Some Solutions to HW01 Problems

BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Problem 2

How many $x \in\{0, \ldots, 99\}$ satisfy the equation

$$
x^{2}+17 x+16 \equiv 0 \quad(\bmod 100)
$$

Problem 2

How many $x \in\{0, \ldots, 99\}$ satisfy the equation

$$
x^{2}+17 x+16 \equiv 0 \quad(\bmod 100)
$$

Wrong Answer Its an equation of degree 2, so 2 solutions.

Problem 2

How many $x \in\{0, \ldots, 99\}$ satisfy the equation

$$
x^{2}+17 x+16 \equiv 0 \quad(\bmod 100)
$$

Wrong Answer Its an equation of degree 2, so 2 solutions.
Key If solving over \mathbb{R} or \mathbb{C} would do

$$
x^{2}+17 x+16=(x+16)(x+1)
$$

Problem 2

How many $x \in\{0, \ldots, 99\}$ satisfy the equation

$$
x^{2}+17 x+16 \equiv 0 \quad(\bmod 100)
$$

Wrong Answer Its an equation of degree 2, so 2 solutions.
Key If solving over \mathbb{R} or \mathbb{C} would do

$$
x^{2}+17 x+16=(x+16)(x+1)
$$

If $(x+16)(x+1)=0$ then EITHER $x+16=0$ or $x+1=0$.

Problem 2

How many $x \in\{0, \ldots, 99\}$ satisfy the equation

$$
x^{2}+17 x+16 \equiv 0 \quad(\bmod 100)
$$

Wrong Answer Its an equation of degree 2, so 2 solutions.
Key If solving over \mathbb{R} or \mathbb{C} would do

$$
x^{2}+17 x+16=(x+16)(x+1)
$$

If $(x+16)(x+1)=0$ then EITHER $x+16=0$ or $x+1=0$.
That does not apply in mod 100 .
Note $25 \times 4 \equiv 0$, but $25 \neq 0$ and $4 \neq 0$.

Problem 2

How many $x \in\{0, \ldots, 99\}$ satisfy the equation

$$
x^{2}+17 x+16 \equiv 0 \quad(\bmod 100)
$$

Wrong Answer Its an equation of degree 2, so 2 solutions.
Key If solving over \mathbb{R} or \mathbb{C} would do

$$
x^{2}+17 x+16=(x+16)(x+1)
$$

If $(x+16)(x+1)=0$ then EITHER $x+16=0$ or $x+1=0$.
That does not apply in mod 100 .
Note $25 \times 4 \equiv 0$, but $25 \neq 0$ and $4 \neq 0$.
Two ways to solve.

Problem 2

How many $x \in\{0, \ldots, 99\}$ satisfy the equation

$$
x^{2}+17 x+16 \equiv 0 \quad(\bmod 100)
$$

Wrong Answer Its an equation of degree 2, so 2 solutions.
Key If solving over \mathbb{R} or \mathbb{C} would do

$$
x^{2}+17 x+16=(x+16)(x+1)
$$

If $(x+16)(x+1)=0$ then EITHER $x+16=0$ or $x+1=0$.
That does not apply in mod 100 .
Note $25 \times 4 \equiv 0$, but $25 \neq 0$ and $4 \neq 0$.
Two ways to solve.

1) Write a program that goes through all $x \in\{0, \ldots, 99\}$.

Problem 2

How many $x \in\{0, \ldots, 99\}$ satisfy the equation

$$
x^{2}+17 x+16 \equiv 0 \quad(\bmod 100)
$$

Wrong Answer Its an equation of degree 2, so 2 solutions.
Key If solving over \mathbb{R} or \mathbb{C} would do

$$
x^{2}+17 x+16=(x+16)(x+1)
$$

If $(x+16)(x+1)=0$ then EITHER $x+16=0$ or $x+1=0$.
That does not apply in mod 100 .
Note $25 \times 4 \equiv 0$, but $25 \neq 0$ and $4 \neq 0$.
Two ways to solve.

