
BILL START
RECORDING

Pollard’s ρ Algorithm for
Factoring (1975)

Thought Experiment

We want to factor N.

p is a factor of N (we don’t know p). Note p ≤ N1/2.

We somehow find x , y such that x ≡ y (mod p). Useful?

gcd(x − y ,N) will likely yield a nontrivial factor of N since p
divides both.

We look at several approaches to finding such an x , y that do not
work before presenting the approach that does work.

Thought Experiment

We want to factor N.

p is a factor of N (we don’t know p). Note p ≤ N1/2.

We somehow find x , y such that x ≡ y (mod p). Useful?

gcd(x − y ,N) will likely yield a nontrivial factor of N since p
divides both.

We look at several approaches to finding such an x , y that do not
work before presenting the approach that does work.

Thought Experiment

We want to factor N.

p is a factor of N (we don’t know p). Note p ≤ N1/2.

We somehow find x , y such that x ≡ y (mod p). Useful?

gcd(x − y ,N) will likely yield a nontrivial factor of N since p
divides both.

We look at several approaches to finding such an x , y that do not
work before presenting the approach that does work.

Thought Experiment

We want to factor N.

p is a factor of N (we don’t know p). Note p ≤ N1/2.

We somehow find x , y such that x ≡ y (mod p). Useful?

gcd(x − y ,N) will likely yield a nontrivial factor of N since p
divides both.

We look at several approaches to finding such an x , y that do not
work before presenting the approach that does work.

Thought Experiment

We want to factor N.

p is a factor of N (we don’t know p). Note p ≤ N1/2.

We somehow find x , y such that x ≡ y (mod p). Useful?

gcd(x − y ,N) will likely yield a nontrivial factor of N since p
divides both.

We look at several approaches to finding such an x , y that do not
work before presenting the approach that does work.

Approach 1: Rand Seq mod p, Intuition

Generate random sequence x1, x2, . . . ∈ {0, . . . ,N − 1}.

Every time you get a new xi , test, for all 1 ≤ j ≤ i − 1,

xi ≡ xj (mod p).

Hope to get a YES.

If get YES then do

gcd(xi − xj ,N).

Approach 1: Rand Seq mod p, Intuition

Generate random sequence x1, x2, . . . ∈ {0, . . . ,N − 1}.

Every time you get a new xi , test, for all 1 ≤ j ≤ i − 1,

xi ≡ xj (mod p).

Hope to get a YES.

If get YES then do

gcd(xi − xj ,N).

Approach 1: Rand Seq mod p, Intuition

Generate random sequence x1, x2, . . . ∈ {0, . . . ,N − 1}.

Every time you get a new xi , test, for all 1 ≤ j ≤ i − 1,

xi ≡ xj (mod p).

Hope to get a YES.

If get YES then do

gcd(xi − xj ,N).

Approach 1: Rand Seq mod p, Intuition

Generate random sequence x1, x2, . . . ∈ {0, . . . ,N − 1}.

Every time you get a new xi , test, for all 1 ≤ j ≤ i − 1,

xi ≡ xj (mod p).

Hope to get a YES.

If get YES then do

gcd(xi − xj ,N).

Approach 1: Rand Seq mod p, Program

x1 ← rand(1,N − 1), i ← 2
while TRUE

xi ← rand(1,N − 1)
for j ← 1 to i − 1

if xi ≡ xj (mod p) then
d ← gcd(xi − xj ,N)
if d 6= 1 and d 6= N then break

i ← i + 1
output(d)

PRO: Bday paradox: xi ’s are balls, mod p are boxes. So likely to
find xi ≡ xj (mod p) within p1/2 ∼ N1/4 iterations.

CON: Need to already know p. Darn!

ADJUST: Always do GCD.

