BILL START RECORDING

Pollard's $p-1$ Algorithm for Factoring (1974)

An Example That Does Not Quite Work

Want to factor 11227.
If p is a prime factor of 11227 :

An Example That Does Not Quite Work

Want to factor 11227.
If p is a prime factor of 11227 :

1. p divides 11227 .

An Example That Does Not Quite Work

Want to factor 11227.
If p is a prime factor of 11227 :

1. p divides 11227 .
2. p divides $2^{p-1}-1$ (this is always true by Fermat's little Thm).

An Example That Does Not Quite Work

Want to factor 11227.
If p is a prime factor of 11227 :

1. p divides 11227 .
2. p divides $2^{p-1}-1$ (this is always true by Fermat's little Thm).
3. So $\operatorname{GCD}\left(2^{p-1}-1,11227\right)$ divides 11227 .

An Example That Does Not Quite Work

Want to factor 11227.
If p is a prime factor of 11227 :

1. p divides 11227 .
2. p divides $2^{p-1}-1$ (this is always true by Fermat's little Thm).
3. So $\operatorname{GCD}\left(2^{p-1}-1,11227\right)$ divides 11227 .
4. So $\operatorname{GCD}\left(2^{p-1}-1 \bmod 11227,11227\right)$ divides 11227.

An Example That Does Not Quite Work

Want to factor 11227.
If p is a prime factor of 11227 :

1. p divides 11227 .
2. p divides $2^{p-1}-1$ (this is always true by Fermat's little Thm).
3. So $\operatorname{GCD}\left(2^{p-1}-1,11227\right)$ divides 11227 .
4. So $\operatorname{GCD}\left(2^{p-1}-1 \bmod 11227,11227\right)$ divides 11227.

Lets find $\operatorname{GCD}\left(2^{p-1}-1 \bmod 11227,11227\right)$. Good idea?

An Example That Does Not Quite Work

Want to factor 11227.
If p is a prime factor of 11227 :

1. p divides 11227 .
2. p divides $2^{p-1}-1$ (this is always true by Fermat's little Thm).
3. So $\operatorname{GCD}\left(2^{p-1}-1,11227\right)$ divides 11227 .
4. So $\operatorname{GCD}\left(2^{p-1}-1 \bmod 11227,11227\right)$ divides 11227.

Lets find $\operatorname{GCD}\left(2^{p-1}-1 \bmod 11227,11227\right)$. Good idea?
We do not know p :-(If we did know p we would be done.

Making the Example Work

Want to factor 11227.
If p is a prime factor of 11227 . We do not know p.

Making the Example Work

Want to factor 11227.
If p is a prime factor of 11227 . We do not know p.

1. p divides 11227

Making the Example Work

Want to factor 11227.
If p is a prime factor of 11227 . We do not know p.

1. p divides 11227
2. p divides $2^{p-1}-1$ (this is always true by Fermat's little Thm)

Making the Example Work

Want to factor 11227.
If p is a prime factor of 11227 . We do not know p.

1. p divides 11227
2. p divides $2^{p-1}-1$ (this is always true by Fermat's little Thm)
3. p divides $2^{k(p-1)}-1 \bmod 11227$ for any k

Making the Example Work

Want to factor 11227.
If p is a prime factor of 11227 . We do not know p.

1. p divides 11227
2. p divides $2^{p-1}-1$ (this is always true by Fermat's little Thm)
3. p divides $2^{k(p-1)}-1 \bmod 11227$ for any k
4. Raise 2 to a power that we hope has $p-1$ as a divisor.

Making the Example Work

Want to factor 11227.
If p is a prime factor of 11227 . We do not know p.

1. p divides 11227
2. p divides $2^{p-1}-1$ (this is always true by Fermat's little Thm)
3. p divides $2^{k(p-1)}-1 \bmod 11227$ for any k
4. Raise 2 to a power that we hope has $p-1$ as a divisor.
$\operatorname{GCD}\left(2^{2^{3} \times 3^{3}}-1 \bmod 11227,11227\right)=\operatorname{GCD}\left(2^{216}-1 \bmod 11227,11227\right)$
$=\operatorname{GCD}(1417,11227)=109$

Making the Example Work

Want to factor 11227.
If p is a prime factor of 11227 . We do not know p.

1. p divides 11227
2. p divides $2^{p-1}-1$ (this is always true by Fermat's little Thm)
3. p divides $2^{k(p-1)}-1 \bmod 11227$ for any k
4. Raise 2 to a power that we hope has $p-1$ as a divisor.
$\operatorname{GCD}\left(2^{2^{3} \times 3^{3}}-1 \bmod 11227,11227\right)=\operatorname{GCD}\left(2^{216}-1 \bmod 11227,11227\right)$

$$
=\operatorname{GCD}(1417,11227)=109
$$

Great! We got a factor of 11227 without having to factor!

