
BILL START
RECORDING



Computational Threshold
Secret Sharing



Threshold Secret Sharing

Zelda has a secret s ∈ {0, 1}n.

Def Let 1 ≤ t ≤ m. (t,m)-secret sharing is a way for Zelda to
give strings to A1, . . . ,Am such that:

1. If any t get together than they can learn the secret.

2. If any t − 1 get together they cannot learn the secret.

Cannot learn the secret We have considered info-theoretic
security. This slide packet is about the comp-theoretic security.
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Computational Threshold
Secret Sharing: Shorter

Shares



Info-Theoretic: Shares are ≥ n

Info-theoretic (t,m)-Secret Sharing.
If At has a share of length n − 1 then A1, . . . ,At−1 CAN learn
something (so NOT info-theoretic security).
A1, . . . ,At−1 do the following:

CAND = ∅. CAND will be set of Candidates for s.

For x ∈ {0, 1}n−1 (go through ALL shares At could have)

A1, . . . ,At−1 pretend At has x and deduce candidate secret s ′

CAND := CAND ∪ {s ′}
Secret is in CAND. |CAND| = 2n−1 < 2n. So we have
eliminated many strings from being the s.
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Are Shorter Shares Ever Possible?

If we demand info-security then everyone gets a share ≥ n.
What if we only demand comp-security?
VOTE

1. Can get shares < βn with a hardness assumption.

2. Even with hardness assumption REQUIRES shares ≥ n.

Can get shares < βn with a hardness assumption.
Will do that later.
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Review of an Aspect of Private Key Crypto

For plaintext only:

1. Shift and Affine is crackable if text is long. Key is shorter
than text.

2. Gen Sub is crackable if text is long. Key is shorter than text.

3. Vig is crackable if text is long. Key is shorter than text.

4. 1-time pad is uncrackable Key is same length as text.

Is there an encryption system where the key is shorter than the
text and the system is computationally secure?
Need to define terms first.
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Compare Key to Message

Def Let 0 < α < 1. An α-Symm Enc. System (α-SES) is a
three tuple of functions (GEN,ENC ,DEC ) where

1. GEN takes n and GENerates k ∈ {0, 1}αn.

2. ENC takes k ∈ {0, 1}αn and m ∈ {0, 1}n, outputs c ∈ {0, 1}n.
(ENC ENCrypts m with key k . We denote ENCk(m).)

3. DEC takes k ∈ {0, 1}αn and c ∈ {0, 1}n and outputs
m ∈ {0, 1}n such that DECk(ENCk(m)) = m. So DEC
DECrypts.

4. There is some hardness assumptions which, if true, implies
Eve cannot decode the message from plaintext only.

Note α-SES encrypts a length n message by a length n ciphertext.
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Psuedorandom Generators

Def (Informal) A a pseudorandom gen maps a short seed to a long
sequence that a limited Eve cannot distinguish from random.

Idea Do the one-time-pad but with a psuedorandom sequence.
Discuss

PROS and CONS
CON All Powerful Eve can crack it!
PRO Limited Eve cannot crack it!
PRO Can Actually use!
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BBS Generator

Blum-Blum-Shub psuedo-random Generator. Recall that LSB
means Least Significant Bit.

1. Seed: p, q primes, x0 ∈ ZN=pq. p, q ≡ 3 (mod 4).

2. Sequence:

x1 = x20 mod N b1 = LSB(x1)
x2 = x21 mod N b2 = LSB(x2)

...
...

...
...

...
xL = x2L−1 mod N bL = LSB(xL)

r = b1 · · · bL is pseudo-random.

Known Assuming Factoring is hard, this is 1
2 -SES. If L is twice the

length of seed, and seed long enough, then secure.
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Example of 1
2
-SES

Name of this System BBS-Psuedo 1-time Pad, or BBS-POTP.

1. GEN k = (p, q, x0). |k | = n
2 (length of k in bits). p, q prime

p ≡ q ≡ 3 (mod 4).

2. ENC Use k to BBS-gen b1, . . . , bn. m ∈ {0, 1}n.

ENCk(m1, . . . ,mn) = (m1 ⊕ b1, . . . ,mn ⊕ bn).

3. DEC Bob can use k = (p, q, x0) to find b1, . . . , bn, and
decode.

Known Assume factoring is hard. For large enough n this is secure.

Note Message is twice as long as key, so this is 1
2 -SES.

Note Will not be using this particular SES but have it here as a
concrete example.
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concrete example.