1) Write a program that goes through all $x \in\{0, \ldots, 99\}$.
2) By hand and cleverness on next slide.

Problem 2: The Clever Solutions, Mod 5

$$
\begin{gathered}
x^{2}+17 x+16=(x+16)(x+1) \\
\text { Lemma }(x+1)(x+16) \equiv 0(\bmod 100) \Longrightarrow x+1 \equiv 0(\bmod 5)
\end{gathered}
$$

Problem 2: The Clever Solutions, Mod 5

$$
\begin{aligned}
& x^{2}+17 x+16=(x+16)(x+1) \\
& \text { Lemma }(x+1)(x+16) \equiv 0(\bmod 100) \Longrightarrow x+1 \equiv 0(\bmod 5) \\
& \text { Proof } x+1 \not \equiv 0(\bmod 5) \Longrightarrow x+16 \not \equiv 0(\bmod 5) \Longrightarrow \\
& (x+1)(x+16) \not \equiv 0(\bmod 5) \Longrightarrow(x+1)(x+16) \not \equiv 0 \\
& (\bmod 100) .
\end{aligned}
$$

Problem 2: The Clever Solutions, Mod 5

$$
\begin{aligned}
& \qquad x^{2}+17 x+16=(x+16)(x+1) \\
& \text { Lemma }(x+1)(x+16) \equiv 0(\bmod 100) \Longrightarrow x+1 \equiv 0(\bmod 5) \\
& \text { Proof } x+1 \not \equiv 0(\bmod 5) \Longrightarrow x+16 \not \equiv 0(\bmod 5) \Longrightarrow \\
& (x+1)(x+16) \not \equiv 0(\bmod 5) \Longrightarrow(x+1)(x+16) \not \equiv 0 \\
& (\bmod 100) .
\end{aligned}
$$

Upshot Only need to look x such that $x+1 \equiv 0(\bmod 5)$. Upshot Only need to look at $x \equiv 0(\bmod 5)$.

Problem 2: The Clever Solutions, Mod 4

Lemma $(x+1)(x+16) \equiv 0 \Longrightarrow x+1 \not \equiv 2(\bmod 4)$.

Problem 2: The Clever Solutions, Mod 4

Lemma $(x+1)(x+16) \equiv 0 \Longrightarrow x+1 \not \equiv 2(\bmod 4)$.
Proof $x+1 \equiv 2(\bmod 4) \Longrightarrow x+16 \equiv 1(\bmod 4) \Longrightarrow$ $(x+1)(x+16) \equiv 2(\bmod 4) \Longrightarrow(x+1)(x+16) \not \equiv 0$ $(\bmod 100)$.

Problem 2: The Clever Solutions, Mod 4

Lemma $(x+1)(x+16) \equiv 0 \Longrightarrow x+1 \not \equiv 2(\bmod 4)$.
Proof $x+1 \equiv 2(\bmod 4) \Longrightarrow x+16 \equiv 1(\bmod 4) \Longrightarrow$ $(x+1)(x+16) \equiv 2(\bmod 4) \Longrightarrow(x+1)(x+16) \not \equiv 0$ $(\bmod 100)$.

Lemma $(x+1)(x+16) \equiv 0(\bmod 100) \Longrightarrow x+1 \not \equiv 3(\bmod 4)$.

Problem 2: The Clever Solutions, Mod 4

Lemma $(x+1)(x+16) \equiv 0 \Longrightarrow x+1 \not \equiv 2(\bmod 4)$.
Proof $x+1 \equiv 2(\bmod 4) \Longrightarrow x+16 \equiv 1(\bmod 4) \Longrightarrow$ $(x+1)(x+16) \equiv 2(\bmod 4) \Longrightarrow(x+1)(x+16) \not \equiv 0$ $(\bmod 100)$.