Approach 1: Rand Seq mod p, Program

x1 ← rand(1,N − 1), i ← 2
while TRUE

xi ← rand(1,N − 1)
for j ← 1 to i − 1

if xi ≡ xj (mod p) then
d ← gcd(xi − xj ,N)
if d 6= 1 and d 6= N then break

i ← i + 1
output(d)

PRO: Bday paradox: xi ’s are balls, mod p are boxes. So likely to
find xi ≡ xj (mod p) within p1/2 ∼ N1/4 iterations.

CON: Need to already know p. Darn!

ADJUST: Always do GCD.

Approach 1: Rand Seq mod p, Program

x1 ← rand(1,N − 1), i ← 2
while TRUE

xi ← rand(1,N − 1)
for j ← 1 to i − 1

if xi ≡ xj (mod p) then
d ← gcd(xi − xj ,N)
if d 6= 1 and d 6= N then break

i ← i + 1
output(d)

PRO: Bday paradox: xi ’s are balls, mod p are boxes. So likely to
find xi ≡ xj (mod p) within p1/2 ∼ N1/4 iterations.

CON: Need to already know p.

Darn!

ADJUST: Always do GCD.

Approach 1: Rand Seq mod p, Program

x1 ← rand(1,N − 1), i ← 2
while TRUE

xi ← rand(1,N − 1)
for j ← 1 to i − 1

if xi ≡ xj (mod p) then
d ← gcd(xi − xj ,N)
if d 6= 1 and d 6= N then break

i ← i + 1
output(d)

PRO: Bday paradox: xi ’s are balls, mod p are boxes. So likely to
find xi ≡ xj (mod p) within p1/2 ∼ N1/4 iterations.

CON: Need to already know p. Darn!

ADJUST: Always do GCD.

Approach 1: Rand Seq mod p, Program

x1 ← rand(1,N − 1), i ← 2
while TRUE

xi ← rand(1,N − 1)
for j ← 1 to i − 1

if xi ≡ xj (mod p) then
d ← gcd(xi − xj ,N)
if d 6= 1 and d 6= N then break

i ← i + 1
output(d)

PRO: Bday paradox: xi ’s are balls, mod p are boxes. So likely to
find xi ≡ xj (mod p) within p1/2 ∼ N1/4 iterations.

CON: Need to already know p. Darn!

ADJUST: Always do GCD.

Approach 2: Rand Seq mod p, W/O p, Intuition

Generate random sequence x1, x2, . . . ∈ {0, . . . ,N − 1}.

Every time you get a new xi , do, for all 1 ≤ j ≤ i − 1,

gcd(xi − xj ,N).

So do not need to know p. And if xi ≡ xj (mod p), you’ll get a
factor.

Approach 2: Rand Seq mod p, W/O p, Program
x1 ← rand(1,N − 1) i ← 2
while TRUE

xi ← rand(1,N − 1)
for j ← 1 to i − 1

d = gcd(xi − xj ,N)
if d 6= 1 and d 6= N then break

i ← i + 1
output(d)

PRO: Bday paradox: xi ’s:balls, mod p:boxes. Prob find xi ≡ xj
(mod p) with i ≤ p1/2 ∼ N1/4. Perhaps sooner–other prime
factors. Not knowing p does not matter.

CON: Iteration i makes i2 operations. Total number of
operations:

N1/4∑
i=1

i2 ∼ (N1/4)3 ∼ N3/4 BAD :-(.

Approach 2: Rand Seq mod p, W/O p, Program
x1 ← rand(1,N − 1) i ← 2
while TRUE

xi ← rand(1,N − 1)
for j ← 1 to i − 1

d = gcd(xi − xj ,N)
if d 6= 1 and d 6= N then break

i ← i + 1
output(d)

PRO: Bday paradox: xi ’s:balls, mod p:boxes. Prob find xi ≡ xj
(mod p) with i ≤ p1/2 ∼ N1/4. Perhaps sooner–other prime
factors. Not knowing p does not matter.

CON: Iteration i makes i2 operations. Total number of
operations:

N1/4∑
i=1

i2 ∼ (N1/4)3 ∼ N3/4 BAD :-(.

