BILL START RECORDING

Pollard's ρ Algorithm for Factoring (1975)

Thought Experiment

We want to factor N.

Thought Experiment

We want to factor N.
p is a factor of N (we don't know p). Note $p \leq N^{1 / 2}$.

Thought Experiment

We want to factor N.
p is a factor of N (we don't know p). Note $p \leq N^{1 / 2}$.
We somehow find x, y such that $x \equiv y(\bmod p)$. Useful?

Thought Experiment

We want to factor N.
p is a factor of N (we don't know p). Note $p \leq N^{1 / 2}$.
We somehow find x, y such that $x \equiv y(\bmod p)$. Useful? $\operatorname{gcd}(x-y, N)$ will likely yield a nontrivial factor of N since p divides both.

Thought Experiment

We want to factor N.
p is a factor of N (we don't know p). Note $p \leq N^{1 / 2}$.
We somehow find x, y such that $x \equiv y(\bmod p)$. Useful?
$\operatorname{gcd}(x-y, N)$ will likely yield a nontrivial factor of N since p divides both.

We look at several approaches to finding such an x, y that do not work before presenting the approach that does work.

Approach 1: Rand Seq mod p, Intuition

Generate random sequence $x_{1}, x_{2}, \ldots \in\{0, \ldots, N-1\}$.

Approach 1: Rand Seq mod p, Intuition

Generate random sequence $x_{1}, x_{2}, \ldots \in\{0, \ldots, N-1\}$.
Every time you get a new x_{i}, test, for all $1 \leq j \leq i-1$,

$$
x_{i} \equiv x_{j} \quad(\bmod p)
$$

Approach 1: Rand Seq mod p, Intuition

Generate random sequence $x_{1}, x_{2}, \ldots \in\{0, \ldots, N-1\}$.
Every time you get a new x_{i}, test, for all $1 \leq j \leq i-1$,

$$
x_{i} \equiv x_{j} \quad(\bmod p)
$$

Hope to get a YES.

Approach 1: Rand Seq mod p, Intuition

Generate random sequence $x_{1}, x_{2}, \ldots \in\{0, \ldots, N-1\}$.
Every time you get a new x_{i}, test, for all $1 \leq j \leq i-1$,

$$
x_{i} \equiv x_{j} \quad(\bmod p)
$$

Hope to get a YES.
If get YES then do

$$
\operatorname{gcd}\left(x_{i}-x_{j}, N\right)
$$

Approach 1: Rand Seq mod p, Program

$x_{1} \leftarrow \operatorname{rand}(1, N-1), i \leftarrow 2$
while TRUE

$$
x_{i} \leftarrow \operatorname{rand}(1, N-1)
$$

$$
\text { for } j \leftarrow 1 \text { to } i-1
$$

$$
\text { if } x_{i} \equiv x_{j}(\bmod p) \text { then }
$$

$$
d \leftarrow \operatorname{gcd}\left(x_{i}-x_{j}, N\right)
$$

$$
\text { if } d \neq 1 \text { and } d \neq N \text { then break }
$$

$$
i \leftarrow i+1
$$

output(d)

Approach 1: Rand Seq mod p, Program

$x_{1} \leftarrow \operatorname{rand}(1, N-1), i \leftarrow 2$
while TRUE

$$
\begin{aligned}
& x_{i} \leftarrow \operatorname{rand}(1, N-1) \\
& \text { for } j \leftarrow 1 \text { to } i-1 \\
& \quad \text { if } x_{i} \equiv x_{j}(\bmod p) \text { then } \\
& \quad d \leftarrow \operatorname{gcd}\left(x_{i}-x_{j}, N\right) \\
& \quad \text { if } d \neq 1 \text { and } d \neq N \text { then break }
\end{aligned}
$$

$$
i \leftarrow i+1
$$

output(d)
PRO: Bday paradox: x_{i} 's are balls, $\bmod p$ are boxes. So likely to find $x_{i} \equiv x_{j}(\bmod p)$ within $p^{1 / 2} \sim N^{1 / 4}$ iterations.