Making the Example Work

Want to factor 11227.
If p is a prime factor of 11227 . We do not know p.

1. p divides 11227
2. p divides $2^{p-1}-1$ (this is always true by Fermat's little Thm)
3. p divides $2^{k(p-1)}-1 \bmod 11227$ for any k
4. Raise 2 to a power that we hope has $p-1$ as a divisor.
$\operatorname{GCD}\left(2^{2^{3} \times 3^{3}}-1 \bmod 11227,11227\right)=\operatorname{GCD}\left(2^{216}-1 \bmod 11227,11227\right)$

$$
=\operatorname{GCD}(1417,11227)=109
$$

Great! We got a factor of 11227 without having to factor!
Why Worked 109 was a factor and $108=2^{2} \times 3^{3}$, small factors.

General Idea

Fermat's Little Theorem If p is prime and a is coprime to p then $a^{p-1} \equiv 1(\bmod p)$.

General Idea

Fermat's Little Theorem If p is prime and a is coprime to p then $a^{p-1} \equiv 1(\bmod p)$.
Idea $a^{p-1}-1 \equiv 0(\bmod p)$. Pick an a at random. If p is a factor of N then:

General Idea

Fermat's Little Theorem If p is prime and a is coprime to p then $a^{p-1} \equiv 1(\bmod p)$.
Idea $a^{p-1}-1 \equiv 0(\bmod p)$. Pick an a at random. If p is a factor of N then:

- p divides $a^{p-1}-1$ (always).

General Idea

Fermat's Little Theorem If p is prime and a is coprime to p then $a^{p-1} \equiv 1(\bmod p)$.

Idea $a^{p-1}-1 \equiv 0(\bmod p)$. Pick an a at random. If p is a factor of N then:

- p divides $a^{p-1}-1$ (always).
- p divides N (our hypothesis).

General Idea

Fermat's Little Theorem If p is prime and a is coprime to p then $a^{p-1} \equiv 1(\bmod p)$.

Idea $a^{p-1}-1 \equiv 0(\bmod p)$. Pick an a at random. If p is a factor of N then:

- p divides $a^{p-1}-1$ (always).
- p divides N (our hypothesis).
- Hence $\operatorname{GCD}\left(a^{p-1}-1 \bmod N, N\right)$ will be a factor of N.

General Idea

Fermat's Little Theorem If p is prime and a is coprime to p then $a^{p-1} \equiv 1(\bmod p)$.

Idea $a^{p-1}-1 \equiv 0(\bmod p)$. Pick an a at random. If p is a factor of N then:

- p divides $a^{p-1}-1$ (always).
- p divides N (our hypothesis).
- Hence $\operatorname{GCD}\left(a^{p-1}-1 \bmod N, N\right)$ will be a factor of N.

Two problems:

General Idea

Fermat's Little Theorem If p is prime and a is coprime to p then $a^{p-1} \equiv 1(\bmod p)$.

Idea $a^{p-1}-1 \equiv 0(\bmod p)$. Pick an a at random. If p is a factor of N then:

- p divides $a^{p-1}-1$ (always).
- p divides N (our hypothesis).
- Hence $\operatorname{GCD}\left(a^{p-1}-1 \bmod N, N\right)$ will be a factor of N.

Two problems:

- The GCD might be 1 or N. Thats okay- we can try another a.

General Idea

Fermat's Little Theorem If p is prime and a is coprime to p then $a^{p-1} \equiv 1(\bmod p)$.

Idea $a^{p-1}-1 \equiv 0(\bmod p)$. Pick an a at random. If p is a factor of N then:

- p divides $a^{p-1}-1$ (always).
- p divides N (our hypothesis).
- Hence $\operatorname{GCD}\left(a^{p-1}-1 \bmod N, N\right)$ will be a factor of N.

Two problems:

- The GCD might be 1 or N. Thats okay- we can try another a.
- We don't have p. If we did, we'd be done!

Do You Believe in Hope?

$$
a^{p-1} \equiv 1(\bmod p) . \text { So for all } k, a^{k(p-1)} \equiv 1(\bmod p)
$$

Do You Believe in Hope?

$a^{p-1} \equiv 1(\bmod p)$. So for all $k, a^{k(p-1)} \equiv 1(\bmod p)$.
Idea Let M be a number with LOTS of factors.

