BILL START
RECORDING

Pollard’s p — 1 Algorithm
for Factoring (1974)

An Example That Does Not Quite Work

Want to factor 11227.
If pis a prime factor of 11227:

An Example That Does Not Quite Work

Want to factor 11227.
If pis a prime factor of 11227:

1. p divides 11227.

An Example That Does Not Quite Work

Want to factor 11227.
If pis a prime factor of 11227:

1. p divides 11227.
2. p divides 2P~1 — 1 (this is always true by Fermat'’s little Thm).

An Example That Does Not Quite Work

Want to factor 11227.
If pis a prime factor of 11227:

1. p divides 11227.
2. p divides 2P~1 — 1 (this is always true by Fermat'’s little Thm).
3. So GCD(2P~1 — 1,11227) divides 11227.

An Example That Does Not Quite Work

Want to factor 11227.
If pis a prime factor of 11227:

. p divides 11227,

. p divides 2P~1 — 1 (this is always true by Fermat's little Thm).
. So GCD(2P~1 — 1,11227) divides 11227.

. So GCD(2P71 — 1 mod 11227,11227) divides 11227.

A W N =

An Example That Does Not Quite Work

Want to factor 11227.
If pis a prime factor of 11227:

1. p divides 11227.
2. p divides 2P~1 — 1 (this is always true by Fermat'’s little Thm).
3. So GCD(2P~1 — 1,11227) divides 11227.
4. So GCD(2P~1 — 1 mod 11227, 11227) divides 11227.
Lets find GCD(2P~! — 1 mod 11227,11227). Good idea?

An Example That Does Not Quite Work

Want to factor 11227.
If pis a prime factor of 11227:

1. p divides 11227.
2. p divides 2P~1 — 1 (this is always true by Fermat'’s little Thm).
3. So GCD(2P~1 — 1,11227) divides 11227.
4. So GCD(2P~1 — 1 mod 11227, 11227) divides 11227.
Lets find GCD(2P~! — 1 mod 11227,11227). Good idea?

We do not know p :-(If we did know p we would be done.

Making the Example Work

Want to factor 11227.
If pis a prime factor of 11227. We do not know p.

Making the Example Work

Want to factor 11227.
If pis a prime factor of 11227. We do not know p.

1. p divides 11227

Making the Example Work

Want to factor 11227.
If pis a prime factor of 11227. We do not know p.

1. p divides 11227
2. p divides 2P~ — 1 (this is always true by Fermat's little Thm)

Making the Example Work

Want to factor 11227.
If pis a prime factor of 11227. We do not know p.

1. p divides 11227
2. p divides 2P~ — 1 (this is always true by Fermat's little Thm)
3. p divides 2k(P=1) _ 1 mod 11227 for any k

Making the Example Work

Want to factor 11227.
If pis a prime factor of 11227. We do not know p.

1. p divides 11227

2. p divides 2P~ — 1 (this is always true by Fermat's little Thm)
3.
4

. Raise 2 to a power that we hope has p — 1 as a divisor.

p divides 2K(P=1) — 1 mod 11227 for any k

Making the Example Work

Want to factor 11227.
If pis a prime factor of 11227. We do not know p.

1. p divides 11227

2. p divides 2P~ — 1 (this is always true by Fermat's little Thm)

3. p divides 2k(P=1) _ 1 mod 11227 for any k

4. Raise 2 to a power that we hope has p — 1 as a divisor.
GCD(22°%3* ~1 mod 11227, 11227) = GCD(2**—1 mod 11227, 11227)

— GCD(1417,11227) = 109

Making the Example Work

Want to factor 11227.
If pis a prime factor of 11227. We do not know p.

1. p divides 11227

2. p divides 2P~ — 1 (this is always true by Fermat's little Thm)

3. p divides 2k(P=1) _ 1 mod 11227 for any k

4. Raise 2 to a power that we hope has p — 1 as a divisor.
GCD(22°%3* ~1 mod 11227, 11227) = GCD(2**—1 mod 11227, 11227)

— GCD(1417,11227) = 109

Great! We got a factor of 11227 without having to factor!

Making the Example Work

Want to factor 11227.
If pis a prime factor of 11227. We do not know p.

1. p divides 11227

2. p divides 2P~ — 1 (this is always true by Fermat's little Thm)

3. p divides 2k(P=1) _ 1 mod 11227 for any k

4. Raise 2 to a power that we hope has p — 1 as a divisor.
GCD(22°%3* ~1 mod 11227, 11227) = GCD(2**—1 mod 11227, 11227)

— GCD(1417,11227) = 109

Great! We got a factor of 11227 without having to factor!
Why Worked 109 was a factor and 108 = 22 x 33, small factors.