Approach 1: Rand Seq mod p, Program

$x_{1} \leftarrow \operatorname{rand}(1, N-1), i \leftarrow 2$
while TRUE

$$
\begin{aligned}
& x_{i} \leftarrow \operatorname{rand}(1, N-1) \\
& \text { for } j \leftarrow 1 \text { to } i-1 \\
& \quad \text { if } x_{i} \equiv x_{j}(\bmod p) \text { then } \\
& \quad d \leftarrow \operatorname{gcd}\left(x_{i}-x_{j}, N\right) \\
& \quad \text { if } d \neq 1 \text { and } d \neq N \text { then break }
\end{aligned}
$$

$$
i \leftarrow i+1
$$

output(d)
PRO: Bday paradox: x_{i} 's are balls, $\bmod p$ are boxes. So likely to find $x_{i} \equiv x_{j}(\bmod p)$ within $p^{1 / 2} \sim N^{1 / 4}$ iterations.
CON: Need to already know p.

Approach 1: Rand Seq mod p, Program

$x_{1} \leftarrow \operatorname{rand}(1, N-1), i \leftarrow 2$
while TRUE

$$
\begin{aligned}
& x_{i} \leftarrow \operatorname{rand}(1, N-1) \\
& \text { for } j \leftarrow 1 \text { to } i-1 \\
& \quad \text { if } x_{i} \equiv x_{j}(\bmod p) \text { then } \\
& \quad d \leftarrow \operatorname{gcd}\left(x_{i}-x_{j}, N\right) \\
& \quad \text { if } d \neq 1 \text { and } d \neq N \text { then break }
\end{aligned}
$$

$$
i \leftarrow i+1
$$

output(d)
PRO: Bday paradox: x_{i} 's are balls, $\bmod p$ are boxes. So likely to find $x_{i} \equiv x_{j}(\bmod p)$ within $p^{1 / 2} \sim N^{1 / 4}$ iterations.
CON: Need to already know p. Darn!

Approach 1: Rand Seq mod p, Program

$x_{1} \leftarrow \operatorname{rand}(1, N-1), i \leftarrow 2$
while TRUE

$$
\begin{aligned}
& x_{i} \leftarrow \operatorname{rand}(1, N-1) \\
& \text { for } j \leftarrow 1 \text { to } i-1 \\
& \quad \text { if } x_{i} \equiv x_{j}(\bmod p) \text { then } \\
& \quad d \leftarrow \operatorname{gcd}\left(x_{i}-x_{j}, N\right) \\
& \quad \text { if } d \neq 1 \text { and } d \neq N \text { then break }
\end{aligned}
$$

$$
i \leftarrow i+1
$$

output(d)
PRO: Bday paradox: x_{i} 's are balls, $\bmod p$ are boxes. So likely to find $x_{i} \equiv x_{j}(\bmod p)$ within $p^{1 / 2} \sim N^{1 / 4}$ iterations.
CON: Need to already know p. Darn!
ADJUST: Always do GCD.

Approach 2: Rand Seq mod p, W/O p, Intuition

Generate random sequence $x_{1}, x_{2}, \ldots \in\{0, \ldots, N-1\}$.
Every time you get a new x_{i}, do, for all $1 \leq j \leq i-1$,

$$
\operatorname{gcd}\left(x_{i}-x_{j}, N\right)
$$

So do not need to know p. And if $x_{i} \equiv x_{j}(\bmod p)$, you'll get a factor.

Approach 2: Rand Seq mod p, W/O p, Program

```
\(x_{1} \leftarrow \operatorname{rand}(1, N-1) i \leftarrow 2\)
while TRUE
    \(x_{i} \leftarrow \operatorname{rand}(1, N-1)\)
    for \(j \leftarrow 1\) to \(i-1\)
        \(d=\operatorname{gcd}\left(x_{i}-x_{j}, N\right)\)
        if \(d \neq 1\) and \(d \neq N\) then break
    \(i \leftarrow i+1\)
output(d)
```


Approach 2: Rand Seq mod p, W/O p, Program

$x_{1} \leftarrow \operatorname{rand}(1, N-1) i \leftarrow 2$
while TRUE

$$
\begin{aligned}
& x_{i} \leftarrow \operatorname{rand}(1, N-1) \\
& \text { for } j \leftarrow 1 \text { to } i-1 \\
& \quad d=\operatorname{gcd}\left(x_{i}-x_{j}, N\right) \\
& \quad \text { if } d \neq 1 \text { and } d \neq N \text { then break } \\
& i \leftarrow i+1
\end{aligned}
$$

output(d)
PRO: Bday paradox: x_{i} 's:balls, mod p :boxes. Prob find $x_{i} \equiv x_{j}$ $(\bmod p)$ with $i \leq p^{1 / 2} \sim N^{1 / 4}$. Perhaps sooner-other prime factors. Not knowing p does not matter.

