BILL START RECORDING

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Quadratic Sieve Factoring

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

1) GCD(x, y) is the Greatest Common Divisor of x, y.

- 1) GCD(x, y) is the Greatest Common Divisor of x, y.
- 2) Sums and Products

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n.$$
$$\prod_{i=1}^{n} a_i = a_1 \times a_2 \times \dots \times a_n.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1) GCD(x, y) is the Greatest Common Divisor of x, y.
- 2) Sums and Products

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n.$$
$$\prod_{i=1}^{n} a_i = a_1 \times a_2 \times \dots \times a_n.$$

3) More Sums and Products We summed or producted over $\{1, \ldots, n\}$. Can use other sets.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

- 1) GCD(x, y) is the Greatest Common Divisor of x, y.
- 2) Sums and Products

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n.$$
$$\prod_{i=1}^{n} a_i = a_1 \times a_2 \times \dots \times a_n.$$

3) More Sums and Products We summed or producted over $\{1, ..., n\}$. Can use other sets. If $A = \{1, 4, 9\}$ then

$$\sum_{i \in A} a_i = a_1 + a_4 + a_9.$$
$$\prod_{i \in A} a_i = a_1 \times a_4 \times a_9.$$

More Notation Reminder

4) a_1, \ldots, a_n could be vectors.

$$\sum_{i\in A}\vec{a}_i=\vec{a}_1+\vec{a}_4+\vec{a}_9.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Addition is **component-wise**.

More Notation Reminder

4) a_1, \ldots, a_n could be vectors.

$$\sum_{i\in A}\vec{a}_i=\vec{a}_1+\vec{a}_4+\vec{a}_9.$$

(ロト (個) (E) (E) (E) (E) のへの

Addition is **component-wise**.

We will not be using any notion of a product of vectors.

More Notation Reminder

4) a_1, \ldots, a_n could be vectors.

$$\sum_{i\in A}\vec{a_i}=\vec{a_1}+\vec{a_4}+\vec{a_9}.$$

Addition is **component-wise**.

We will not be using any notion of a product of vectors.

5) We extend mod notation to vectors of integers. Example:

$$(8,1,0,9) \pmod{2} = (0,1,0,1).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Factor 8051. Looks Hard.

Factor 8051. Looks Hard. **OH- note that**

$$8051 = 90^2 - 7^2 = (90 + 7)(90 - 7) = 97 \times 83$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Factor 8051. Looks Hard. **OH- note that**

$$8051 = 90^2 - 7^2 = (90 + 7)(90 - 7) = 97 \times 83$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Key Wrote 8051 as diff of two squares.

Factor 8051. Looks Hard. **OH- note that**

$$8051 = 90^2 - 7^2 = (90 + 7)(90 - 7) = 97 \times 83$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Key Wrote 8051 as diff of two squares. General If $N = x^2 - y^2$ then get N = (x - y)(x + y).

Factor 8051. Looks Hard. **OH- note that**

$$8051 = 90^2 - 7^2 = (90 + 7)(90 - 7) = 97 \times 83$$

Key Wrote 8051 as diff of two squares. General If $N = x^2 - y^2$ then get N = (x - y)(x + y). But Lucky: we happen to spot two squares that worked.

Factor 8051. Looks Hard. **OH- note that**

$$8051 = 90^2 - 7^2 = (90 + 7)(90 - 7) = 97 \times 83$$

Key Wrote 8051 as diff of two squares. General If $N = x^2 - y^2$ then get N = (x - y)(x + y). But Lucky: we happen to spot two squares that worked. History Carl Pomerance was on the Math Team in High School and this was a problem he was given. He didn't solve it in time, but it inspired him to (much later) invent the Quadratic Sieve Factoring Algorithm.

$$81^2 - 16^2 = 6305 = 5 \times 1261$$

Does this help?

 $81^2-16^2=6305=5\times 1261$ Does this help? $(81-16)\times(81+16)=5\times 1261$

65 imes 97 = 5 imes 1261

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $81^2 - 16^2 = 6305 = 5 \times 1261$ Does this help? (81 - 16) \times (81 + 16) = 5 \times 1261

 $65 \times 97 = 5 \times 1261$

(Could divide both sides by 5, please ignore that.)