Intuition for the Short Shares Protocol

The secret is s, |s| = n.

We use an α-SES to get u = ENCk(u). Note |k | = αn < n.

Players will need shares to figure out:

1. k. Note |k| = αn < n. Do usual way, shares size αn.

2. u. |u| = |s|, darn! Let u = ut−1, . . . , u0, |ui | = n
t . Use poly

ut−1x
t−1 + · · ·+ u1t + u0.

How come we could not have done this with original secret s?

If poly is st−1x
t−1 + · · ·+ s1x + s0 then A1 has

f (1) = st−1 + · · ·+ s0. Reduces poss for s.

3. Players get TWO shares, both short, one to find k , one to
find u. A set of t of them will recover k and u and hence can
find s = ENCk(u).
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Short Shares

Thm Assume there exists an α-SES. Assume that for message of
length n, it is secure. Then, for all 1 ≤ t ≤ m there is a
(t,m)-scheme for |s| = n where each share is of size n

t + αn.

1. Zelda does k ← GEN(n). Note |k| = αn.

2. u = ENCk(s). Let u = u0 · · · ut−1, |ui | ∼ n
t .

3. Let p > 2n/t . Zelda forms poly over Zp:

f (x) = ut−1x
t−1 + · · ·+ u1x + u0

4. Let q > 2αn. Zelda forms poly over Zq by choosing
rt−1, . . . , r1 ∈ {0, . . . , q − 1} at random and then:

g(x) = rt−1x
t−1 + · · ·+ r1x + k (mod p)

5. Zelda gives Ai , (f (i), g(i)). Length: ∼ n
t + αn.
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Length and Recovery

Length

1. f (i) ∈ Zp where p > 2n/t , so |f (i)| ∼ n
t .

2. g(i) ∈ Zq where q > 2αn, so |g(i)| ∼ αn.

Recovery If t get together:

1. Have t points of f , can get ut−1, . . . , u0, hence u.

2. u = ENCk(s). So need k .

3. Have t points of g , can get k .

4. With k and u can get s = DECk(u).

If t − 1 get together then under (complicated) hardness
assumptions, they cannot learn anything.
See next Slide for information about the hardness assumptions.
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SONG BREAK

https://nerdist.com/article/

star-wars-meets-the-beatles-sgt-pepper-in-the-best-parody-album-ever/
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Not a Punking but a Caveat and a Ref

The scheme I showed you is due to Hugo Krawczyk, Secret
Sharing Made Short, Advances in Crypto – CRYPTO 1993
Lecture notes in computer science 773, 1993
https://www.cs.umd.edu/users/gasarch/COURSES/456/F18/

notes/secretshort.pdf

However, the proof of security was not quite right.

Mihir Bellar and Phillip Rogaway wrote a paper that proved
Krawczyk’s protocol secure by adding a condition to the α-SES.
We omit since its complicated.
Robust Computational Secret Sharing and a Unified Account
of Classical Secret Sharing Goals, Cryptology eprint
2006-449, 2006
https://dl.acm.org/doi/10.1145/1315245.1315268

https://www.cs.umd.edu/users/gasarch/COURSES/456/F18/notes/secretshort.pdf
https://www.cs.umd.edu/users/gasarch/COURSES/456/F18/notes/secretshort.pdf
https://dl.acm.org/doi/10.1145/1315245.1315268
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Can we do better than n
t +αn?

Ill Formed Question Can we do better than n
t + αn?

The question is not quite right – if we have a smaller α can do
better.

Better Question Assume there is an α-SES. Is the following true:
For all 0 < β < 1 there exists an (t,m) secret sharing scheme
where everyone gets n

t + βn.
Discuss
Can be done by iterating the above construction. Might be HW or
Exam.
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Breaking the n
t Barrier!

(2, 2): A,B share the secret s, |s| = n.
Computational Secret Sharing, so can make a hardness assumption.

Question Is there a (2, 2) secret sharing scheme where A and B
both get a share ≤ n

3?
Discuss. Vote!

1. YES! There is such a Scheme.

2. NO! We can prove there is NO such scheme.

3. PUNKED! Bill will shows us a scheme that looks like it works
but he’ll be PUNKING US!

4. Unknown to science!

NO! We can prove there is NO such scheme.
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Can’t Break the n
t Barrier!

Theorem There is no (2, 2)-scheme with shares n
3 .