Approach 2: Rand Seq mod $p, \mathrm{~W} / \mathrm{O} p$, Program

$x_{1} \leftarrow \operatorname{rand}(1, N-1) i \leftarrow 2$
while TRUE

$$
\begin{aligned}
& x_{i} \leftarrow \operatorname{rand}(1, N-1) \\
& \text { for } j \leftarrow 1 \text { to } i-1 \\
& \quad d=\operatorname{gcd}\left(x_{i}-x_{j}, N\right) \\
& \quad \text { if } d \neq 1 \text { and } d \neq N \text { then break } \\
& i \leftarrow i+1
\end{aligned}
$$

output(d)
PRO: Bday paradox: x_{i} 's:balls, mod p :boxes. Prob find $x_{i} \equiv x_{j}$ $(\bmod p)$ with $i \leq p^{1 / 2} \sim N^{1 / 4}$. Perhaps sooner-other prime factors. Not knowing p does not matter.
CON: Iteration i makes i^{2} operations. Total number of operations:

$$
\sum_{i=1}^{N^{1 / 4}} i^{2} \sim\left(N^{1 / 4}\right)^{3} \sim N^{3 / 4} \mathrm{BAD}:-(
$$

Another Issue: Space

$x_{1} \leftarrow \operatorname{rand}(1, N-1) i \leftarrow 2$
while TRUE

$$
x_{i} \leftarrow \operatorname{rand}(1, N-1)
$$

$$
\text { for } j \leftarrow 1 \text { to } i-1
$$

$$
d=\operatorname{gcd}\left(x_{i}-x_{j}, N\right)
$$

if $d \neq 1$ and $d \neq N$ then break
$i \leftarrow i+1$
output(d)

Another Issue: Space

$x_{1} \leftarrow \operatorname{rand}(1, N-1) i \leftarrow 2$
while TRUE

$$
x_{i} \leftarrow \operatorname{rand}(1, N-1)
$$

$$
\text { for } j \leftarrow 1 \text { to } i-1
$$

$$
d=\operatorname{gcd}\left(x_{i}-x_{j}, N\right)
$$

if $d \neq 1$ and $d \neq N$ then break
$i \leftarrow i+1$
output(d)
CON: After Iteration i need to store x_{1}, \ldots, x_{i}. Since $\sim N^{1 / 4}$ iterations this is $N^{1 / 4}$ space. Too much space :-(

Approach 3: Rand Looking Sequence, Intuition

How to create a random looking sequence?

Approach 3: Rand Looking Sequence, Intuition

How to create a random looking sequence?

- Pick random $x_{1}, c \in\{1, \ldots, N-1\}$.

Approach 3: Rand Looking Sequence, Intuition

How to create a random looking sequence?

- Pick random $x_{1}, c \in\{1, \ldots, N-1\}$.
- If know x_{i-1}, create

$$
x_{i}=x_{i-1} * x_{i-1}+c \quad(\bmod N)
$$

Approach 3: Rand Looking Sequence, Intuition

How to create a random looking sequence?

- Pick random $x_{1}, c \in\{1, \ldots, N-1\}$.
- If know x_{i-1}, create

$$
x_{i}=x_{i-1} * x_{i-1}+c \quad(\bmod N)
$$

- The sequence x_{1}, x_{2}, x_{3} will hopefully be random enough that the bday paradox applies. We use the informal term random looking for this.

Approach 3: Rand Looking Sequence, Program

$x_{1} \leftarrow \operatorname{rand}(1, N-1), c \leftarrow \operatorname{rand}(1, N-1), i \leftarrow 2$ while TRUE

$$
x_{i} \leftarrow x_{i-1} * x_{i-1}+c(\bmod N)
$$

$$
\text { for } j \leftarrow 2 \text { to } i-1
$$

$$
x_{j} \leftarrow x_{j-1} * x_{j-1}+c
$$

$$
d \leftarrow \operatorname{gcd}\left(x_{i}-x_{j}, N\right)
$$

if $d \neq 1$ and $d \neq N$ then break
$i \leftarrow i+1$
output(d)

Approach 3: Rand Looking Sequence, Program

$x_{1} \leftarrow \operatorname{rand}(1, N-1), c \leftarrow \operatorname{rand}(1, N-1), i \leftarrow 2$
while TRUE

$$
\begin{aligned}
& x_{i} \leftarrow x_{i-1} * x_{i-1}+c(\bmod N) \\
& \text { for } j \leftarrow 2 \text { to } i-1 \\
& x_{j} \leftarrow x_{j-1} * x_{j-1}+c \\
& \quad d \leftarrow \operatorname{gcd}\left(x_{i}-x_{j}, N\right) \\
& \quad \text { if } d \neq 1 \text { and } d \neq N \text { then break } \\
& i \leftarrow i+1
\end{aligned}
$$

output(d)
PRO Empirically seq x_{1}, x_{2} is random enough, so $N^{1 / 4}$ iterations.