 $81^2 - 16^2 = 6305 = 5 \times 1261$

Does this help? $(81 - 16) \times (81 + 16) = 5 \times 1261$

 $65 \times 97 = 5 \times 1261$

(Could divide both sides by 5, please ignore that.) 65 divides 5×1261 , so 65 might share a factor with 1261. Take GCD: GCD(65, 1261) = 13. So 13 divides 1261.

 $81^2 - 16^2 = 6305 = 5 \times 1261$

Does this help? $(81 - 16) \times (81 + 16) = 5 \times 1261$

$$65 \times 97 = 5 \times 1261$$

(Could divide both sides by 5, please ignore that.) 65 divides 5×1261 , so 65 might share a factor with 1261. Take GCD: GCD(65, 1261) = 13. So 13 divides 1261. General If $(x^2 - y^2) = kN$ then

- GCD(x y, N) might be a nontrivial factor.
- GCD(x + y, N) might be a nontrivial factor.

 $81^2 - 16^2 = 6305 = 5 \times 1261$

Does this help? $(81 - 16) \times (81 + 16) = 5 \times 1261$

$$65 \times 97 = 5 \times 1261$$

(Could divide both sides by 5, please ignore that.) 65 divides 5×1261 , so 65 might share a factor with 1261. Take GCD: GCD(65, 1261) = 13. So 13 divides 1261. General If $(x^2 - y^2) = kN$ then

- GCD(x y, N) might be a nontrivial factor.
- GCD(x + y, N) might be a nontrivial factor.

Want

$$x^{2} - y^{2} = kN.$$

$$x^{2} - y^{2} \equiv 0 \pmod{N}.$$

$$x^{2} \equiv y^{2} \pmod{N}.$$

Want $x^2 \equiv y^2 \pmod{1649}$. Start at $\lceil \sqrt{1649} \rceil = 41$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Want $x^2 \equiv y^2 \pmod{1649}$. Start at $\lceil \sqrt{1649} \rceil = 41$. $41^2 \equiv 32 = 2^5 \pmod{1649}$

Want $x^2 \equiv y^2 \pmod{1649}$. Start at $\left\lceil \sqrt{1649} \right\rceil = 41$.

 $41^2 \equiv 32 = 2^5 \pmod{1649}$

 $42^2 \equiv 115 = 5 \times 23 \pmod{1649}$

Want $x^2 \equiv y^2 \pmod{1649}$. Start at $\left\lceil \sqrt{1649} \right\rceil = 41$.

 $41^2 \equiv 32 = 2^5 \pmod{1649}$

$$42^2 \equiv 115 = 5 \times 23 \pmod{1649}$$

 $43^2 \equiv 200 = 2^3 \times 5^2 \pmod{1649}$

Want $x^2 \equiv y^2 \pmod{1649}$. Start at $\lceil \sqrt{1649} \rceil = 41$. $41^2 \equiv 32 = 2^5 \pmod{1649}$ $42^2 \equiv 115 = 5 \times 23 \pmod{1649}$ $43^2 \equiv 200 = 2^3 \times 5^2 \pmod{1649}$ Does any of this help?

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Want $x^2 \equiv y^2 \pmod{1649}$. Start at $\lceil \sqrt{1649} \rceil = 41$. $41^2 \equiv 32 = 2^5 \pmod{1649}$ $42^2 \equiv 115 = 5 \times 23 \pmod{1649}$ $43^2 \equiv 200 = 2^3 \times 5^2 \pmod{1649}$ Does any of this help?

$$41^2 \times 43^2 \equiv 2^5 \times 2^3 \times 5^2 = 2^8 \times 5^2 = (2^4 \times 5)^2 = 80^2$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Want $x^2 \equiv y^2 \pmod{1649}$. Start at $\lceil \sqrt{1649} \rceil = 41$. $41^2 \equiv 32 = 2^5 \pmod{1649}$ $42^2 \equiv 115 = 5 \times 23 \pmod{1649}$ $43^2 \equiv 200 = 2^3 \times 5^2 \pmod{1649}$ Does any of this help?