Approach 2: Rand Seq mod p, W/O p, Program
x1 ← rand(1,N − 1) i ← 2
while TRUE

xi ← rand(1,N − 1)
for j ← 1 to i − 1

d = gcd(xi − xj ,N)
if d 6= 1 and d 6= N then break

i ← i + 1
output(d)

PRO: Bday paradox: xi ’s:balls, mod p:boxes. Prob find xi ≡ xj
(mod p) with i ≤ p1/2 ∼ N1/4. Perhaps sooner–other prime
factors. Not knowing p does not matter.

CON: Iteration i makes i2 operations. Total number of
operations:

N1/4∑
i=1

i2 ∼ (N1/4)3 ∼ N3/4 BAD :-(.

Another Issue: Space

x1 ← rand(1,N − 1) i ← 2
while TRUE

xi ← rand(1,N − 1)
for j ← 1 to i − 1

d = gcd(xi − xj ,N)
if d 6= 1 and d 6= N then break
i ← i + 1

output(d)

CON: After Iteration i need to store x1, . . . , xi . Since ∼ N1/4

iterations this is N1/4 space. Too much space :-(

Another Issue: Space

x1 ← rand(1,N − 1) i ← 2
while TRUE

xi ← rand(1,N − 1)
for j ← 1 to i − 1

d = gcd(xi − xj ,N)
if d 6= 1 and d 6= N then break
i ← i + 1

output(d)

CON: After Iteration i need to store x1, . . . , xi . Since ∼ N1/4

iterations this is N1/4 space. Too much space :-(

Approach 3: Rand Looking Sequence, Intuition

How to create a random looking sequence?

I Pick random x1, c ∈ {1, . . . ,N − 1}.
I If know xi−1, create

xi = xi−1 ∗ xi−1 + c (mod N).

I The sequence x1, x2, x3 will hopefully be random enough
that the bday paradox applies. We use the informal term
random looking for this.

Approach 3: Rand Looking Sequence, Intuition

How to create a random looking sequence?

I Pick random x1, c ∈ {1, . . . ,N − 1}.

I If know xi−1, create

xi = xi−1 ∗ xi−1 + c (mod N).

I The sequence x1, x2, x3 will hopefully be random enough
that the bday paradox applies. We use the informal term
random looking for this.

Approach 3: Rand Looking Sequence, Intuition

How to create a random looking sequence?

I Pick random x1, c ∈ {1, . . . ,N − 1}.
I If know xi−1, create

xi = xi−1 ∗ xi−1 + c (mod N).

I The sequence x1, x2, x3 will hopefully be random enough
that the bday paradox applies. We use the informal term
random looking for this.

Approach 3: Rand Looking Sequence, Intuition

How to create a random looking sequence?

I Pick random x1, c ∈ {1, . . . ,N − 1}.
I If know xi−1, create

xi = xi−1 ∗ xi−1 + c (mod N).

I The sequence x1, x2, x3 will hopefully be random enough
that the bday paradox applies. We use the informal term
random looking for this.

Approach 3: Rand Looking Sequence, Program

x1 ← rand(1,N − 1), c ← rand(1,N − 1), i ← 2
while TRUE

xi ← xi−1 ∗ xi−1 + c (mod N)
for j ← 2 to i − 1
xj ← xj−1 ∗ xj−1 + c
d ← gcd(xi − xj ,N)
if d 6= 1 and d 6= N then break

i ← i + 1
output(d)

PRO Empirically seq x1, x2 is random enough, so N1/4 iterations.
PRO Space not a problem.
CON Time still a problem :-(

Approach 3: Rand Looking Sequence, Program

x1 ← rand(1,N − 1), c ← rand(1,N − 1), i ← 2
while TRUE

xi ← xi−1 ∗ xi−1 + c (mod N)
for j ← 2 to i − 1
xj ← xj−1 ∗ xj−1 + c
d ← gcd(xi − xj ,N)
if d 6= 1 and d 6= N then break

i ← i + 1
output(d)

PRO Empirically seq x1, x2 is random enough, so N1/4 iterations.