Lemma $(x+1)(x+16) \equiv 0(\bmod 100) \Longrightarrow x+1 \not \equiv 3(\bmod 4)$.
Proof $x+1 \equiv 3(\bmod 4) \Longrightarrow x+16 \equiv 2(\bmod 4) \Longrightarrow$ $(x+1)(x+16) \equiv 2(\bmod 4) \Longrightarrow(x+1)(x+16) \not \equiv 0$ $(\bmod 100)$.

Problem 2: The Clever Solutions, Mod 4

Lemma $(x+1)(x+16) \equiv 0 \Longrightarrow x+1 \not \equiv 2(\bmod 4)$.
Proof $x+1 \equiv 2(\bmod 4) \Longrightarrow x+16 \equiv 1(\bmod 4) \Longrightarrow$ $(x+1)(x+16) \equiv 2(\bmod 4) \Longrightarrow(x+1)(x+16) \not \equiv 0$ $(\bmod 100)$.

Lemma $(x+1)(x+16) \equiv 0(\bmod 100) \Longrightarrow x+1 \not \equiv 3(\bmod 4)$.
Proof $x+1 \equiv 3(\bmod 4) \Longrightarrow x+16 \equiv 2(\bmod 4) \Longrightarrow$ $(x+1)(x+16) \equiv 2(\bmod 4) \Longrightarrow(x+1)(x+16) \not \equiv 0$ $(\bmod 100)$.

Upshot Only need to look at x such that $x+1 \equiv 0,1(\bmod 4)$. Upshot Only need to look at $x \equiv 0,3(\bmod 4)$.

Problem 2. Clever Sol Cont.

1) $x \equiv 4(\bmod 5)$ and $x \equiv 0(\bmod 4)$ implies $x \equiv 4(\bmod 20)$.

x	$(x+1)(x+16)$	$\equiv 0$	$(\bmod 100) ?$
4	100		Y
24	1000		Y
44	2700		Y
64	5200		Y
84	8400		Y

2) $x \equiv 4(\bmod 5)$ and $x \equiv 3(\bmod 4)$ implies $x \equiv 19(\bmod 20)$.

x	$(x+1)(x+16)$	$\equiv 0$	$(\bmod 100) ?$
19	700		Y
39	2200		Y
59	4500		Y
79	7600		Y
99	8400		Y

SO there are 10 solutions.

Problem 2: The Point

Point of the Problem Mod 100 is very different than \mathbb{N} or \mathbb{Z} or even Mod 7 since you can have d th degree poly with MORE THAN d roots.

Problem 2: The Point

Point of the Problem Mod 100 is very different than \mathbb{N} or \mathbb{Z} or even Mod 7 since you can have d th degree poly with MORE THAN d roots.

Theorem If the domain is \mathbb{Z} or \mathbb{R} or \mathbb{C} (the complex numbers) then every poly of degree d has $\leq d$ roots.

Problem 2: The Point

Point of the Problem Mod 100 is very different than \mathbb{N} or \mathbb{Z} or even Mod 7 since you can have d th degree poly with MORE THAN d roots.

Theorem If the domain is \mathbb{Z} or \mathbb{R} or \mathbb{C} (the complex numbers) then every poly of degree d has $\leq d$ roots.

The proof of this theorem used that in these domains

$$
a b=0 \Longrightarrow(a=0) \vee(b=0)
$$

Problem 4a

How many $a, b \in\{0, \ldots, 29\}$ are cool relative to 30 .

Problem 4a

How many $a, b \in\{0, \ldots, 29\}$ are cool relative to 30 .
The numbers rel prime to 30 are $\{1,7,11,13,17,19,23,29\}$. Hence there are 8 of these.

Problem 4a

How many $a, b \in\{0, \ldots, 29\}$ are cool relative to 30 .
The numbers rel prime to 30 are $\{1,7,11,13,17,19,23,29\}$. Hence there are 8 of these.

The number of b 's is ALL of them: 30 .