$$41^2 \times 43^2 \equiv 2^5 \times 2^3 \times 5^2 = 2^8 \times 5^2 = (2^4 \times 5)^2 = 80^2$$

$$(41 \times 43)^2 - 80^2 \equiv 0 \pmod{1649}$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Want $x^2 \equiv y^2 \pmod{1649}$. Start at $\lceil \sqrt{1649} \rceil = 41$. $41^2 \equiv 32 = 2^5 \pmod{1649}$ $42^2 \equiv 115 = 5 \times 23 \pmod{1649}$ $43^2 \equiv 200 = 2^3 \times 5^2 \pmod{1649}$ Does any of this help? $41^2 \times 43^2 \equiv 2^5 \times 2^3 \times 5^2 = 2^8 \times 5^2 = (2^4 \times 5)^2 = 80^2$

$$(41 imes 43)^2 - 80^2 \equiv 0 \pmod{1649}$$

 $1763^2 - 80^2 \equiv 0 \pmod{1649}$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Want $x^2 \equiv y^2 \pmod{1649}$. Start at $\lceil \sqrt{1649} \rceil = 41$. $41^2 \equiv 32 = 2^5 \pmod{1649}$ $42^2 \equiv 115 = 5 \times 23 \pmod{1649}$ $43^2 \equiv 200 = 2^3 \times 5^2 \pmod{1649}$ Does any of this help? $41^2 \times 43^2 \equiv 2^5 \times 2^3 \times 5^2 = 2^8 \times 5^2 = (2^4 \times 5)^2 = 80^2$

$$(41 \times 43)^2 - 80^2 \equiv 0 \pmod{1649}$$

$$1763^2 - 80^2 \equiv 0 \pmod{1649}$$

$$114^2 - 80^2 \equiv 0 \pmod{1649}$$

ション ふぼう メリン メリン しょうくしゃ

Want $x^2 \equiv y^2 \pmod{1649}$. Start at $\lceil \sqrt{1649} \rceil = 41$. $41^2 \equiv 32 = 2^5 \pmod{1649}$ $42^2 \equiv 115 = 5 \times 23 \pmod{1649}$ $43^2 \equiv 200 = 2^3 \times 5^2 \pmod{1649}$ Does any of this help? $41^2 \times 43^2 \equiv 2^5 \times 2^3 \times 5^2 = 2^8 \times 5^2 = (2^4 \times 5)^2 = 80^2$ $(41 \times 43)^2 - 80^2 \equiv 0 \pmod{1649}$ $1763^2 - 80^2 \equiv 0 \pmod{1649}$

 $114^2 - 80^2 \equiv 0 \pmod{1649}$

 $(114 - 80)(114 + 80) \equiv 34 \times 194 \equiv 0 \pmod{1649}$

Want $x^2 \equiv y^2 \pmod{1649}$. Start at $\lceil \sqrt{1649} \rceil = 41$. $41^2 \equiv 32 = 2^5 \pmod{1649}$ $42^2 \equiv 115 = 5 \times 23 \pmod{1649}$ $43^2 \equiv 200 = 2^3 \times 5^2 \pmod{1649}$ Does any of this help? $41^2 \times 43^2 \equiv 2^5 \times 2^3 \times 5^2 = 2^8 \times 5^2 = (2^4 \times 5)^2 = 80^2$ $(41 \times 43)^2 - 80^2 \equiv 0 \pmod{1649}$ $1763^2 - 80^2 \equiv 0 \pmod{1649}$ $114^2 - 80^2 \equiv 0 \pmod{1649}$

 $(114 - 80)(114 + 80) \equiv 34 \times 194 \equiv 0 \pmod{1649}$ GCD(34, 1649) = 17 Found a Factor!

Recall:

$$(114 - 80)(114 + 80) \equiv 34 \times 194 \equiv 0 \pmod{1649}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Recall:

 $(114 - 80)(114 + 80) \equiv 34 \times 194 \equiv 0 \pmod{1649}$ GCD(34, 1649) = 17 Found a Factor!

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Recall:

 $(114 - 80)(114 + 80) \equiv 34 \times 194 \equiv 0 \pmod{1649}$ GCD(34, 1649) = 17 Found a Factor!

What if we used 194 instead of 34?

Recall:

 $(114 - 80)(114 + 80) \equiv 34 \times 194 \equiv 0 \pmod{1649}$ GCD(34, 1649) = 17 Found a Factor!

What if we used 194 instead of 34? GCD(194, 1649) = 97 Found a Factor! So 194 also works.
(ロト (個) (E) (E) (E) (E) のへの

Idea Let $x = \left\lceil \sqrt{N} \right\rceil$.