PRO Space not a problem.
CON Time still a problem :-(

Approach 3: Rand Looking Sequence, Program

x1 ← rand(1,N − 1), c ← rand(1,N − 1), i ← 2
while TRUE

xi ← xi−1 ∗ xi−1 + c (mod N)
for j ← 2 to i − 1
xj ← xj−1 ∗ xj−1 + c
d ← gcd(xi − xj ,N)
if d 6= 1 and d 6= N then break

i ← i + 1
output(d)

PRO Empirically seq x1, x2 is random enough, so N1/4 iterations.
PRO Space not a problem.

CON Time still a problem :-(

Approach 3: Rand Looking Sequence, Program

x1 ← rand(1,N − 1), c ← rand(1,N − 1), i ← 2
while TRUE

xi ← xi−1 ∗ xi−1 + c (mod N)
for j ← 2 to i − 1
xj ← xj−1 ∗ xj−1 + c
d ← gcd(xi − xj ,N)
if d 6= 1 and d 6= N then break

i ← i + 1
output(d)

PRO Empirically seq x1, x2 is random enough, so N1/4 iterations.
PRO Space not a problem.
CON Time still a problem :-(

What Do We Really Want?

We want to find i , j ≤ N1/4 such that xi ≡ xj (mod p).

Key xi computed via recurrence so xi = xj =⇒ xi+a = xj+a.

Lemma If exists i < j ≤ M with xi ≡ xj then exists k ≤ M such
that xk ≡ x2k .

What Do We Really Want?

We want to find i , j ≤ N1/4 such that xi ≡ xj (mod p).
Key xi computed via recurrence so xi = xj =⇒ xi+a = xj+a.

Lemma If exists i < j ≤ M with xi ≡ xj then exists k ≤ M such
that xk ≡ x2k .

What Do We Really Want?

We want to find i , j ≤ N1/4 such that xi ≡ xj (mod p).
Key xi computed via recurrence so xi = xj =⇒ xi+a = xj+a.

Lemma If exists i < j ≤ M with xi ≡ xj then exists k ≤ M such
that xk ≡ x2k .

Recap

Rand Looking Sequence x1, c chosen at random in {1, . . . ,N},
then xi = xi−1 ∗ xi−1 + c (mod N).

We want to find i , j such xi ≡ xj (mod p).

Don’t know p. Really want gcd(xi − xj ,N) 6= 1.

Trying all pairs is too much time.
Important If there is a pair then there is a pair of form xi , x2i .

Idea Only try pairs of form (xi , x2i).

Recap

Rand Looking Sequence x1, c chosen at random in {1, . . . ,N},
then xi = xi−1 ∗ xi−1 + c (mod N).

We want to find i , j such xi ≡ xj (mod p).

Don’t know p. Really want gcd(xi − xj ,N) 6= 1.

Trying all pairs is too much time.
Important If there is a pair then there is a pair of form xi , x2i .

Idea Only try pairs of form (xi , x2i).

Recap

Rand Looking Sequence x1, c chosen at random in {1, . . . ,N},
then xi = xi−1 ∗ xi−1 + c (mod N).

We want to find i , j such xi ≡ xj (mod p).

Don’t know p. Really want gcd(xi − xj ,N) 6= 1.

Trying all pairs is too much time.
Important If there is a pair then there is a pair of form xi , x2i .

Idea Only try pairs of form (xi , x2i).

Recap

Rand Looking Sequence x1, c chosen at random in {1, . . . ,N},
then xi = xi−1 ∗ xi−1 + c (mod N).

We want to find i , j such xi ≡ xj (mod p).

Don’t know p. Really want gcd(xi − xj ,N) 6= 1.

Trying all pairs is too much time.
Important If there is a pair then there is a pair of form xi , x2i .

Idea Only try pairs of form (xi , x2i).