Do You Believe in Hope?

$a^{p-1} \equiv 1(\bmod p)$. So for all $k, a^{k(p-1)} \equiv 1(\bmod p)$.
Idea Let M be a number with LOTS of factors.
Hope $p-1$ is a factor of M.

Do You Believe in Hope?

$a^{p-1} \equiv 1(\bmod p)$. So for all $k, a^{k(p-1)} \equiv 1(\bmod p)$.
Idea Let M be a number with LOTS of factors.
Hope $p-1$ is a factor of M.
$\operatorname{GCD}\left(a^{M}-1, N\right)$ is non-trivial factor of N if Hope is correct.

Do You Believe in Hope?

$a^{p-1} \equiv 1(\bmod p)$. So for all $k, a^{k(p-1)} \equiv 1(\bmod p)$.
Idea Let M be a number with LOTS of factors.
Hope $p-1$ is a factor of M.
$\operatorname{GCD}\left(a^{M}-1, N\right)$ is non-trivial factor of N if Hope is correct.
How could we not get a non-trivial factor?

Do You Believe in Hope?

$a^{p-1} \equiv 1(\bmod p)$. So for all $k, a^{k(p-1)} \equiv 1(\bmod p)$.
Idea Let M be a number with LOTS of factors.
Hope $p-1$ is a factor of M.
$\operatorname{GCD}\left(a^{M}-1, N\right)$ is non-trivial factor of N if Hope is correct.
How could we not get a non-trivial factor?
$-\operatorname{GCD}\left(a^{M}-1, N\right)=1$. So $p-1$ does not divide M. M needs to have more factors in it.

Do You Believe in Hope?

$a^{p-1} \equiv 1(\bmod p)$. So for all $k, a^{k(p-1)} \equiv 1(\bmod p)$.
Idea Let M be a number with LOTS of factors.
Hope $p-1$ is a factor of M.
$\operatorname{GCD}\left(a^{M}-1, N\right)$ is non-trivial factor of N if Hope is correct.
How could we not get a non-trivial factor?
$-\operatorname{GCD}\left(a^{M}-1, N\right)=1$. So $p-1$ does not divide M. M needs to have more factors in it.
$-\operatorname{GCD}\left(a^{M}-1, N\right)=N$. So $a^{M}-1$ has $p-1$ and $\frac{N}{p-1}$ in it. Need M to have less factors.

Do You Believe in Hope?

$a^{p-1} \equiv 1(\bmod p)$. So for all $k, a^{k(p-1)} \equiv 1(\bmod p)$.
Idea Let M be a number with LOTS of factors.
Hope $p-1$ is a factor of M.
$\operatorname{GCD}\left(a^{M}-1, N\right)$ is non-trivial factor of N if Hope is correct.
How could we not get a non-trivial factor?
$-\operatorname{GCD}\left(a^{M}-1, N\right)=1$. So $p-1$ does not divide M. M needs to have more factors in it.
$-\operatorname{GCD}\left(a^{M}-1, N\right)=N$. So $a^{M}-1$ has $p-1$ and $\frac{N}{p-1}$ in it. Need M to have less factors.
Want M to have lots of small factors so avoids prob 1.

Do You Believe in Hope?

$a^{p-1} \equiv 1(\bmod p)$. So for all $k, a^{k(p-1)} \equiv 1(\bmod p)$.
Idea Let M be a number with LOTS of factors.
Hope $p-1$ is a factor of M.
$\operatorname{GCD}\left(a^{M}-1, N\right)$ is non-trivial factor of N if Hope is correct.
How could we not get a non-trivial factor?
$-\operatorname{GCD}\left(a^{M}-1, N\right)=1$. So $p-1$ does not divide M. M needs to have more factors in it.
$-\operatorname{GCD}\left(a^{M}-1, N\right)=N$. So $a^{M}-1$ has $p-1$ and $\frac{N}{p-1}$ in it. Need M to have less factors.
Want M to have lots of small factors so avoids prob 1.
Want M to have not so many factors so avoids prob 2.

Do You Believe in Hope ? (cont)

Hope Want pick M with many small factors, but might adjust. Let B be a parameter.

Do You Believe in Hope? (cont)

Hope Want pick M with many small factors, but might adjust. Let B be a parameter. Will let

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil} .
$$

Do You Believe in Hope? (cont)

Hope Want pick M with many small factors, but might adjust. Let B be a parameter. Will let

$$
M=\prod_{q \leq B, q} \text { prime } q^{\left\lceil\log _{q}(B)\right\rceil} .
$$

- If B is big then gets lots of factors.