Idea Let
$$x = \left\lceil \sqrt{N} \right\rceil$$
.
 $(x+0)^2 \equiv y_0 \pmod{N}$. Factor y_0
 $(x+1)^2 \equiv y_1 \pmod{N}$. Factor y_1
 \vdots \vdots

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

Idea Let
$$x = \left\lceil \sqrt{N} \right\rceil$$
.
 $(x+0)^2 \equiv y_0 \pmod{N}$. Factor y_0
 $(x+1)^2 \equiv y_1 \pmod{N}$. Factor y_1
 \vdots \vdots

Look for $I \subseteq \mathbb{N}$ such that: $\prod_{i \in I} y_i = q_1^{2e_1} q_2^{2e_2} \cdots q_k^{2e_k}$.

Idea Let
$$x = \left\lceil \sqrt{N} \right\rceil$$
.
 $(x+0)^2 \equiv y_0 \pmod{N}$. Factor y_0
 $(x+1)^2 \equiv y_1 \pmod{N}$. Factor y_1
 \vdots \vdots
Look for $I \subseteq \mathbb{N}$ such that: $\prod_{i=1}^{k} y_i = a_1^{2e_1} a_2^{2e_2} \cdots a_i^{2e_k}$

Look for $I \subseteq \mathbb{N}$ such that: $\prod_{i \in I} y_i = q_1^{2e_1} q_2^{2e_2} \cdots q_k^{2e_k}$. Then we get:

$$\left(\prod_{i\in I} (x+i)\right)^2 \equiv \left(\prod_{i=1}^k q_i^{e_i}\right)^2 \pmod{N}$$

Idea Let
$$x = \left\lceil \sqrt{N} \right\rceil$$
.
 $(x+0)^2 \equiv y_0 \pmod{N}$. Factor y_0
 $(x+1)^2 \equiv y_1 \pmod{N}$. Factor y_1
 \vdots
Look for $I \subseteq \mathbb{N}$ such that: $\prod_{n \in \mathbb{N}} y_n = q^{2e_1} q^{2e_2} \cdots q^{2e_k}$

Look for $I \subseteq \mathbb{N}$ such that: $\prod_{i \in I} y_i = q_1^{2e_1} q_2^{2e_2} \cdots q_k^{2e_k}$. Then we get:

$$\left(\prod_{i\in I} (x+i)\right)^2 \equiv \left(\prod_{i=1}^k q_i^{\mathbf{e}_i}\right)^2 \pmod{N}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Let $X = \prod_{i \in I} (x+i) \pmod{N}$ and $Y = \prod_{i=1}^{k} q_i^{e_i} \pmod{N}$.

Idea Let
$$x = \left\lceil \sqrt{N} \right\rceil$$
.
 $(x+0)^2 \equiv y_0 \pmod{N}$. Factor y_0
 $(x+1)^2 \equiv y_1 \pmod{N}$. Factor y_1
 \vdots \vdots
Look for $I \subseteq \mathbb{N}$ such that: $\prod_{i \in I} y_i = q_1^{2e_1} q_2^{2e_2} \cdots q_k^{2e_k}$.

Look for $i \subseteq \mathbb{N}$ such that: $\prod_{i \in I} y_i = q_1 q_2 \cdots$ Then we get:

$$\left(\prod_{i\in I} (x+i)\right)^2 \equiv \left(\prod_{i=1}^k q_i^{\mathbf{e}_i}\right)^2 \pmod{N}$$

Let $X = \prod_{i\in I} (x+i) \pmod{N}$ and $Y = \prod_{i=1}^k q_i^{\mathbf{e}_i} \pmod{N}$.
 $X^2 - Y^2 \equiv 0 \pmod{N}$.

Idea Let
$$x = \left\lceil \sqrt{N} \right\rceil$$
.
 $(x+0)^2 \equiv y_0 \pmod{N}$. Factor y_0
 $(x+1)^2 \equiv y_1 \pmod{N}$. Factor y_1
 \vdots
Look for $I \subseteq \mathbb{N}$ such that: $\prod_{n \in \mathbb{N}} y_n = q^{2e_1} q^{2e_2} \cdots q^{2e_k}$

Look for $I \subseteq \mathbb{N}$ such that: $\prod_{i \in I} y_i = q_1^{2e_1} q_2^{2e_2} \cdots q_k^{2e_k}$. Then we get:

$$\left(\prod_{i\in I} (x+i)\right)^2 \equiv \left(\prod_{i=1}^k q_i^{e_i}\right)^2 \pmod{N}$$

Let $X = \prod_{i\in I} (x+i) \pmod{N}$ and $Y = \prod_{i=1}^k q_i^{e_i} \pmod{N}$.
 $X^2 - Y^2 \equiv 0 \pmod{N}$.

