BILL START
RECORDING



Pollard’s p Algorithm for
Factoring (1975)



Thought Experiment

We want to factor N.



Thought Experiment

We want to factor N.

pis a factor of N (we don't know p). Note p < N/2,



Thought Experiment

We want to factor N.
pis a factor of N (we don't know p). Note p < N/2,

We somehow find x,y such that x =y (mod p). Useful?



Thought Experiment

We want to factor N.
pis a factor of N (we don't know p). Note p < N/2,
We somehow find x,y such that x =y (mod p). Useful?

ged(x — y, N) will likely yield a nontrivial factor of N since p
divides both.



Thought Experiment

We want to factor N.
pis a factor of N (we don't know p). Note p < N/2,
We somehow find x,y such that x =y (mod p). Useful?

ged(x — y, N) will likely yield a nontrivial factor of N since p
divides both.

We look at several approaches to finding such an x, y that do not
work before presenting the approach that does work.



Approach 1: Rand Seq mod p, Intuition

Generate random sequence x1, x2,... € {0,..., N —1}.



Approach 1: Rand Seq mod p, Intuition

Generate random sequence x1, x2,... € {0,..., N —1}.
Every time you get a new x;, test, forall 1 < <i—1,

xi = x; (mod p).



Approach 1: Rand Seq mod p, Intuition

Generate random sequence x1, x2,... € {0,..., N —1}.
Every time you get a new x;, test, forall 1 < <i—1,

xi = x; (mod p).

Hope to get a YES.



Approach 1: Rand Seq mod p, Intuition

Generate random sequence x1, x2,... € {0,..., N —1}.

Every time you get a new x;, test, forall 1 < <i—1,
xi = x; (mod p).

Hope to get a YES.

If get YES then do

ged(xi — x;j, N).



Approach 1: Rand Seq mod p, Program

x1 < rand(1, N — 1), i <2
while TRUE
xj <—rand(1, N — 1)
forj«<1toi—1
if xi = x; (mod p) then
d < ged(xi — xj, N)
if d #1 and d # N then break
I+ i+1
output(d)



Approach 1: Rand Seq mod p, Program

x1 < rand(1, N — 1), i <2
while TRUE
xj <—rand(1, N — 1)
forj«<1toi—1
if xi = x; (mod p) then
d < ged(xi — xj, N)
if d #1 and d # N then break
I—i+1
output(d)
PRO: Bday paradox: x;'s are balls, mod p are boxes. So likely to
find x; = x; (mod p) within p'/2 ~ N1/4 iterations.



Approach 1: Rand Seq mod p, Program

x1 < rand(1, N — 1), i <2
while TRUE
xj <—rand(1, N — 1)
forj«<1toi—1
if xi = x; (mod p) then
d < ged(xi — xj, N)
if d #1 and d # N then break
I—i+1
output(d)
PRO: Bday paradox: x;'s are balls, mod p are boxes. So likely to
find x; = x; (mod p) within p'/2 ~ N1/4 iterations.
CON: Need to already know p.



Approach 1: Rand Seq mod p, Program

x1 < rand(1, N — 1), i <2
while TRUE
xj <—rand(1, N — 1)
forj«<1toi—1
if xi = x; (mod p) then
d < ged(xi — xj, N)
if d #1 and d # N then break
I—i+1
output(d)
PRO: Bday paradox: x;'s are balls, mod p are boxes. So likely to
find x; = x; (mod p) within p'/2 ~ N1/4 iterations.
CON: Need to already know p. Darn!



Approach 1: Rand Seq mod p, Program

x1 < rand(1, N — 1), i <2
while TRUE
xj <—rand(1, N — 1)
forj«<1toi—1
if xi = x; (mod p) then
d < ged(xi — xj, N)
if d #1 and d # N then break
I—i+1
output(d)
PRO: Bday paradox: x;'s are balls, mod p are boxes. So likely to
find x; = x; (mod p) within p'/2 ~ N1/4 iterations.
CON: Need to already know p. Darn!
ADJUST: Always do GCD.



Approach 2: Rand Seq mod p, W/O p, Intuition

Generate random sequence xi, x2,... € {0,..., N — 1}.
Every time you get a new x;, do, forall 1 < j <i—1,

ged(xi — x;j, N).

So do not need to know p. And if x; = x; (mod p), you'll get a
factor.