Approach 3: Rand Looking Sequence, Program

$x_{1} \leftarrow \operatorname{rand}(1, N-1), c \leftarrow \operatorname{rand}(1, N-1), i \leftarrow 2$
while TRUE

$$
\begin{aligned}
& x_{i} \leftarrow x_{i-1} * x_{i-1}+c(\bmod N) \\
& \text { for } j \leftarrow 2 \text { to } i-1 \\
& x_{j} \leftarrow x_{j-1} * x_{j-1}+c \\
& \quad d \leftarrow \operatorname{gcd}\left(x_{i}-x_{j}, N\right) \\
& \quad \text { if } d \neq 1 \text { and } d \neq N \text { then break } \\
& i \leftarrow i+1
\end{aligned}
$$

output(d)
PRO Empirically seq x_{1}, x_{2} is random enough, so $N^{1 / 4}$ iterations.
PRO Space not a problem.

Approach 3: Rand Looking Sequence, Program

$x_{1} \leftarrow \operatorname{rand}(1, N-1), c \leftarrow \operatorname{rand}(1, N-1), i \leftarrow 2$
while TRUE

$$
\begin{aligned}
& x_{i} \leftarrow x_{i-1} * x_{i-1}+c(\bmod N) \\
& \text { for } j \leftarrow 2 \text { to } i-1 \\
& x_{j} \leftarrow x_{j-1} * x_{j-1}+c \\
& \quad d \leftarrow \operatorname{gcd}\left(x_{i}-x_{j}, N\right) \\
& \quad \text { if } d \neq 1 \text { and } d \neq N \text { then break } \\
& i \leftarrow i+1
\end{aligned}
$$

output(d)
PRO Empirically seq x_{1}, x_{2} is random enough, so $N^{1 / 4}$ iterations.
PRO Space not a problem.
CON Time still a problem :-(

What Do We Really Want?

We want to find $i, j \leq N^{1 / 4}$ such that $x_{i} \equiv x_{j}(\bmod p)$.

What Do We Really Want?

We want to find $i, j \leq N^{1 / 4}$ such that $x_{i} \equiv x_{j}(\bmod p)$.
Key x_{i} computed via recurrence so $x_{i}=x_{j} \Longrightarrow x_{i+a}=x_{j+a}$.

What Do We Really Want?

We want to find $i, j \leq N^{1 / 4}$ such that $x_{i} \equiv x_{j}(\bmod p)$. Key x_{i} computed via recurrence so $x_{i}=x_{j} \Longrightarrow x_{i+a}=x_{j+a}$.
Lemma If exists $i<j \leq M$ with $x_{i} \equiv x_{j}$ then exists $k \leq M$ such that $x_{k} \equiv x_{2 k}$.

Recap

Rand Looking Sequence x_{1}, c chosen at random in $\{1, \ldots, N\}$, then $x_{i}=x_{i-1} * x_{i-1}+c(\bmod N)$.

Recap

Rand Looking Sequence x_{1}, c chosen at random in $\{1, \ldots, N\}$, then $x_{i}=x_{i-1} * x_{i-1}+c(\bmod N)$.

We want to find i, j such $x_{i} \equiv x_{j}(\bmod p)$.

Recap

Rand Looking Sequence x_{1}, c chosen at random in $\{1, \ldots, N\}$, then $x_{i}=x_{i-1} * x_{i-1}+c(\bmod N)$.

We want to find i, j such $x_{i} \equiv x_{j}(\bmod p)$.
Don't know p. Really want $\operatorname{gcd}\left(x_{i}-x_{j}, N\right) \neq 1$.

Recap

Rand Looking Sequence x_{1}, c chosen at random in $\{1, \ldots, N\}$, then $x_{i}=x_{i-1} * x_{i-1}+c(\bmod N)$.

We want to find i, j such $x_{i} \equiv x_{j}(\bmod p)$.
Don't know p. Really want $\operatorname{gcd}\left(x_{i}-x_{j}, N\right) \neq 1$.
Trying all pairs is too much time.
Important If there is a pair then there is a pair of form $x_{i}, x_{2 i}$.