General ldea

Fermat’s Little Theorem If p is prime and a is coprime to p
then a»~1 =1 (mod p).

General ldea

Fermat’s Little Theorem If p is prime and a is coprime to p
then a»~1 =1 (mod p).

Idea aP~! —1=0 (mod p). Pick an a at random. If p is a factor
of N then:

General ldea

Fermat’s Little Theorem If p is prime and a is coprime to p
then a»~1 =1 (mod p).
Idea aP~! —1=0 (mod p). Pick an a at random. If p is a factor
of N then:

> p divides a1 — 1 (always).

General ldea

Fermat’s Little Theorem If p is prime and a is coprime to p
then a»~1 =1 (mod p).
Idea a?~! —1=0 (mod p). Pick an a at random. If p is a factor
of N then:

> p divides a1 — 1 (always).

» p divides N (our hypothesis).

General ldea

Fermat’s Little Theorem If p is prime and a is coprime to p
then a»~1 =1 (mod p).
Idea a?~! —1=0 (mod p). Pick an a at random. If p is a factor
of N then:

> p divides a?~1 — 1 (always).

» p divides N (our hypothesis).

» Hence GCD(a”~! — 1 mod N, N) will be a factor of N.

General ldea

Fermat’s Little Theorem If p is prime and a is coprime to p
then a»~1 =1 (mod p).
Idea a?~! —1=0 (mod p). Pick an a at random. If p is a factor
of N then:

> p divides a?~1 — 1 (always).

» p divides N (our hypothesis).

» Hence GCD(a”~! — 1 mod N, N) will be a factor of N.

Two problems:

General ldea

Fermat’s Little Theorem If p is prime and a is coprime to p
then a»~1 =1 (mod p).
Idea a?~! —1=0 (mod p). Pick an a at random. If p is a factor
of N then:

> p divides a1 — 1 (always).

» p divides N (our hypothesis).

» Hence GCD(a”~! — 1 mod N, N) will be a factor of N.
Two problems:

» The GCD might be 1 or N. Thats okay- we can try another a.

General ldea

Fermat’s Little Theorem If p is prime and a is coprime to p
then a»~1 =1 (mod p).
Idea a?~! —1=0 (mod p). Pick an a at random. If p is a factor
of N then:
> p divides a1 — 1 (always).
» p divides N (our hypothesis).
» Hence GCD(a”~! — 1 mod N, N) will be a factor of N.
Two problems:
» The GCD might be 1 or N. Thats okay- we can try another a.
> We don’t have p. If we did, we'd be done!

Do You Believe in Hope ?

a1 =1 (mod p). So for all k, a*(P~1) =1 (mod p).

Do You Believe in Hope ?

a1 =1 (mod p). So for all k, a*(P~1) =1 (mod p).
Idea Let M be a number with LOTS of factors.

Do You Believe in Hope ?

a1 =1 (mod p). So for all k, a*(P~1) =1 (mod p).
Idea Let M be a number with LOTS of factors.
Hope p — 1 is a factor of M.

Do You Believe in Hope ?

a1 =1 (mod p). So for all k, a*(P~1) =1 (mod p).
Idea Let M be a number with LOTS of factors.
Hope p — 1 is a factor of M.

GCD(aM — 1, N) is non-trivial factor of N if Hope is correct.

Do You Believe in Hope ?

a1 =1 (mod p). So for all k, a*(P~1) =1 (mod p).
Idea Let M be a number with LOTS of factors.
Hope p — 1 is a factor of M.

GCD(aM — 1, N) is non-trivial factor of N if Hope is correct.

How could we not get a non-trivial factor?

Do You Believe in Hope ?

a1 =1 (mod p). So for all k, a*(P~1) =1 (mod p).
Idea Let M be a number with LOTS of factors.
Hope p — 1 is a factor of M.

GCD(aM — 1, N) is non-trivial factor of N if Hope is correct.

How could we not get a non-trivial factor?

» GCD(aM —1,N) = 1. So p — 1 does not divide M. M needs
to have more factors in it.

Do You Believe in Hope ?

a1 =1 (mod p). So for all k, a*(P~1) =1 (mod p).
Idea Let M be a number with LOTS of factors.
Hope p — 1 is a factor of M.

GCD(aM — 1, N) is non-trivial factor of N if Hope is correct.

How could we not get a non-trivial factor?
» GCD(aM —1,N) = 1. So p — 1 does not divide M. M needs
to have more factors in it.
> GCD(a" —1,N) = N. So a" — 1 has p— 1 and S in it.
Need M to have less factors.