Do You Believe in Hope ? (cont)

Hope Want pick M with many small factors, but might adjust. Let B be a parameter. Will let

$$
M=\prod_{q \leq B, q} \text { prime } q^{\left\lceil\log _{q}(B)\right\rceil} .
$$

- If B is big then gets lots of factors.
- If B is small then do not get that many factors.

Do You Believe in Hope? (cont)

Hope Want pick M with many small factors, but might adjust. Let B be a parameter. Will let

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

- If B is big then gets lots of factors.
- If B is small then do not get that many factors.
- Goldilocks Problem-want B that is just right.

Do You Believe in Hope? (cont)

Hope Want pick M with many small factors, but might adjust. Let B be a parameter. Will let

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

- If B is big then gets lots of factors.
- If B is small then do not get that many factors.
- Goldilocks Problem-want B that is just right.
- Can't quite do that. Instead we try a B and then adjust it.

Example of B, M

Let B be a parameter.

Example of B, M

Let B be a parameter.

$$
M=\prod_{q \leq B, q} q_{\text {prime }} q^{\left\lceil\log _{q}(B)\right\rceil} .
$$

Example of B, M

Let B be a parameter.

$$
M=\prod_{q \leq B, q} q_{\text {prime }} q^{\left\lceil\log _{q}(B)\right\rceil} .
$$

If $B=10$

Example of B, M

Let B be a parameter.

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

If $B=10$
$q=2,\left\lceil\log _{2}(10)\right\rceil=3$. So 2^{3}.

Example of B, M

Let B be a parameter.

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

If $B=10$
$q=2,\left\lceil\log _{2}(10)\right\rceil=3$. So 2^{3}.
$q=3,\left\lceil\log _{3}(10)\right\rceil=4$. So 3^{4}.

Example of B, M

Let B be a parameter.

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

If $B=10$
$q=2,\left\lceil\log _{2}(10)\right\rceil=3$. So 2^{3}.
$q=3,\left\lceil\log _{3}(10)\right\rceil=4$. So 3^{4}.
$q=5,\left\lceil\log _{5}(10)\right\rceil=2$. So 5^{2}.

Example of B, M

Let B be a parameter.

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

If $B=10$
$q=2,\left\lceil\log _{2}(10)\right\rceil=3$. So 2^{3}.
$q=3,\left\lceil\log _{3}(10)\right\rceil=4$. So 3^{4}.
$q=5,\left\lceil\log _{5}(10)\right\rceil=2$. So 5^{2}.
$q=7,\left\lceil\log _{7}(10)\right\rceil=2$. So 7^{2}.

Example of B, M

Let B be a parameter.

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

If $B=10$
$q=2,\left\lceil\log _{2}(10)\right\rceil=3$. So 2^{3}.
$q=3,\left\lceil\log _{3}(10)\right\rceil=4$. So 3^{4}.
$q=5,\left\lceil\log _{5}(10)\right\rceil=2$. So 5^{2}.
$q=7,\left\lceil\log _{7}(10)\right\rceil=2$. So 7^{2}.

$$
M=2^{4} \times 3^{4} \times 5^{2} \times 7^{2}
$$

Example of B, M

Let B be a parameter.

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

If $B=10$
$q=2,\left\lceil\log _{2}(10)\right\rceil=3$. So 2^{3}.
$q=3,\left\lceil\log _{3}(10)\right\rceil=4$. So 3^{4}.
$q=5,\left\lceil\log _{5}(10)\right\rceil=2$. So 5^{2}.
$q=7,\left\lceil\log _{7}(10)\right\rceil=2$. So 7^{2}.

$$
M=2^{4} \times 3^{4} \times 5^{2} \times 7^{2}
$$

If $p-1=2^{w} 3^{x} 5^{y} 7^{z}$ where $0 \leq w, x \leq 4,0 \leq y, z \leq 2$ then

Example of B, M

Let B be a parameter.

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

If $B=10$
$q=2,\left\lceil\log _{2}(10)\right\rceil=3$. So 2^{3}.
$q=3,\left\lceil\log _{3}(10)\right\rceil=4$. So 3^{4}.
$q=5,\left\lceil\log _{5}(10)\right\rceil=2$. So 5^{2}.
$q=7,\left\lceil\log _{7}(10)\right\rceil=2$. So 7^{2}.

$$
M=2^{4} \times 3^{4} \times 5^{2} \times 7^{2}
$$

If $p-1=2^{w} 3^{x} 5^{y} 7^{z}$ where $0 \leq w, x \leq 4,0 \leq y, z \leq 2$ then
$\operatorname{GCD}\left(a^{M}-1, N\right)$ will be a multiple of p.