Recap

Rand Looking Sequence x_{1}, c chosen at random in $\{1, \ldots, N\}$, then $x_{i}=x_{i-1} * x_{i-1}+c(\bmod N)$.

We want to find i, j such $x_{i} \equiv x_{j}(\bmod p)$.
Don't know p. Really want $\operatorname{gcd}\left(x_{i}-x_{j}, N\right) \neq 1$.
Trying all pairs is too much time. Important If there is a pair then there is a pair of form $x_{i}, x_{2 i}$.

Idea Only try pairs of form $\left(x_{i}, x_{2 i}\right)$.

Almost Final Algorithm

Define $f_{c}(x) \leftarrow x * x+c(\bmod N)$
$x \leftarrow \operatorname{rand}(1, N-1), c \leftarrow \operatorname{rand}(1, N-1), y \leftarrow f_{c}(x)$ while TRUE

$$
\begin{aligned}
& x \leftarrow f_{c}(x) \\
& y \leftarrow f_{c}\left(f_{c}(y)\right) \\
& d \leftarrow \operatorname{gcd}(x-y, N)
\end{aligned}
$$

if $d \neq 1$ and $d \neq N$ then break output(d)

Almost Final Algorithm

Define $f_{c}(x) \leftarrow x * x+c(\bmod N)$
$x \leftarrow \operatorname{rand}(1, N-1), c \leftarrow \operatorname{rand}(1, N-1), y \leftarrow f_{c}(x)$ while TRUE

$$
\begin{aligned}
& x \leftarrow f_{c}(x) \\
& y \leftarrow f_{c}\left(f_{c}(y)\right) \\
& d \leftarrow \operatorname{gcd}(x-y, N)
\end{aligned}
$$

if $d \neq 1$ and $d \neq N$ then break output(d)

This does not quite work. If $d=N$ then the algorithm may run a long time. The values of x, c are not good! Hence if $d=n$ then we need to start over again with a new value of x, c.

Almost Final Algorithm

Define $f_{c}(x) \leftarrow x * x+c(\bmod N)$
$x \leftarrow \operatorname{rand}(1, N-1), c \leftarrow \operatorname{rand}(1, N-1), y \leftarrow f_{c}(x)$ while TRUE

$$
\begin{aligned}
& x \leftarrow f_{c}(x) \\
& y \leftarrow f_{c}\left(f_{c}(y)\right) \\
& d \leftarrow \operatorname{gcd}(x-y, N)
\end{aligned}
$$

if $d \neq 1$ and $d \neq N$ then break
output(d)
This does not quite work. If $d=N$ then the algorithm may run a long time. The values of x, c are not good! Hence if $d=n$ then we need to start over again with a new value of x, c.
Final algorithm on next slide.

Final Algorithm

Define $f_{c}(x) \leftarrow x * x+c(\bmod N)$
START: $x \leftarrow \operatorname{rand}(1, N-1), c \leftarrow \operatorname{rand}(1, N-1), y \leftarrow f_{c}(x)$ while TRUE

```
\(x \leftarrow f_{c}(x)\)
\(y \leftarrow f_{c}\left(f_{c}(y)\right)\)
\(d \leftarrow \operatorname{gcd}(x-y, N)\)
```

if $d \neq 1$ and $d \neq N$ then break
if $d=N$ then GOTO START (pick new x, c)
output(d)

Final Algorithm

Define $f_{c}(x) \leftarrow x * x+c(\bmod N)$
START: $x \leftarrow \operatorname{rand}(1, N-1), c \leftarrow \operatorname{rand}(1, N-1), y \leftarrow f_{c}(x)$ while TRUE

```
\(x \leftarrow f_{c}(x)\)
\(y \leftarrow f_{c}\left(f_{c}(y)\right)\)
\(d \leftarrow \operatorname{gcd}(x-y, N)\)
```

if $d \neq 1$ and $d \neq N$ then break
if $d=N$ then GOTO START (pick new x, c)
output(d)
PRO By Bday Paradox will likely finish in $N^{1 / 4}$ steps.

Final Algorithm

Define $f_{c}(x) \leftarrow x * x+c(\bmod N)$
START: $x \leftarrow \operatorname{rand}(1, N-1), c \leftarrow \operatorname{rand}(1, N-1), y \leftarrow f_{c}(x)$ while TRUE

```
\(x \leftarrow f_{c}(x)\)
\(y \leftarrow f_{c}\left(f_{c}(y)\right)\)
\(d \leftarrow \operatorname{gcd}(x-y, N)\)
```

if $d \neq 1$ and $d \neq N$ then break
if $d=N$ then GOTO START (pick new x, c)
output(d)
PRO By Bday Paradox will likely finish in $N^{1 / 4}$ steps.
CON No real cons, but is $N^{1 / 4}$ fast enough?