Recap

Rand Looking Sequence x1, c chosen at random in {1, . . . ,N},
then xi = xi−1 ∗ xi−1 + c (mod N).

We want to find i , j such xi ≡ xj (mod p).

Don’t know p. Really want gcd(xi − xj ,N) 6= 1.

Trying all pairs is too much time.
Important If there is a pair then there is a pair of form xi , x2i .

Idea Only try pairs of form (xi , x2i).

Almost Final Algorithm

Define fc(x)← x ∗ x + c (mod N)

x ← rand(1,N − 1), c ← rand(1,N − 1), y ← fc(x)
while TRUE

x ← fc(x)
y ← fc(fc(y))
d ← gcd(x − y ,N)
if d 6= 1 and d 6= N then break

output(d)

This does not quite work. If d = N then the algorithm may run a
long time. The values of x , c are not good! Hence if d = n then
we need to start over again with a new value of x , c .

Final algorithm on next slide.

Almost Final Algorithm

Define fc(x)← x ∗ x + c (mod N)

x ← rand(1,N − 1), c ← rand(1,N − 1), y ← fc(x)
while TRUE

x ← fc(x)
y ← fc(fc(y))
d ← gcd(x − y ,N)
if d 6= 1 and d 6= N then break

output(d)

This does not quite work. If d = N then the algorithm may run a
long time. The values of x , c are not good! Hence if d = n then
we need to start over again with a new value of x , c .

Final algorithm on next slide.

Almost Final Algorithm

Define fc(x)← x ∗ x + c (mod N)

x ← rand(1,N − 1), c ← rand(1,N − 1), y ← fc(x)
while TRUE

x ← fc(x)
y ← fc(fc(y))
d ← gcd(x − y ,N)
if d 6= 1 and d 6= N then break

output(d)

This does not quite work. If d = N then the algorithm may run a
long time. The values of x , c are not good! Hence if d = n then
we need to start over again with a new value of x , c .

Final algorithm on next slide.

Final Algorithm

Define fc(x)← x ∗ x + c (mod N)

START: x ← rand(1,N − 1), c ← rand(1,N − 1), y ← fc(x)
while TRUE

x ← fc(x)
y ← fc(fc(y))
d ← gcd(x − y ,N)
if d 6= 1 and d 6= N then break
if d = N then GOTO START (pick new x , c)

output(d)

PRO By Bday Paradox will likely finish in N1/4 steps.
CON No real cons, but is N1/4 fast enough?

Final Algorithm

Define fc(x)← x ∗ x + c (mod N)

START: x ← rand(1,N − 1), c ← rand(1,N − 1), y ← fc(x)
while TRUE

x ← fc(x)
y ← fc(fc(y))
d ← gcd(x − y ,N)
if d 6= 1 and d 6= N then break
if d = N then GOTO START (pick new x , c)

output(d)
PRO By Bday Paradox will likely finish in N1/4 steps.

CON No real cons, but is N1/4 fast enough?

Final Algorithm

Define fc(x)← x ∗ x + c (mod N)

START: x ← rand(1,N − 1), c ← rand(1,N − 1), y ← fc(x)
while TRUE

x ← fc(x)
y ← fc(fc(y))
d ← gcd(x − y ,N)
if d 6= 1 and d 6= N then break
if d = N then GOTO START (pick new x , c)

output(d)
PRO By Bday Paradox will likely finish in N1/4 steps.
CON No real cons, but is N1/4 fast enough?

How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice. Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:
I Proving that a deterministic sequence is random enough is

hard to do or even define.
I Irene, Radhika, and Emily have not worked on it yet.

How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice. Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:
I Proving that a deterministic sequence is random enough is

hard to do or even define.
I Irene, Radhika, and Emily have not worked on it yet.

How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice. Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:
I Proving that a deterministic sequence is random enough is

hard to do or even define.
I Irene, Radhika, and Emily have not worked on it yet.

How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice.

Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:
I Proving that a deterministic sequence is random enough is

hard to do or even define.
I Irene, Radhika, and Emily have not worked on it yet.