Is this a good idea? Discuss.

$$(x+0)^2 \equiv y_0 \pmod{N}$$
. Factor y_0
 $(x+1)^2 \equiv y_1 \pmod{N}$. Factor y_1
 \vdots \vdots

$$(x+0)^2 \equiv y_0 \pmod{N}$$
. Factor y_0
 $(x+1)^2 \equiv y_1 \pmod{N}$. Factor y_1
 \vdots \vdots

In order to factor N we needed to factor the y_i 's.

$$(x+0)^2 \equiv y_0 \pmod{N}$$
. Factor y_0
 $(x+1)^2 \equiv y_1 \pmod{N}$. Factor y_1
 \vdots \vdots

In order to factor N we needed to factor the y_i 's. Really?

$$(x+0)^2 \equiv y_0 \pmod{N}$$
. Factor y_0
 $(x+1)^2 \equiv y_1 \pmod{N}$. Factor y_1
 \vdots \vdots

In order to factor N we needed to factor the y_i 's. Really? Darn!

$$(x+0)^2 \equiv y_0 \pmod{N}$$
. Factor y_0
 $(x+1)^2 \equiv y_1 \pmod{N}$. Factor y_1
 \vdots \vdots

In order to **factor** N we needed to **factor** the y_i 's. Really? Darn! Ideas?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Idea *B* be a parameter. $p_1 < p_2 < \cdots < p_B$ are the first *B* primes.

Def A number is *B*-factorable if largest prime factor is $\leq p_B$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Idea *B* be a parameter. $p_1 < p_2 < \cdots < p_B$ are the first *B* primes.

Def A number is *B*-factorable if largest prime factor is $\leq p_B$.

Example B = 5. Primes 2,3,5,7,11. 1000 = $2^3 \times 5^3$. So *B*-factored. 27378897 = $11 \times 31^2 \times 37$. NOT *B*-factored.

Idea *B* be a parameter. $p_1 < p_2 < \cdots < p_B$ are the first *B* primes.

Def A number is *B*-factorable if largest prime factor is $\leq p_B$.

Example B = 5. Primes 2,3,5,7,11. 1000 = $2^3 \times 5^3$. So *B*-factored. 27378897 = $11 \times 31^2 \times 37$. NOT *B*-factored. Is *B*-factoring faster than factoring?

Idea *B* be a parameter. $p_1 < p_2 < \cdots < p_B$ are the first *B* primes.

Def A number is *B*-factorable if largest prime factor is $\leq p_B$.

Example B = 5. Primes 2,3,5,7,11. 1000 = $2^3 \times 5^3$. So *B*-factored. 27378897 = $11 \times 31^2 \times 37$. NOT *B*-factored. Is *B*-factoring faster than factoring? Lets try to *B*-factor 82203.

Idea *B* be a parameter. $p_1 < p_2 < \cdots < p_B$ are the first *B* primes.

Def A number is *B*-factorable if largest prime factor is $\leq p_B$.

Example B = 5. Primes 2,3,5,7,11. 1000 = $2^3 \times 5^3$. So *B*-factored. 27378897 = $11 \times 31^2 \times 37$. NOT *B*-factored. Is *B*-factoring faster than factoring? Lets try to *B*-factor 82203.

1. Divide 2 into it. 2 does not divide 82203.

Idea *B* be a parameter. $p_1 < p_2 < \cdots < p_B$ are the first *B* primes.

Def A number is *B*-factorable if largest prime factor is $\leq p_B$.

Example B = 5. Primes 2,3,5,7,11. 1000 = $2^3 \times 5^3$. So *B*-factored. 27378897 = $11 \times 31^2 \times 37$. NOT *B*-factored. Is *B*-factoring faster than factoring? Lets try to *B*-factor 82203.

- 1. Divide 2 into it. 2 does not divide 82203.
- 2. Divide 3 into what's left. $82203 = 3 \times 27401$.

Idea *B* be a parameter. $p_1 < p_2 < \cdots < p_B$ are the first *B* primes.