How Good In Practice?

How Good In Practice?

- The Algorithm is GOOD. Variations are GREAT.

How Good In Practice?

- The Algorithm is GOOD. Variations are GREAT.
- Was used to provide first factorization of $2^{2^{8}}+1$.

How Good In Practice?

- The Algorithm is GOOD. Variations are GREAT.
- Was used to provide first factorization of $2^{2^{8}}+1$.
- In 1975 was fastest algorithm in practice.

How Good In Practice?

- The Algorithm is GOOD. Variations are GREAT.
- Was used to provide first factorization of $2^{2^{8}}+1$.
- In 1975 was fastest algorithm in practice. Not anymore.

How Good In Practice?

- The Algorithm is GOOD. Variations are GREAT.
- Was used to provide first factorization of $2^{2^{8}}+1$.
- In 1975 was fastest algorithm in practice. Not anymore.
- Called Pollard's ρ Algorithm since he set $\rho=j-i$.

How Good In Practice?

- The Algorithm is GOOD. Variations are GREAT.
- Was used to provide first factorization of $2^{2^{8}}+1$.
- In 1975 was fastest algorithm in practice. Not anymore.
- Called Pollard's ρ Algorithm since he set $\rho=j-i$.
- Why we think $N^{1 / 4}$: Sequence seems random enough for Bday paradox to work.

How Good In Practice?

- The Algorithm is GOOD. Variations are GREAT.
- Was used to provide first factorization of $2^{2^{8}}+1$.
- In 1975 was fastest algorithm in practice. Not anymore.
- Called Pollard's ρ Algorithm since he set $\rho=j-i$.
- Why we think $N^{1 / 4}$: Sequence seems random enough for Bday paradox to work.
- Why still unproven:

How Good In Practice?

- The Algorithm is GOOD. Variations are GREAT.
- Was used to provide first factorization of $2^{2^{8}}+1$.
- In 1975 was fastest algorithm in practice. Not anymore.
- Called Pollard's ρ Algorithm since he set $\rho=j-i$.
- Why we think $N^{1 / 4}$: Sequence seems random enough for Bday paradox to work.
- Why still unproven:
- Proving that a deterministic sequence is random enough is hard to do or even define.

How Good In Practice?

- The Algorithm is GOOD. Variations are GREAT.
- Was used to provide first factorization of $2^{2^{8}}+1$.
- In 1975 was fastest algorithm in practice. Not anymore.
- Called Pollard's ρ Algorithm since he set $\rho=j-i$.
- Why we think $N^{1 / 4}$: Sequence seems random enough for Bday paradox to work.
- Why still unproven:
- Proving that a deterministic sequence is random enough is hard to do or even define.
- Irene, Radhika, and Emily have not worked on it yet.

The Old Saying in Reverse

Typically one hears the following about academic research:

The Old Saying in Reverse

Typically one hears the following about academic research: It works in theory, can we make it work in practice?

The Old Saying in Reverse

Typically one hears the following about academic research: It works in theory, can we make it work in practice?

Pollard's ρ-algorithm is an example of the converse:

The Old Saying in Reverse

Typically one hears the following about academic research: It works in theory, can we make it work in practice?

Pollard's ρ-algorithm is an example of the converse:
It works in practice, can we make it work in theory?

The Old Saying in Reverse

Typically one hears the following about academic research: It works in theory, can we make it work in practice?

Pollard's ρ-algorithm is an example of the converse:
It works in practice, can we make it work in theory?
Why is it important to learn why it works in theory?

The Old Saying in Reverse

Typically one hears the following about academic research: It works in theory, can we make it work in practice?

Pollard's ρ-algorithm is an example of the converse:
It works in practice, can we make it work in theory?
Why is it important to learn why it works in theory?

1. Make sure it really works. This is low-priority. Hey! It works!

The Old Saying in Reverse

Typically one hears the following about academic research: It works in theory, can we make it work in practice?

Pollard's ρ-algorithm is an example of the converse:
It works in practice, can we make it work in theory?
Why is it important to learn why it works in theory?

1. Make sure it really works. This is low-priority. Hey! It works!
2. If we know how it works in theory then perhaps can improve it. This is high-priority. Commonly theory and practice work together to improve both.

BILL STOP RECORDING