Do You Believe in Hope ?

a1 =1 (mod p). So for all k, a*(P~1) =1 (mod p).
Idea Let M be a number with LOTS of factors.
Hope p — 1 is a factor of M.

GCD(aM — 1, N) is non-trivial factor of N if Hope is correct.

How could we not get a non-trivial factor?

» GCD(aM —1,N) = 1. So p — 1 does not divide M. M needs
to have more factors in it.

» GCD(aM —1,N) = N. So a™ — 1 has p — 1 and prl in it.
Need M to have less factors.

Want M to have lots of small factors so avoids prob 1.

Do You Believe in Hope ?

a1 =1 (mod p). So for all k, a*(P~1) =1 (mod p).
Idea Let M be a number with LOTS of factors.
Hope p — 1 is a factor of M.

GCD(aM — 1, N) is non-trivial factor of N if Hope is correct.

How could we not get a non-trivial factor?

» GCD(aM —1,N) = 1. So p — 1 does not divide M. M needs
to have more factors in it.

» GCD(aM —1,N) = N. So a™ — 1 has p — 1 and prl in it.
Need M to have less factors.

Want M to have lots of small factors so avoids prob 1.
Want M to have not so many factors so avoids prob 2.

Do You Believe in Hope 7 (cont)

Hope Want pick M with many small factors, but might adjust.
Let B be a parameter.

Do You Believe in Hope 7 (cont)

Hope Want pick M with many small factors, but might adjust.
Let B be a parameter. Will let

M = H q[logq(B)-|)

g<B,q prime

Do You Believe in Hope 7 (cont)

Hope Want pick M with many small factors, but might adjust.
Let B be a parameter. Will let

M = H q[logq(Bﬂ _
q<B,q prime

> |If B is big then gets lots of factors.

Do You Believe in Hope 7 (cont)

Hope Want pick M with many small factors, but might adjust.
Let B be a parameter. Will let

M = H q[logq(Bﬂ _
g<B,q prime

> |If B is big then gets lots of factors.
» If B is small then do not get that many factors.

Do You Believe in Hope 7 (cont)

Hope Want pick M with many small factors, but might adjust.
Let B be a parameter. Will let

M = H q[logq(Bﬂ _
g<B,q prime

> |If B is big then gets lots of factors.
» If B is small then do not get that many factors.
» Goldilocks Problem—want B that is just right.

Do You Believe in Hope 7 (cont)

Hope Want pick M with many small factors, but might adjust.
Let B be a parameter. Will let

M = H q[logq(B)-|)

g<B,q prime

> |If B is big then gets lots of factors.

» If B is small then do not get that many factors.

> Goldilocks Problem—want B that is just right.

» Can't quite do that. Instead we try a B and then adjust it.

Example of B, M

Let B be a parameter.

Example of B, M

Let B be a parameter.

M = H q,rlogq(B)-|)

g<B,q prime

Example of B, M

Let B be a parameter.

M = H qﬂogq(Bﬂ _
q<B,q prime

If B=10

Example of B, M

Let B be a parameter.

M = H qﬂogq(Bﬂ _
q<B,q prime

If B=10
q =2, [logy(10)] = 3. So 23.

Example of B, M

Let B be a parameter.

M = H qﬂogq(Bﬂ_
q<B,q prime
If B=10
q =2, [logy(10)] = 3. So 23.
q =3, [log3(10)] = 4. So 3*.

Example of B, M

Let B be a parameter.

- I

g<B,q prime

If B=10

q =2, [log,(10)] = 3. So 23.
q = 3, [log5(10)] = 4. So 3%.
q =5, [logg(10)] = 2. So 52.

Example of B, M

Let B be a parameter.

M = H q[logq(B)-|]

g<B,q prime

If B=10

g =2, [log,(10)] = 3. So 23
q = 3, [log5(10)] = 4. So 3*
g =5, [logg(10)] = 2. So 52
q =7, [log;(10)] = 2. So 72

Example of B, M

Let B be a parameter.

M = H q[logq(B)-|)

g<B,q prime

If B=10

q =2, [log,(10)] = 3. So 23
q = 3, [log5(10)] = 4. So 3*
q =5, [logs(10)] = 2. So 52
q =7, [log;(10)] = 2. So 72

M = 2% x 3% x 52 x 72

Example of B, M

Let B be a parameter.

M = H q[logq(B)-|)

g<B,q prime

If B=10

q =2, [log,(10)] = 3. So 23
q = 3, [log5(10)] = 4. So 3*
q =5, [logs(10)] = 2. So 52
q =7, [log;(10)] = 2. So 72

M = 2% x 3% x 52 x 72

If p—1=2"3*5Y7% where 0 < w,x <4, 0<y,z <2 then

Example of B, M

Let B be a parameter.

