HW04 CMSC/MATH/ENEE 456. Morally DUE Oct 12
SOLUTIONS

1. (0 points)

(a) What is the day and time of the midterm?
(b) IF you CANNOT make the timed part of the midterm let me

GOTO NEXT PAGE

2. (20 points, programming question) The goal of this problem is to (1) get
data on what fraction of numbers are safe primes, (2) write programs
that will be used for both Diffie-Helman and RSA.

(a) (0 points) Program EXP. On input a,n,p, output a™ (mod p).
Make it efficient, so use repeated squaring. Some languages have
this built in, but you are not allowed to use it.

(b) (0 points) Program TESTPRIME. Test for primality using the
following method which is a variant of what was on the slides: To
test if n is prime pick 5 distinct random numbers ay, as, as, aq, a5 €
{2,...,n—2} and compute, for 1 <i <5, a?' (mod p). If ALL
are 1 then output 1. if ANY are not 1 then output 0. (So 1 means
PRIME and 0 means NOT PRIME.)

(¢) (0 points) Program TESTSAFEPRIME. Given a number n, test
if its a SAFE prime. If it is then output 1, if not then output 0.

(d) (20 points) Program HOWMANYSAFEPRIME: Given n, deter-

mine how many numbers in {1,...,n} are safe primes.

In your main method, you should take as input n and output the re-
sulting integer from HOWMANYSAFEPRIME(n).

(a) n will be given as a command line argument. Expect your filename
to be the first command line argument and n to be the second.
There will be no input given through standard input.

(b) You should output HOWMANYSAFEPRIME(n) to standard out-
put.

(¢) You should upload a single file ending in . java, .py, .ml, .rb,
.c, .cpp, or .scala, corresponding to Java, Python3, OCaml,
Ruby, C, C++4, and Scala respectively.

COMMENTS
Students had questions on the following while doing this HW:

a) The calculation of a” (mod p) is taking too much time. The issue
was that you need to do mod p after EVERY calculation so that the
numbers do not get that large.

b) I get answers that are a wee bit different than what I think we should
get. Two reasons.

e The test does NOT work on some numbers. 561 is the least one
that it does not work on. These are Carmichael Numbers which
are composits n such that, for ALL a € {1,...,n — 1}, a" =
1 (mod n). Hence these numbers will be declared PRIME even
though they are NOT.

e If nis a composite (not a Carmichael number) then there is SOME
a such that a"~! # 1. You may have gotten unlucky and picked
ay, as,as, as, as such that for all 1 < i < 5, a? ' = 1 (mod n).
(PROJECT IDEA: how common is this? if you find such a com-
posite, do most a fail?)

END OF COMMENTS

GOTO NEXT PAGE

3. (20 points, written question) You will use your programs from question
2 for the following:

(a) (10 points) Run HOWMANYSAFEPRIME on the inputs 10000,

20000, ..., 90000. Use this to determine what proportion of
numbers in {1,...,10000}, {1, ...,20000}, ..., {1, ...,90000} are safe
primes.

Report your results.

(b) (10 points) Based on this data make a conjecture about f(z +
10000) — f(x), where f is HOWMANYSAFEPRIME.

COMMENTS
The conjecture in math is that there is a constant ¢ such that
Number of safe primes < n is &= 4 O(1).

This conjecture would imply that:

x + 10000 x
J (@ +10000) = flz) = C(ln(:r; +10000) lnx) +00)

In(x + 10000) is approximately In(x) so this simplifies to

f(z +10000) — f(z) = 0(10000) +O(1)

Inz

I doubt your data would have lead you to this eqution since there just
isn’t that much data, and ¢ is unknown. However, your data should
lead you to:

f(z +10000) — f(z) is a decreasting function

lim f(z 4 10000) — f(z) =0

T—00

and you may have conjectured SOME function that goes to 0.

I may, on a later HW, ask you to estimate what c is and possibly what
the additive term is.

END COMMENTS

GOTO NEXT PAGE

4. (20 points, programming question) The goal of this problem is to (1)
get data on what fraction of numbers are generators, (2) write programs
that will be used for both Diffie-Helman and RSA.

(a) (0 points) Program TESTGEN. Given p and ¢ do the following

i. Test if p is a safe prime (if NOT then output 2 and stop, so 2
means BAD INPUT because NOT a safe prime.)

ii. Test if g € {2,...,p—2} (if NOT then output 3 and stop, so
3 means BAD INPUT because ¢ is not in the right range).

iii. (If you got this far then p is a safe prime and ¢ is a candidate
for a generator.) Find ¢ = p%l. Note that this will be a
prime. Compute g (mod p) and ¢g? (mod p). If BOTH are
not 1 then g is a generator. If EITHER is 1 then g is not a
generator. Output 1 if g is a generator and output 0 if g is

not.