Approach 2: Rand Seq mod p, W/O p, Program
x1 < rand(1,N —1) i+ 2
while TRUE
xj < rand(1, N — 1)
forj«<1ltoi—1
d = ged(x; — xj, N)
if d # 1 and d # N then break
I i+1
output(d)



Approach 2: Rand Seq mod p, W/O p, Program
x1 < rand(1,N —1) i+ 2
while TRUE
xj < rand(1, N — 1)
forj«<1ltoi—1
d = ged(x; — xj, N)
if d # 1 and d # N then break
i+—i+1
output(d)
PRO: Bday paradox: x;'s:balls, mod p:boxes. Prob find x; = x;
(mod p) with i < p'/2 ~ N'/4. Perhaps sooner—other prime
factors. Not knowing p does not matter.



Approach 2: Rand Seq mod p, W/O p, Program
x1 < rand(1,N —1) i+ 2
while TRUE
xj < rand(1, N — 1)
forj«<1ltoi—1
d = ged(x; — xj, N)
if d # 1 and d # N then break
i+—i+1
output(d)
PRO: Bday paradox: x;'s:balls, mod p:boxes. Prob find x; = x;
(mod p) with i < p'/2 ~ N'/4. Perhaps sooner—other prime
factors. Not knowing p does not matter.
CON: Iteration i makes i? operations. Total number of
operations:

N1/A
> %~ (NY*)3 ~ N34 BAD (.
i=1



Another Issue: Space

x1 < rand(1,N —1) i<« 2
while TRUE
x;j +—rand(1, N — 1)
for je1toi—1
d = ged(x; — xj, N)
if d # 1 and d # N then break
I+ i+1
output(d)



Another Issue: Space

x1 < rand(1,N —1) i<« 2
while TRUE
x;j +—rand(1, N — 1)
forj«<1ltoi—1
d= ng(X,' - Xj, N)
if d # 1 and d # N then break
i+—i+1
output(d)
CON: After lteration i need to store xi,...,X;. Since ~ N/4
iterations this is N/4 space. Too much space ~(



Approach 3: Rand Looking Sequence, Intuition

How to create a random looking sequence?



Approach 3: Rand Looking Sequence, Intuition

How to create a random looking sequence?
» Pick random xj,c € {1,...,N —1}.



Approach 3: Rand Looking Sequence, Intuition

How to create a random looking sequence?
» Pick random xj,c € {1,...,N —1}.
» If know x;_1, create

Xj = Xj_1 *Xj—1+C (mod N)



Approach 3: Rand Looking Sequence, Intuition

How to create a random looking sequence?
» Pick random xj,c € {1,...,N —1}.
» If know x;_1, create

Xj = Xj_1 *Xj—1+C (mod N)

» The sequence xi, x2, x3 will hopefully be random enough
that the bday paradox applies. We use the informal term
random looking for this.



Approach 3: Rand Looking Sequence, Program

x; < rand(1, N — 1), ¢ < rand(1, N — 1), j < 2
while TRUE
Xj = Xj—1 * xj—1 + ¢ (mod N)
for j«—2toi—1
Xj 4= X1 ¥ X1+ C
d + ged(x; — xj, N)
if d #1 and d # N then break
I i+1
output(d)



Approach 3: Rand Looking Sequence, Program

x; < rand(1, N — 1), ¢ < rand(1, N — 1), j < 2
while TRUE
Xj = Xj—1 * xj—1 + ¢ (mod N)
for j«—2toi—1
Xj 4= X1 ¥ X1+ C
d + ged(x; — xj, N)
if d #1 and d # N then break
I i+1
output(d)

PRO Empirically seq x1, x> is random enough, so N1/* iterations.



Approach 3: Rand Looking Sequence, Program

x; < rand(1, N — 1), ¢ < rand(1, N — 1), j < 2
while TRUE
Xj = Xj—1 * xj—1 + ¢ (mod N)
for j«—2toi—1
Xj 4= X1 ¥ X1+ C
d + ged(x; — xj, N)
if d #1 and d # N then break
i—i+1
output(d)
PRO Empirically seq x1, x> is random enough, so N1/* iterations.
PRO Space not a problem.