Do You Believe in Hope? The Algorithm

Parameter B and hence also

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

Do You Believe in Hope ? The Algorithm

Parameter B and hence also

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

FOUND = FALSE
while NOT FOUND
$a=\operatorname{RAND}(1, N-1)$
$\mathrm{d}=\mathrm{GCD}\left(\mathrm{a}^{\wedge} \mathrm{M}-1 \bmod N, N\right)$
if $d=1$ then increase B
if $d=N$ then decrease B
if (d NE 1) and (d NE N) then FOUND=TRUE
output(d)

Do You Believe in Hope ? The Algorithm

Parameter B and hence also

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

FOUND = FALSE
while NOT FOUND
$a=\operatorname{RAND}(1, N-1)$
$\mathrm{d}=\mathrm{GCD}\left(\mathrm{a}^{\wedge} \mathrm{M}-1 \bmod N, N\right)$
if $d=1$ then increase B
if $d=N$ then decrease B
if (d NE 1) and (d NE N) then FOUND=TRUE
output(d)
FACT If $p-1$ has all factors $\leq B$ then runtime is $B \log B(\log N)^{2}$.

Do You Believe in Hope? The Algorithm

Parameter B and hence also

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

FOUND = FALSE
while NOT FOUND
$a=\operatorname{RAND}(1, N-1)$
$\mathrm{d}=\mathrm{GCD}\left(\mathrm{a}^{\wedge} \mathrm{M}-1 \bmod N, N\right)$
if $d=1$ then increase B
if $d=N$ then decrease B
if (d NE 1) and (d NE N) then FOUND=TRUE
output(d)
FACT If $p-1$ has all factors $\leq B$ then runtime is $B \log B(\log N)^{2}$.
FACT B big then runtime Bad but prob works.

Do You Believe in Hope? The Algorithm

Parameter B and hence also

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

FOUND = FALSE
while NOT FOUND
$a=\operatorname{RAND}(1, N-1)$
$\mathrm{d}=\mathrm{GCD}\left(\mathrm{a}^{\wedge} \mathrm{M}-1 \bmod N, N\right)$
if $d=1$ then increase B
if $d=N$ then decrease B
if (d NE 1) and (d NE N) then FOUND=TRUE
output(d)
FACT If $p-1$ has all factors $\leq B$ then runtime is $B \log B(\log N)^{2}$.
FACT B big then runtime Bad but prob works.
FACT Works well if $p-1$ only has small factors.

In Practice

A rule-of-thumb in practice is to take $B \sim N^{1 / 6}$.

In Practice

A rule-of-thumb in practice is to take $B \sim N^{1 / 6}$.

1. Fairly big so the M will be big enough.

In Practice

A rule-of-thumb in practice is to take $B \sim N^{1 / 6}$.

1. Fairly big so the M will be big enough.
2. Run time $N^{1 / 6}(\log N)^{3}$ pretty good, though still \exp in $\log N$.

In Practice

A rule-of-thumb in practice is to take $B \sim N^{1 / 6}$.

1. Fairly big so the M will be big enough.
2. Run time $N^{1 / 6}(\log N)^{3}$ pretty good, though still exp in $\log N$.
3. Warning This does not mean we have an $N^{1 / 6}(\log N)^{3}$ algorithm for factoring. It only means we have that if $p-1$ has all factors $\leq N^{1 / 6}$.

Advice for Alice and Bob

Advice for Alice and Bob

1. Want p, q primes such that $p-1$ and $q-1$ have some large factors.

Advice for Alice and Bob

1. Want p, q primes such that $p-1$ and $q-1$ have some large factors.
2. Do we know a way to make sure that $p-1$ and $q-1$ have some large factors?

Advice for Alice and Bob

1. Want p, q primes such that $p-1$ and $q-1$ have some large factors.
2. Do we know a way to make sure that $p-1$ and $q-1$ have some large factors?
3. Make p, q safe primes. Then $p-1=2 r$ where r is prime, and $q-1=2 s$ where s is prime.

Advice for Alice and Bob

1. Want p, q primes such that $p-1$ and $q-1$ have some large factors.
2. Do we know a way to make sure that $p-1$ and $q-1$ have some large factors?
3. Make p, q safe primes. Then $p-1=2 r$ where r is prime, and $q-1=2 s$ where s is prime.
The usual lesson, so I sound like a broken record, not that your generation knows what a broken record sounds like or even is Because of Pollard's $p-1$ algorithm, Alice and Bob need to use safe primes. A new way to up their game .

BILL STOP RECORDING