Problem 4a

How many $a, b \in\{0, \ldots, 29\}$ are cool relative to 30 .
The numbers rel prime to 30 are $\{1,7,11,13,17,19,23,29\}$. Hence there are 8 of these.

The number of b 's is ALL of them: 30 .
Hence there are $8 \times 30=240$ cool pairs.

Problem 4b

A student picks an $a, b \in\{0 \ldots, 29\}$ at random. What is the probability that (a, b) is cool relative to 30 ?

Problem 4b

A student picks an $a, b \in\{0 \ldots, 29\}$ at random. What is the probability that (a, b) is cool relative to 30 ?

$$
\frac{240}{30 \times 30}=\frac{8 \times 30}{30 \times 30}=\frac{8}{30}=\frac{4}{15} \sim 0.2667
$$

Problem 4c

How many (a, b) are cool relative to 31 ?

Problem 4c

How many (a, b) are cool relative to 31 ?
The numbers rel prime to 31 are $\{1, \ldots, 30\}$. Hence there are 30 of these.

Problem 4c

How many (a, b) are cool relative to 31 ?
The numbers rel prime to 31 are $\{1, \ldots, 30\}$. Hence there are 30 of these.

The number of b 's is ALL of them: 31 .

Problem 4c

How many (a, b) are cool relative to 31 ?
The numbers rel prime to 31 are $\{1, \ldots, 30\}$. Hence there are 30 of these.

The number of b 's is ALL of them: 31 .
Hence there are $30 \times 31=930$ cool pairs.

Problem 4d

A student picks an $a, b \in\{0 \ldots, 30\}$ at random. What is the probability that (a, b) is cool rel to 31 ?
Give the answer to four decimal places.

$$
\frac{930}{31 \times 31}=\frac{30 \times 31}{31 \times 31}=\frac{30}{31}=\sim 0.9677
$$

Problem 4e

What types of numbers n are such that the prob of picking an (a, b) that is cool rel to n is close to 1 ? Give an example of a number between 1000 and 1200 where the prob is close to 1 . What is the prob? Give it to 4 places.

Problem 4e

What types of numbers n are such that the prob of picking an (a, b) that is cool rel to n is close to 1 ? Give an example of a number between 1000 and 1200 where the prob is close to 1 . What is the prob? Give it to 4 places.

We want n to be PRIME. WE take $n=1001$ which is prime. The prob of picking a cool pair is

$$
\frac{1000 \times 1001}{10001 \times 1001}=\frac{1000}{1001}=0.999
$$

Problem 4f

What types of numbers n are such that the prob of picking an (a, b) that is cool rel to n is far from 1 ? Give an example of a number between 1000 and 1200 where the prob is far from 1.

Problem 4f

What types of numbers n are such that the prob of picking an (a, b) that is cool rel to n is far from 1 ? Give an example of a number between 1000 and 1200 where the prob is far from 1.

A number with LOTS of prime factors. We give two examples but leave it to you to work out the answer
$n=1024=2^{10}$.
$n=4 \times 3 \times 5 \times 17$

Problem 5a

List all a, b so that the encode-key and the decode-key for affine are the same. All math is mod 26 .
Need $(\forall x)[a(a x+b)+b \equiv x]$, so
$(\forall x)\left[a^{2} x+(a b+b) \equiv 1 x+0\right]$. We match coefficients

Problem 5a

List all a, b so that the encode-key and the decode-key for affine are the same. All math is mod 26 .
Need $(\forall x)[a(a x+b)+b \equiv x]$, so
$(\forall x)\left[a^{2} x+(a b+b) \equiv 1 x+0\right]$. We match coefficients

$$
a^{2} \equiv 1 \text { and } a b+b \equiv 0
$$

Problem 5a

List all a, b so that the encode-key and the decode-key for affine are the same. All math is mod 26 .
Need $(\forall x)[a(a x+b)+b \equiv x]$, so
$(\forall x)\left[a^{2} x+(a b+b) \equiv 1 x+0\right]$. We match coefficients

$$
a^{2} \equiv 1 \text { and } a b+b \equiv 0
$$

The first equation yields $a \equiv 1$ or $a \equiv 25$.