Approach 3: Rand Looking Sequence, Program

x; < rand(1, N — 1), ¢ < rand(1, N — 1), j < 2
while TRUE
Xj = Xj—1 * xj—1 + ¢ (mod N)
for j«—2toi—1
Xj 4= X1 ¥ X1+ C
d + ged(x; — xj, N)
if d #1 and d # N then break
i—i+1
output(d)
PRO Empirically seq x1, x> is random enough, so N1/* iterations.
PRO Space not a problem.
CON Time still a problem :-(



What Do We Really Want?

We want to find i, j < N*/* such that x; = x; (mod p).



What Do We Really Want?

We want to find i, j < N*/* such that x; = x; (mod p).
Key x; computed via recurrence so X; = Xj == Xjta = Xjta-



What Do We Really Want?

We want to find i, j < N*/* such that x; = x; (mod p).
Key x; computed via recurrence so X; = Xj == Xjta = Xjta-

Lemma If exists i < j < M with x; = x; then exists k < M such
that xx = xok.



Recap

Rand Looking Sequence x1, ¢ chosen at random in {1,..., N},
then x; = xj_1 * xi_1 + ¢ (mod N)



Recap

Rand Looking Sequence x1, ¢ chosen at random in {1,..., N},
then x; = xj_1 * xi_1 + ¢ (mod N)

We want to find 7, such x; = x; (mod p).



Recap

Rand Looking Sequence x1, ¢ chosen at random in {1,..., N},
then x; = xj_1 * xi_1 + ¢ (mod N)

We want to find 7, such x; = x; (mod p).

Don't know p. Really want ged(x; — xj, N) # 1.



Recap

Rand Looking Sequence x1, ¢ chosen at random in {1,..., N},
then x; = xj_1 * xi_1 + ¢ (mod N)

We want to find 7, such x; = x; (mod p).

Don't know p. Really want ged(x; — xj, N) # 1.

Trying all pairs is too much time.
Important If there is a pair then there is a pair of form x;, xo;.



Recap

Rand Looking Sequence x1, ¢ chosen at random in {1,..., N},
then x; = xj_1 * xi_1 + ¢ (mod N)

We want to find 7, such x; = x; (mod p).

Don't know p. Really want ged(x; — xj, N) # 1.

Trying all pairs is too much time.
Important If there is a pair then there is a pair of form x;, xo;.

Idea Only try pairs of form (x;, x2;).



Almost Final Algorithm

Define f.(x) - x*x+ ¢ (mod N)

x <—rand(1,N — 1), ¢ < rand(1, N — 1), y < fc(x)
while TRUE

x 4+ fe(x)

y « fe(fe(y))

d + ged(x — y, N)

if d #1 and d # N then break
output(d)



Almost Final Algorithm

Define f.(x) - x*x+ ¢ (mod N)

x <—rand(1,N — 1), ¢ < rand(1, N — 1), y < fc(x)
while TRUE

x 4+ fe(x)

y « fe(fe(y))

d + ged(x — y, N)

if d #1 and d # N then break
output(d)

This does not quite work. If d = N then the algorithm may run a
long time. The values of x, ¢ are not good! Hence if d = n then
we need to start over again with a new value of x, c.



Almost Final Algorithm

Define f.(x) - x*x+ ¢ (mod N)

x <—rand(1,N — 1), ¢ < rand(1, N — 1), y < fc(x)
while TRUE

x 4+ fe(x)

y « fe(fe(y))

d + ged(x — y, N)

if d #1 and d # N then break
output(d)

This does not quite work. If d = N then the algorithm may run a
long time. The values of x, ¢ are not good! Hence if d = n then
we need to start over again with a new value of x, c.

Final algorithm on next slide.



Final Algorithm

Define f.(x) + x* x + ¢ (mod N)

START: x <—rand(1, N — 1), ¢ - rand(1, N — 1), y + f.(x)
while TRUE

x + fe(x)

y « fe(fe(y))

d + ged(x — y, N)

if d # 1 and d # N then break

if d = N then GOTO START (pick new x, c)
output(d)



Final Algorithm

Define f.(x) + x* x + ¢ (mod N)

START: x <—rand(1, N — 1), ¢ - rand(1, N — 1), y + f.(x)
while TRUE
x + fe(x)
y « fe(fe(y))
d + ged(x — y, N)
if d # 1 and d # N then break
if d = N then GOTO START (pick new x, c)
output(d)
PRO By Bday Paradox will likely finish in N/* steps.