M = H q[logq(B)-|)

g<B,q prime

If B=10

q =2, [log,(10)] = 3. So 23
q = 3, [log5(10)] = 4. So 3*
q =5, [logs(10)] = 2. So 52
q =7, [log;(10)] = 2. So 72

M = 2% x 3% x 52 x 72

If p—1=2"3*5Y7% where 0 < w,x <4, 0<y,z <2 then

GCD(a" — 1, N) will be a multiple of p.

Do You Believe in Hope ? The Algorithm

Parameter B and hence also

M — H q’—logq(B)-l)

q<B,q prime

Do You Believe in Hope ? The Algorithm

Parameter B and hence also

M = H qﬂogq(Bﬂ '
g<B,q prime

FOUND = FALSE

while NOT FOUND
a=RAND(1,N-1)
d=GCD(a"M-1 mod N, N)
if d=1 then increase B
if d=N then decrease B

if (d NE 1) and (d NE N) then FOUND=TRUE
output (d)

Do You Believe in Hope ? The Algorithm

Parameter B and hence also

M = H qﬂogq(Bﬂ '
g<B,q prime

FOUND = FALSE

while NOT FOUND
a=RAND(1,N-1)
d=GCD(a"M-1 mod N, N)
if d=1 then increase B
if d=N then decrease B

if (d NE 1) and (d NE N) then FOUND=TRUE
output (d)

FACT If p—1 has all factors < B then runtime is B log B(log N)?.

Do You Believe in Hope ? The Algorithm

Parameter B and hence also

M = H qﬂogq(Bﬂ '
g<B,q prime

FOUND = FALSE
while NOT FOUND

a=RAND(1,N-1)

d=GCD(a"M-1 mod N, N)

if d=1 then increase B

if d=N then decrease B

if (d NE 1) and (d NE N) then FOUND=TRUE
output (d)

FACT If p—1 has all factors < B then runtime is B log B(log N)?.
FACT B big then runtime Bad but prob works.

Do You Believe in Hope ? The Algorithm

Parameter B and hence also

M = H qﬂogq(Bﬂ '
g<B,q prime

FOUND = FALSE
while NOT FOUND

a=RAND(1,N-1)

d=GCD(a"M-1 mod N, N)

if d=1 then increase B

if d=N then decrease B

if (d NE 1) and (d NE N) then FOUND=TRUE
output (d)

FACT If p—1 has all factors < B then runtime is B log B(log N)?.
FACT B big then runtime Bad but prob works.
FACT Works well if p — 1 only has small factors.

In Practice

A rule-of-thumb in practice is to take B ~ N/6.

In Practice

A rule-of-thumb in practice is to take B ~ N/6.
1. Fairly big so the M will be big enough.

In Practice

A rule-of-thumb in practice is to take B ~ N/6.
1. Fairly big so the M will be big enough.
2. Run time N'/%(log N)3 pretty good, though still exp in log N.

In Practice

A rule-of-thumb in practice is to take B ~ N/6.
1. Fairly big so the M will be big enough.
2. Run time N'/%(log N)3 pretty good, though still exp in log N.

3. Warning This does not mean we have an N'/6(log)3
algorithm for factoring. It only means we have that if p — 1
has all factors < N/6.

Advice for Alice and Bob

Advice for Alice and Bob

1. Want p, g primes such that p — 1 and g — 1 have some large
factors.

Advice for Alice and Bob

1. Want p, g primes such that p — 1 and g — 1 have some large
factors.

2. Do we know a way to make sure that p — 1 and g — 1 have
some large factors?

Advice for Alice and Bob

1. Want p, g primes such that p — 1 and g — 1 have some large
factors.

2. Do we know a way to make sure that p — 1 and g — 1 have
some large factors?

3. Make p, g safe primes . Then p — 1 = 2r where r is prime,
and g — 1 = 2s where s is prime.

Advice for Alice and Bob

1. Want p, g primes such that p — 1 and g — 1 have some large
factors.

2. Do we know a way to make sure that p — 1 and g — 1 have
some large factors?

3. Make p, g safe primes . Then p — 1 = 2r where r is prime,
and g — 1 = 2s where s is prime.

The usual lesson, so | sound like a broken record, not that
your generation knows what a broken record sounds like or
even is Because of Pollard's p — 1 algorithm, Alice and Bob need
to use safe primes. A new way to up their game .

BILL STOP
RECORDING

