1. (0 points but you MUST DO IT)
(a) What DAY and TIME are the TIMED FINAL?
(b) IF that DAY/TIME is not good for you then EMAIL ME.
(c) We are NOT meeting the Tuesday of Thanksgiving. When is the make-up lecture?

THROUGHOUT THIS HW $\frac{a}{b}$ MEANS $\left\lfloor\frac{a}{b}\right\rfloor$.
2. (40 points) Alice and Bob are going to do PRIVATE-LWE with parameters:
$\vec{k}=(11,100,39,4)$.
$p=1009$.
$\gamma=2$.
(a) (13 points) Alice wants to send the bit 1 . The random vector she picks is $(1,2,3,4)$. The e she picks at random is 2 . What does she send Bob? Show your work, though you may use a calculator.
(b) (13 points) Alice wants to send the bit 0 . The random vector she picks is $(5,10,41,3)$. The e she picks at random is -1 . What does she send Bob? Show your work though you may use a calculator.
(c) (14 points) Bob receives from Alice (12, 39, 44, 19; 779). What bit did Alice send? Show your work though you may use a calculator.
(d) (0 points) How many students did not now when the midterm was and commented that they always skip the first question, and then suggested that I make this information part of all of the second question?
(e) (0 points) What DAY and TIME are the TIMED FINAL?
(f) (0 points) IF that DAY/TIME is not good for you then EMAIL ME.

GOTO NEXT PAGE

3. (30 points) Alice and Bob are going to do PRIVATE-LWE with parameters:
$\vec{k}=(10,201,89,8)$.
$p=2003$.
$\gamma=4$.
Alice and Bob think that Eve might be intercepting their messages and tampering with them!
(a) (15 points) Give an algorithm so that, if Bob gets $\left(r_{1}, r_{2}, r_{3}, r_{4} ; D\right)$, he will output one of the following

- Alice probably sent a 0 .
- Alice probably sent a 1 .
- Eve definitely tampered with the message.
(b) (15 points) Use your technique in the part 1 on the following inputs. Show your work and state your conclusion. (You may use a calculator.)
i. Bob gets $(1,2,3,4 ; 5)$.
ii. Bob gets (11, 40, 99, 101; 245).

GOTO NEXT PAGE

4. (30 points) Alice and Bob are going to do PRIVATE-LWE with parameters:
$\vec{k}=(11,100,39,4) .($ RECALL- this is private)
$p=1009$. (RECALL- this is public)
$\gamma=2$. (RECALL- this is public)
Eve sees Alice send
(7, 13, 22, 100; 618).
She later finds out that this decoded to 0 .
Write down what she knows about $k_{1}, k_{2}, k_{3}, k_{4}$.