Def A number is *B*-factorable if largest prime factor is $\leq p_B$.

Example B = 5. Primes 2,3,5,7,11. 1000 = $2^3 \times 5^3$. So *B*-factored. 27378897 = $11 \times 31^2 \times 37$. NOT *B*-factored. Is *B*-factoring faster than factoring? Lets try to *B*-factor 82203.

- 1. Divide 2 into it. 2 does not divide 82203.
- 2. Divide 3 into what's left. $82203 = 3 \times 27401$.
- 3. Divide 5 into what's left. 5 does not divide 27401.

Idea *B* be a parameter. $p_1 < p_2 < \cdots < p_B$ are the first *B* primes.

Def A number is *B*-factorable if largest prime factor is $\leq p_B$.

Example B = 5. Primes 2,3,5,7,11. 1000 = $2^3 \times 5^3$. So *B*-factored. 27378897 = $11 \times 31^2 \times 37$. NOT *B*-factored. Is *B*-factoring faster than factoring? Lets try to *B*-factor 82203.

- 1. Divide 2 into it. 2 does not divide 82203.
- 2. Divide 3 into what's left. $82203 = 3 \times 27401$.
- 3. Divide 5 into what's left. 5 does not divide 27401.
- 4. Divide 7 into what's left. 7 does not divide 27401.

Idea *B* be a parameter. $p_1 < p_2 < \cdots < p_B$ are the first *B* primes.

Def A number is *B*-factorable if largest prime factor is $\leq p_B$.

Example B = 5. Primes 2,3,5,7,11. 1000 = $2^3 \times 5^3$. So *B*-factored. 27378897 = $11 \times 31^2 \times 37$. NOT *B*-factored. Is *B*-factoring faster than factoring? Lets try to *B*-factor 82203.

- 1. Divide 2 into it. 2 does not divide 82203.
- 2. Divide 3 into what's left. $82203 = 3 \times 27401$.
- 3. Divide 5 into what's left. 5 does not divide 27401.
- 4. Divide 7 into what's left. 7 does not divide 27401.
- 5. Divide 11 into what's left. $82203 = 3 \times 11 \times 2491$.

Idea *B* be a parameter. $p_1 < p_2 < \cdots < p_B$ are the first *B* primes.

Def A number is *B*-factorable if largest prime factor is $\leq p_B$.

Example B = 5. Primes 2,3,5,7,11. 1000 = $2^3 \times 5^3$. So *B*-factored. 27378897 = $11 \times 31^2 \times 37$. NOT *B*-factored. Is *B*-factoring faster than factoring? Lets try to *B*-factor 82203.

- 1. Divide 2 into it. 2 does not divide 82203.
- 2. Divide 3 into what's left. $82203 = 3 \times 27401$.
- 3. Divide 5 into what's left. 5 does not divide 27401.
- 4. Divide 7 into what's left. 7 does not divide 27401.
- 5. Divide 11 into what's left. $82203 = 3 \times 11 \times 2491$.
- 6. DONE. NOT B-factorable. Only did B divisions.

Abbreviation

We use *B*-fact for *B*-factorable.

*ロト *昼 * * ミ * ミ * ミ * のへぐ

Why?

Abbreviation

We use *B*-fact for *B*-factorable.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Why?

Space on slides!

Want to factor 539873. B = 7 so use 2, 3, 5, 7, 11, 13, 17 $\left\lceil \sqrt{539873} \right\rceil = 735$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Want to factor 539873. B = 7 so use 2, 3, 5, 7, 11, 13, 17 $\lceil \sqrt{539873} \rceil = 735$ $735^2 \equiv 352 = 2^5 \times 11^1 \pmod{539873}$. $736^2, \dots, 749^2 \text{ did not 7-factor.}$

ション ふゆ アメリア メリア しょうくしゃ

Want to factor 539873. B = 7 so use 2, 3, 5, 7, 11, 13, 17 $\lceil \sqrt{539873} \rceil = 735$ $735^2 \equiv 352 = 2^5 \times 11^1 \pmod{539873}$. $736^2, \dots, 749^2 \text{ did not 7-factor.}$ $750^2 \equiv 22627 \equiv 11^3 \times 17^1 \pmod{539873}$.

