.)

3. When he finished and explained it to me I said
you can do all of that without ML

and sketched an algorithm.

4. David coded up my algorithm and it did not work. My
mistake: I thought we needed parameters for gaps.

5. David came up with the current algorithm.

6. Zan found that our algorithm was already known, which did
not surprise me. We discuss this on the next slide.

7. Does ML really help crypto? Not sure.



History of this Approach

1. There was a paper that claimed to be able to use ML to crack
Gen Sub cipher.

2. In Summer 2020 I had ugrad David Zhen look at the paper
and code it up. (There were students on the project.)

3. When he finished and explained it to me I said
you can do all of that without ML

and sketched an algorithm.

4. David coded up my algorithm and it did not work. My
mistake: I thought we needed parameters for gaps.

5. David came up with the current algorithm.

6. Zan found that our algorithm was already known, which did
not surprise me. We discuss this on the next slide.

7. Does ML really help crypto? Not sure.



History of this Approach

1. There was a paper that claimed to be able to use ML to crack
Gen Sub cipher.

2. In Summer 2020 I had ugrad David Zhen look at the paper
and code it up. (There were students on the project.)

3. When he finished and explained it to me I said
you can do all of that without ML

and sketched an algorithm.

4. David coded up my algorithm and it did not work. My
mistake: I thought we needed parameters for gaps.

5. David came up with the current algorithm.

6. Zan found that our algorithm was already known, which did
not surprise me. We discuss this on the next slide.

7. Does ML really help crypto? Not sure.



Our Algorithm Already Known

A Fast Method for Cryptanalysis of Substitution Ciphers
by Jakobsen, (1995)
has our approach with the following caveats:

1. They use a different IS-ENGLISH function. A better one as
we will see.

2. They use bigrams rather than trigrams.

3. Since they can use bigrams rather than trigrams (I assume)
their algorithm is faster.

4. So why did I present ours? (1) Educationally mine and theirs
are the same, and (2) I knew all of the parameters of our
algorithm and how we got them.



Our Algorithm Already Known

A Fast Method for Cryptanalysis of Substitution Ciphers
by Jakobsen, (1995)
has our approach with the following caveats:

1. They use a different IS-ENGLISH function. A better one as
we will see.

2. They use bigrams rather than trigrams.

3. Since they can use bigrams rather than trigrams (I assume)
their algorithm is faster.

4. So why did I present ours? (1) Educationally mine and theirs
are the same, and (2) I knew all of the parameters of our
algorithm and how we got them.



Our Algorithm Already Known

A Fast Method for Cryptanalysis of Substitution Ciphers
by Jakobsen, (1995)
has our approach with the following caveats:

1. They use a different IS-ENGLISH function. A better one as
we will see.

2. They use bigrams rather than trigrams.

3. Since they can use bigrams rather than trigrams (I assume)
their algorithm is faster.

4. So why did I present ours? (1) Educationally mine and theirs
are the same, and (2) I knew all of the parameters of our
algorithm and how we got them.



Our Algorithm Already Known

A Fast Method for Cryptanalysis of Substitution Ciphers
by Jakobsen, (1995)
has our approach with the following caveats:

1. They use a different IS-ENGLISH function. A better one as
we will see.

2. They use bigrams rather than trigrams.

3. Since they can use bigrams rather than trigrams (I assume)
their algorithm is faster.

4. So why did I present ours? (1) Educationally mine and theirs
are the same, and (2) I knew all of the parameters of our
algorithm and how we got them.



Our Algorithm Already Known

A Fast Method for Cryptanalysis of Substitution Ciphers
by Jakobsen, (1995)
has our approach with the following caveats:

1. They use a different IS-ENGLISH function. A better one as
we will see.

2. They use bigrams rather than trigrams.

3. Since they can use bigrams rather than trigrams (I assume)
their algorithm is faster.

4. So why did I present ours? (1) Educationally mine and theirs
are the same, and (2) I knew all of the parameters of our
algorithm and how we got them.



Mostly There But . . .

Since the text was in blocks of five and we want to totally
mechanize, need a method to find word breaks.

We leave this topic for now.



Mostly There But . . .

Since the text was in blocks of five and we want to totally
mechanize, need a method to find word breaks.

We leave this topic for now.



BILL
STOP RECORDING

THIS LECTURE

September 16, 2020


