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Factoring (1975)
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Thought Experiment

We want to factor N.
pis a factor of N (we don't know p). Note p < N/2,
We somehow find x,y such that x =y (mod p). Useful?

ged(x — y, N) will likely yield a nontrivial factor of N since p
divides both.

We look at several approaches to finding such an x, y that do not
work before presenting the approach that does work.
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Generate random sequence x1, x2,... € {0,..., N —1}.

Every time you get a new x;, test, forall 1 < <i—1,
xi = x; (mod p).

Hope to get a YES.

If get YES then do

ged(xi — x;j, N).
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Approach 1: Rand Seq mod p, Program

x1 < rand(1, N — 1), i <2
while TRUE
xj <—rand(1, N — 1)
forj«<1toi—1
if xi = x; (mod p) then
d < ged(xi — xj, N)
if d #1 and d # N then break
I—i+1
output(d)
PRO: Bday paradox: x;'s are balls, mod p are boxes. So likely to
find x; = x; (mod p) within p'/2 ~ N1/4 iterations.
CON: Need to already know p. Darn!
ADJUST: Always do GCD.



Approach 2: Rand Seq mod p, W/O p, Intuition

Generate random sequence xi, x2,... € {0,..., N — 1}.
Every time you get a new x;, do, forall 1 < j <i—1,

ged(xi — x;j, N).

So do not need to know p. And if x; = x; (mod p), you'll get a
factor.
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Approach 2: Rand Seq mod p, W/O p, Program
x1 < rand(1,N —1) i+ 2
while TRUE
xj < rand(1, N — 1)
forj«<1ltoi—1
d = ged(x; — xj, N)
if d # 1 and d # N then break
i+—i+1
output(d)
PRO: Bday paradox: x;'s:balls, mod p:boxes. Prob find x; = x;
(mod p) with i < p'/2 ~ N'/4. Perhaps sooner—other prime
factors. Not knowing p does not matter.
CON: Iteration i makes i? operations. Total number of
operations:

N1/A
> %~ (NY*)3 ~ N34 BAD (.
i=1



Another Issue: Space

x1 < rand(1,N —1) i<« 2
while TRUE
x;j +—rand(1, N — 1)
for je1toi—1
d = ged(x; — xj, N)
if d # 1 and d # N then break
I+ i+1
output(d)



Another Issue: Space

x1 < rand(1,N —1) i<« 2
while TRUE
x;j +—rand(1, N — 1)
forj«<1ltoi—1
d= ng(X,' - Xj, N)
if d # 1 and d # N then break
i+—i+1
output(d)
CON: After lteration i need to store xi,...,X;. Since ~ N/4
iterations this is N/4 space. Too much space ~(
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Approach 3: Rand Looking Sequence, Intuition

How to create a random looking sequence?
» Pick random xj,c € {1,...,N —1}.
» If know x;_1, create

Xj = Xj_1 *Xj—1+C (mod N)

» The sequence xi, x2, x3 will hopefully be random enough
that the bday paradox applies. We use the informal term
random looking for this.
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Approach 3: Rand Looking Sequence, Program

x; < rand(1, N — 1), ¢ < rand(1, N — 1), j < 2
while TRUE
Xj = Xj—1 * xj—1 + ¢ (mod N)
for j«—2toi—1
Xj 4= X1 ¥ X1+ C
d + ged(x; — xj, N)
if d #1 and d # N then break
i—i+1
output(d)
PRO Empirically seq x1, x> is random enough, so N1/* iterations.
PRO Space not a problem.
CON Time still a problem :-(
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What Do We Really Want?

We want to find i, j < N*/* such that x; = x; (mod p).
Key x; computed via recurrence so X; = Xj == Xjta = Xjta-

Lemma If exists i < j < M with x; = x; then exists k < M such
that xx = xok.
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Recap

Rand Looking Sequence x1, ¢ chosen at random in {1,..., N},
then x; = xj_1 * xi_1 + ¢ (mod N)

We want to find 7, such x; = x; (mod p).

Don't know p. Really want ged(x; — xj, N) # 1.

Trying all pairs is too much time.
Important If there is a pair then there is a pair of form x;, xo;.

Idea Only try pairs of form (x;, x2;).
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Almost Final Algorithm

Define f.(x) - x*x+ ¢ (mod N)

x <—rand(1,N — 1), ¢ < rand(1, N — 1), y < fc(x)
while TRUE

x 4+ fe(x)

y « fe(fe(y))

d + ged(x — y, N)

if d #1 and d # N then break
output(d)

This does not quite work. If d = N then the algorithm may run a
long time. The values of x, ¢ are not good! Hence if d = n then
we need to start over again with a new value of x, c.

Final algorithm on next slide.
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Final Algorithm

Define f.(x) + x* x + ¢ (mod N)

START: x <—rand(1, N — 1), ¢ - rand(1, N — 1), y + f.(x)
while TRUE
x + fe(x)
y « fe(fe(y))
d + ged(x — y, N)
if d # 1 and d # N then break
if d = N then GOTO START (pick new x, c)
output(d)
PRO By Bday Paradox will likely finish in N/* steps.
CON No real cons, but is N1/# fast enough?
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How Good In Practice?

The Algorithm is GOOD. Variations are GREAT.
Was used to provide first factorization of 22° + 1.
In 1975 was fastest algorithm in practice. Not anymore.

Called Pollard’s p Algorithm since he set p = — .

vvyYyyvyy

Why we think N/4: Sequence seems random enough for
Bday paradox to work.

v

Why still unproven:
» Proving that a deterministic sequence is random enough is
hard to do or even define.
» Irene, Radhika, and Emily have not worked on it yet.
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The Old Saying in Reverse

Typically one hears the following about academic research:
It works in theory, can we make it work in practice?

Pollard’s p-algorithm is an example of the converse:
It works in practice, can we make it work in theory?

Why is it important to learn why it works in theory?
1. Make sure it really works. This is low-priority. Hey! It works!

2. If we know how it works in theory then perhaps can improve
it. This is high-priority. Commonly theory and practice work
together to improve both.
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