Final Algorithm

Define f.(x) + x* x + ¢ (mod N)

START: x <—rand(1, N — 1), ¢ - rand(1, N — 1), y + f.(x)
while TRUE
x + fe(x)
y « fe(fe(y))
d + ged(x — y, N)
if d # 1 and d # N then break
if d = N then GOTO START (pick new x, c)
output(d)
PRO By Bday Paradox will likely finish in N/* steps.
CON No real cons, but is N1/# fast enough?



How Good In Practice?



How Good In Practice?

» The Algorithm is GOOD. Variations are GREAT.



How Good In Practice?

» The Algorithm is GOOD. Variations are GREAT.
> Was used to provide first factorization of 22° + 1.



How Good In Practice?

» The Algorithm is GOOD. Variations are GREAT.
> Was used to provide first factorization of 22° + 1.

» In 1975 was fastest algorithm in practice.



How Good In Practice?

» The Algorithm is GOOD. Variations are GREAT.
> Was used to provide first factorization of 22° + 1.

» In 1975 was fastest algorithm in practice. Not anymore.



How Good In Practice?

» The Algorithm is GOOD. Variations are GREAT.

> Was used to provide first factorization of 22° + 1.

» In 1975 was fastest algorithm in practice. Not anymore.
> Called Pollard’s p Algorithm since he set p =j — i.



How Good In Practice?

The Algorithm is GOOD. Variations are GREAT.

Was used to provide first factorization of 22° + 1.

In 1975 was fastest algorithm in practice. Not anymore.
Called Pollard’s p Algorithm since he set p = — .

vvyYyyvyy

Why we think N/4: Sequence seems random enough for
Bday paradox to work.



How Good In Practice?

vvyYyyvyy

v

The Algorithm is GOOD. Variations are GREAT.

Was used to provide first factorization of 22° + 1.

In 1975 was fastest algorithm in practice. Not anymore.
Called Pollard’s p Algorithm since he set p = — .

Why we think N/4: Sequence seems random enough for
Bday paradox to work.

Why still unproven:



How Good In Practice?

The Algorithm is GOOD. Variations are GREAT.
Was used to provide first factorization of 22° + 1.
In 1975 was fastest algorithm in practice. Not anymore.

Called Pollard’s p Algorithm since he set p = — .

vvyYyyvyy

Why we think N/4: Sequence seems random enough for
Bday paradox to work.

v

Why still unproven:

» Proving that a deterministic sequence is random enough is
hard to do or even define.



How Good In Practice?

The Algorithm is GOOD. Variations are GREAT.
Was used to provide first factorization of 22° + 1.
In 1975 was fastest algorithm in practice. Not anymore.

Called Pollard’s p Algorithm since he set p = — .

vvyYyyvyy

Why we think N/4: Sequence seems random enough for
Bday paradox to work.

v

Why still unproven:
» Proving that a deterministic sequence is random enough is
hard to do or even define.
» Irene, Radhika, and Emily have not worked on it yet.



The Old Saying in Reverse

Typically one hears the following about academic research:



The Old Saying in Reverse

Typically one hears the following about academic research:
It works in theory, can we make it work in practice?



The Old Saying in Reverse

Typically one hears the following about academic research:
It works in theory, can we make it work in practice?

Pollard’s p-algorithm is an example of the converse:



The Old Saying in Reverse

Typically one hears the following about academic research:
It works in theory, can we make it work in practice?

Pollard’s p-algorithm is an example of the converse:
It works in practice, can we make it work in theory?



The Old Saying in Reverse

Typically one hears the following about academic research:
It works in theory, can we make it work in practice?

Pollard’s p-algorithm is an example of the converse:
It works in practice, can we make it work in theory?

Why is it important to learn why it works in theory?



The Old Saying in Reverse

Typically one hears the following about academic research:
It works in theory, can we make it work in practice?

Pollard’s p-algorithm is an example of the converse:
It works in practice, can we make it work in theory?

Why is it important to learn why it works in theory?

1. Make sure it really works. This is low-priority. Hey! It works!



The Old Saying in Reverse

Typically one hears the following about academic research:
It works in theory, can we make it work in practice?

Pollard’s p-algorithm is an example of the converse:
It works in practice, can we make it work in theory?

Why is it important to learn why it works in theory?
1. Make sure it really works. This is low-priority. Hey! It works!

2. If we know how it works in theory then perhaps can improve
it. This is high-priority. Commonly theory and practice work
together to improve both.



BILL STOP
RECORDING