How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice. Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:
I Proving that a deterministic sequence is random enough is

hard to do or even define.
I Irene, Radhika, and Emily have not worked on it yet.

How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice. Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:
I Proving that a deterministic sequence is random enough is

hard to do or even define.
I Irene, Radhika, and Emily have not worked on it yet.

How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice. Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:
I Proving that a deterministic sequence is random enough is

hard to do or even define.
I Irene, Radhika, and Emily have not worked on it yet.

How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice. Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:

I Proving that a deterministic sequence is random enough is
hard to do or even define.

I Irene, Radhika, and Emily have not worked on it yet.

How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice. Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:
I Proving that a deterministic sequence is random enough is

hard to do or even define.

I Irene, Radhika, and Emily have not worked on it yet.

How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice. Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:
I Proving that a deterministic sequence is random enough is

hard to do or even define.
I Irene, Radhika, and Emily have not worked on it yet.

The Old Saying in Reverse

Typically one hears the following about academic research:

It works in theory, can we make it work in practice?

Pollard’s ρ-algorithm is an example of the converse:
It works in practice, can we make it work in theory?

Why is it important to learn why it works in theory?

1. Make sure it really works. This is low-priority. Hey! It works!

2. If we know how it works in theory then perhaps can improve
it. This is high-priority. Commonly theory and practice work
together to improve both.

The Old Saying in Reverse

Typically one hears the following about academic research:
It works in theory, can we make it work in practice?

Pollard’s ρ-algorithm is an example of the converse:
It works in practice, can we make it work in theory?

Why is it important to learn why it works in theory?

1. Make sure it really works. This is low-priority. Hey! It works!

2. If we know how it works in theory then perhaps can improve
it. This is high-priority. Commonly theory and practice work
together to improve both.

The Old Saying in Reverse

Typically one hears the following about academic research:
It works in theory, can we make it work in practice?

Pollard’s ρ-algorithm is an example of the converse:

It works in practice, can we make it work in theory?

Why is it important to learn why it works in theory?

1. Make sure it really works. This is low-priority. Hey! It works!

2. If we know how it works in theory then perhaps can improve
it. This is high-priority. Commonly theory and practice work
together to improve both.

The Old Saying in Reverse

Typically one hears the following about academic research:
It works in theory, can we make it work in practice?

Pollard’s ρ-algorithm is an example of the converse:
It works in practice, can we make it work in theory?

Why is it important to learn why it works in theory?

1. Make sure it really works. This is low-priority. Hey! It works!

2. If we know how it works in theory then perhaps can improve
it. This is high-priority. Commonly theory and practice work
together to improve both.

The Old Saying in Reverse

Typically one hears the following about academic research:
It works in theory, can we make it work in practice?

Pollard’s ρ-algorithm is an example of the converse:
It works in practice, can we make it work in theory?

Why is it important to learn why it works in theory?

1. Make sure it really works. This is low-priority. Hey! It works!

2. If we know how it works in theory then perhaps can improve
it. This is high-priority. Commonly theory and practice work
together to improve both.

The Old Saying in Reverse

Typically one hears the following about academic research:
It works in theory, can we make it work in practice?

Pollard’s ρ-algorithm is an example of the converse:
It works in practice, can we make it work in theory?

Why is it important to learn why it works in theory?

1. Make sure it really works. This is low-priority. Hey! It works!

2. If we know how it works in theory then perhaps can improve
it. This is high-priority. Commonly theory and practice work
together to improve both.

The Old Saying in Reverse

Typically one hears the following about academic research:
It works in theory, can we make it work in practice?

Pollard’s ρ-algorithm is an example of the converse:
It works in practice, can we make it work in theory?

Why is it important to learn why it works in theory?

1. Make sure it really works. This is low-priority. Hey! It works!

2. If we know how it works in theory then perhaps can improve
it. This is high-priority. Commonly theory and practice work
together to improve both.

BILL STOP
RECORDING