(b) (20 points) Program HOWMANYGEN: Given p (test if p is a safe
prime and if its not output " not safe man!”) determine how many
numbers in {2,...,p — 1} are generators.

In your main method, you should take as input p and output the result
from HOWMANYGEN(p).

(a) p will be given as a command line argument. Expect your filename
to be the first command line argument and p to be the second.
There will be no input given through standard input.

(b) You should print HOWMANYGEN(p) to standard output, which
should be either an integer or " not safe man!”

(c¢) You should upload a single file ending in .java, .py, .ml, .rb,
.c, .cpp, or .scala, corresponding to Java, Python3, OCaml,
Ruby, C, C++4, and Scala respectively.

GOTO NEXT PAGE

5. (20 points, written question) You will use your programs from question
4 for the following:

(a) (20 points) Run HOWMANYGEN on:
1019, 2027, 3023, 4007, 5087, 6047, 7079, 8039, 8963, and 10007

Use this to determine what proportion of numbers in {2, ..., 1019 —
1} are generators of 1019, what proportion of numbers in {2, ..., 2027—
1} are generators of 2027, etc. for all 10 safe primes listed above.

Report your results.

(b) (0 points) Based on this data make a conjecture about g(p), where
g calculates the proportion of generators in {2,...,p — 1} of p.

COMMENTS

The theorem in math is that there is a constant ¢ such that
Number of gen mod p is 7 + O(1).

This would imply

__@

I doubt your data would have lead you to this eqution since there just
isn’t that much data, and ¢ is unknown. However, your data should
lead you to:

g(p) is an increasing function

and you may have conjectured SOME function that goes to infinity,
perhaps a linear function with factor less than 1.

I may, on a later HW, ask you to estimate what c is.

END COMMENTS

10

GOTO NEXT PAGE

11

6. (20 points, programming question) The goal of this problem is to code
up Diffie Helman.

(a) FINDSAFEPRIME. On input L output a safe prime that is be-
tween 2% and 2171 — 1 (so its L bits long) by doing the following:
pick a random number r between 2% and 25+ — 1 and test if its
a safe prime. If so GREAT. If not then try » + 1,7 + 2,... until
you get one. (IF it ends up being over 2571 — 1. thats fine.)

(b) FINDGEN. Given p a safe prime (if its not a safe prime output
an appropriate insult) find a generator for p by testing random
numbers in {2,...,p — 1} until you get one. (NOTE- in the real
world you would not do it this way, but on the HW we do it this
way so its easier for you to do and for us to grade.)

(¢) SETUPDH. On input L, output a safe prime p and a generator
for it g.

(d) DHAlicesends. On input (p, g) pick a random a € {2,...,p — 2}
and output g¢°.

(e) DHBobsends. On input (p,g) pick a random b € {2,...,p — 2}
and output g°.

(f) DHAlicegetskey. On input (p, g, a, x) compute z* (mod p). Note
that if z = ¢” then this will be g?.

(g) DHBobgetskey. On input (p, g,b, z) computes z° (mod p). Note
that if x = ¢g¢ then this will be ¢g.

GOTO NEXT PAGE FOR SUBMISSION DETAILS

12

In your main method, you should take as input L and output many
different values computed throughout this problem.

(a) L will be given as a command line argument. Expect your filename
to be the first command line argument and L to be the second.
There will be no input given through standard input.

(b) You should output many different variables to standard output on
separate lines as follows:
i. On the first line, print your safe prime, p, from SETUPDH.
ii. On the second line, print your generator, g, from SETUPDH.

iii. On the third line, print your random value for a from DHAI-
iceSends.

iv. On the fourth line, print your computed value for ¢* from
DHAliceSends.

v. On the fifth line, print your random value for b from DHBob-
Sends.
vi. On the sixth line, print your computed value for ¢* from
DHBobSends.
vii. On the seventh line, print your computed ¢ from DHAI-
iceGetsKey.
viii. On the eighth line, print your computed g** from DHBobGetsKey.
Note: this should match what is printed on the previous line.
As confirmation that your programs work properly, it is highly
recommended that you compute this value independently.

A sample output file will be provided.

(¢) You should upload a single file ending in . java, .py, .ml, .rb,
.c, .cpp, or .scala, corresponding to Java, Python3, OCaml,
Ruby, C, C++, and Scala respectively.

13