Proof Assume there is.
Map s ∈ {0, 1}n to the ordered pair (A’s share, B’s share)
2n elements in the domain.
2n/3 × 2n/3 = 22n/3 elements in the co-domain.

Hence exists s, s ′ ∈ {0, 1}n that map to same (a, b).
If A gets a, and B gets b, will not decode uniquely into one secret.

Contradiction!
This Generalizes. Might be on HW or Exam
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Computational Threshold
Secret Sharing:
Verifiable S.S.



A Scenario

1. (5, 9) Secret Sharing.
2. The secret is s. p > 2s . Zelda picks random r4, r3, r2, r1 and

forms poly over Zp: f (x) = r4x
4 + r3x

3 + r2x
2 + r1x + s

(mod p).
3. For 1 ≤ i ≤ 9 Zelda gives Ai the element f (i).

A2,A4,A7,A8,A9 get together. BUT they do not trust each other!

1. A2 thinks that A7 is a traitor!
2. A7 thinks A4 will confuse them just for the fun of it.
3. A8 and A9 got into a knife fight over who proved that the

muffin problem always has a rational solution. They use the
knifes that were used to cut muffins.

4. The list goes on.

Hence we need to VERIFY that everyone is telling the truth. This
is called VERIFIABLE secret sharing, or VSS.

In all protocols, Zelda broadcasts the prime p and the length n.
We omit this step to save space on the slides.
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Hardness Assumption For All (t,m) VSS Schemes

For all VSS schemes we consider we assume Discrete Log is hard.

In all of them we will give all players a number like ga. They
cannot find a.



Hardness Assumption For All (t,m) VSS Schemes

For all VSS schemes we consider we assume Discrete Log is hard.

In all of them we will give all players a number like ga. They
cannot find a.



First Attempt at (t,m) VSS

1. Secret is s. Zelda uses p > 2|s|.

2. Zelda finds a generator g for Zp.

3. Zelda forms poly over Zp: pick rand rt−1, . . . , r1,
f (x) = rt−1x

t−1 + · · ·+ r1x + s.

4. For 1 ≤ i ≤ m Zelda gives Ai f (i).

5. Zelda broadcasts g , g s (this does not reveal s).

Recover Any group of t can determine f and hence s.

Verify Once a group has s they compute g s and see if it matches.
If so then they know they have the correct secret. If no then they
know someone is a stinking rotten liar.

1. If verify s there may still be two liars who cancel out.

2. If do not agree they do not know who the liar is.

3. Does not serve as a deterrent.
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4. For 1 ≤ i ≤ m Zelda gives Ai f (i).

5. Zelda broadcasts g , g f (1), . . ., g f (m). (No f (i) is revealed.)

Recover The usual – any group of t can blah blah.

Verify If Ai says f (i) = 17, they can all then check if g17 is what
Zelda said g f (i) is, so can determine if Ai is truthful.

1. PRO If someone lies they know right away.

2. CON Leaks! Since g f (i)’s are all broadcast, if f (i) = f (j)
then everyone will know that.
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Verify If Ai says f (i) = 17, they can all then check if g17 is what
Zelda said g f (i) is, so can determine if Ai is truthful.

1. PRO If someone lies they know right away.

2. CON Leaks! Since g f (i)’s are all broadcast, if f (i) = f (j)
then everyone will know that.
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t−2 × · · · × (g r1)i

1 × (g s)i
0

= g f (i)

If this is g17 then Ai is truthful. If not then Ai is dirty stinking liar.

1. PRO If someone lies they know right away.

2. PRO Serves as a deterrent.

3. PRO Zelda is communicating only t strings.

4. PRO Security – see next slide.
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Security and References

The scheme above for VSS is by Paul Feldman.

A Practical Scheme for non-interactive Verifiable Secret
Sharing
28th Conference on Foundations of Computer Science
(FOCS)
1987
https://www.cs.umd.edu/~gasarch/TOPICS/secretsharing/

feldmanVSS.pdf

They give proof of security based on zero-knowledge protocols
which are themselves based on blah blah.

https://www.cs.umd.edu/~gasarch/TOPICS/secretsharing/feldmanVSS.pdf
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More Can Be Said About Secret Sharing

arXiv is a website where Academics in Math, Comp Sci, and
Physics post papers. How many of those papers are on Secret
Sharing?

Vote

1. Between 0 and 100

2. Between 100 and 1000

3. Between 1000 and 10,000

4. Over 10,000

Answer About 14,500 so over 10,000.
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