Problem 5a

List all a, b so that the encode-key and the decode-key for affine are the same. All math is mod 26 .
Need $(\forall x)[a(a x+b)+b \equiv x]$, so
$(\forall x)\left[a^{2} x+(a b+b) \equiv 1 x+0\right]$. We match coefficients

$$
a^{2} \equiv 1 \text { and } a b+b \equiv 0
$$

The first equation yields $a \equiv 1$ or $a \equiv 25$.
Case $1 a \equiv 1$, so the $a b+b \equiv 0$ is now $b+b \equiv 0, b \equiv 0$ or $b \equiv 13$. Pairs: $(1,0),(1,13)$.

Problem 5a

List all a, b so that the encode-key and the decode-key for affine are the same. All math is mod 26 .
Need $(\forall x)[a(a x+b)+b \equiv x]$, so
$(\forall x)\left[a^{2} x+(a b+b) \equiv 1 x+0\right]$. We match coefficients

$$
a^{2} \equiv 1 \text { and } a b+b \equiv 0
$$

The first equation yields $a \equiv 1$ or $a \equiv 25$.
Case $1 a \equiv 1$, so the $a b+b \equiv 0$ is now $b+b \equiv 0, b \equiv 0$ or $b \equiv 13$. Pairs: $(1,0),(1,13)$.
Case $2 a \equiv 25$, so the $a b+b \equiv 0$ is now $25 b+b \equiv 0$, so $26 b \equiv 0$ OH, thats ALWAYS TRUE! So ANY b works. Pairs: $(25, b)$ for ANY $0 \leq b \leq 25$.

Problem 5a

List all a, b so that the encode-key and the decode-key for affine are the same. All math is mod 26 .
Need $(\forall x)[a(a x+b)+b \equiv x]$, so
$(\forall x)\left[a^{2} x+(a b+b) \equiv 1 x+0\right]$. We match coefficients

$$
a^{2} \equiv 1 \text { and } a b+b \equiv 0
$$

The first equation yields $a \equiv 1$ or $a \equiv 25$.
Case $1 a \equiv 1$, so the $a b+b \equiv 0$ is now $b+b \equiv 0, b \equiv 0$ or $b \equiv 13$. Pairs: $(1,0),(1,13)$.
Case $2 a \equiv 25$, so the $a b+b \equiv 0$ is now $25 b+b \equiv 0$, so $26 b \equiv 0$ OH, thats ALWAYS TRUE! So ANY b works. Pairs: $(25, b)$ for ANY $0 \leq b \leq 25$.

Pairs: $(1,0)(1,13),(25,0),(25,1), \ldots,(25,25)$. Note that there are 28 such pairs.

Problem 5b,5c

1) Give a reason why having the encode and decode be the same key is a good idea.

Problem 5b,5c

1) Give a reason why having the encode and decode be the same key is a good idea.
When Alice gives Bob the key, Bob does not have to figure out the inverse.
This is not a big deal here, but could be for more complicated ciphers.

Problem 5b,5c

1) Give a reason why having the encode and decode be the same key is a good idea.
When Alice gives Bob the key, Bob does not have to figure out the inverse.
This is not a big deal here, but could be for more complicated ciphers.
2) Give a reason why having the encode and decode be the same key is a bad idea.

Problem 5b,5c

1) Give a reason why having the encode and decode be the same key is a good idea.
When Alice gives Bob the key, Bob does not have to figure out the inverse.
This is not a big deal here, but could be for more complicated ciphers.
2) Give a reason why having the encode and decode be the same key is a bad idea.

If Eve knows Alice and Bob are doing this, the key space goes from 312 to 28 . So much easier for Eve to crack the code.