ション ふゆ アメリア メリア しょうくしゃ

Want to factor 539873. B = 7 so use 2, 3, 5, 7, 11, 13, 17 $\lceil \sqrt{539873} \rceil = 735$ $735^2 \equiv 352 = 2^5 \times 11^1 \pmod{539873}$. $736^2, \dots, 749^2 \operatorname{did} \operatorname{not} 7\operatorname{-factor}$. $750^2 \equiv 22627 \equiv 11^3 \times 17^1 \pmod{539873}$. $751^2, \dots, 782^2 \operatorname{did} \operatorname{not} 7\operatorname{-factor}$.

ション ふぼう メリン メリン しょうくしゃ

Want to factor 539873. B = 7 so use 2, 3, 5, 7, 11, 13, 17 $\lceil \sqrt{539873} \rceil = 735$ $735^2 \equiv 352 = 2^5 \times 11^1 \pmod{539873}$. $736^2, \dots, 749^2 \operatorname{did} \operatorname{not} 7\operatorname{-factor}$. $750^2 \equiv 22627 \equiv 11^3 \times 17^1 \pmod{539873}$. $751^2, \dots, 782^2 \operatorname{did} \operatorname{not} 7\operatorname{-factor}$. $783^2 \equiv 73216 \equiv 2^9 \times 11^1 \times 13^1 \pmod{539873}$.

ション ふぼう メリン メリン しょうくしゃ

Want to factor 539873. B = 7 so use 2, 3, 5, 7, 11, 13, 17 $\left[\sqrt{539873}\right] = 735$ $735^2 \equiv 352 = 2^5 \times 11^1 \pmod{539873}$. 736²....,749² did not 7-factor. $750^2 \equiv 22627 \equiv 11^3 \times 17^1 \pmod{539873}$. 751²,..., 782² did not 7-factor. $783^2 \equiv 73216 \equiv 2^9 \times 11^1 \times 13^1 \pmod{539873}$. 784²,...,800² did not 7-factor. $801^2 \equiv 101728 \equiv 2^5 \times 11^1 \times 17^2 \pmod{539873}$. Can we use this? Next Slide I write it more nicely.

Example Continued: Trying to factor 539873

 $\begin{array}{l} 735^2\equiv 352=2^5\times 11^1 \ (\mbox{mod}\ 539873).\\ 750^2\equiv 22627\equiv 11^3\times 17^1 \ (\mbox{mod}\ 539873).\\ 783^2\equiv 73216\equiv 2^9\times 11^1\times 13^1 \ (\mbox{mod}\ 539873).\\ 801^2\equiv 101728\equiv 2^5\times 11^1\times 17^2 \ (\mbox{mod}\ 539873). \end{array}$

Can you find a way to multiple some of these to get $X^2 \equiv Y^2$?

ション ふぼう メリン メリン しょうくしゃ

Example Continued: Trying to factor 539873

 $\begin{array}{l} 735^2\equiv 352=2^5\times 11^1 \ (\mbox{mod}\ 539873).\\ 750^2\equiv 22627\equiv 11^3\times 17^1 \ (\mbox{mod}\ 539873).\\ 783^2\equiv 73216\equiv 2^9\times 11^1\times 13^1 \ (\mbox{mod}\ 539873).\\ 801^2\equiv 101728\equiv 2^5\times 11^1\times 17^2 \ (\mbox{mod}\ 539873). \end{array}$

Can you find a way to multiple some of these to get $X^2 \equiv Y^2$?

$$(735 \times 801)^2 \equiv 2^{10} \times 11^2 \times 17^2 \pmod{539873}$$

 $(735 \times 801)^2 \equiv (2^5 \times 11 \times 17)^2 \pmod{539873}$

$$588735^2 \equiv 5984^2 \pmod{539873}$$

$$48862^2 \equiv 5984^2 \pmod{539873}$$

ション ふゆ アメリア メリア しょうくしゃ

We have found:

$$48862^2 - 5984^2 \equiv 0 \pmod{539873}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Now we use it to find a factor:

We have found:

$$48862^2 - 5984^2 \equiv 0 \pmod{539873}$$

Now we use it to find a factor:

 $(48862 - 5984) \times (48862 + 5984) \equiv 0 \pmod{539873}$

We have found:

$$48862^2 - 5984^2 \equiv 0 \pmod{539873}$$

Now we use it to find a factor:

 $(48862 - 5984) \times (48862 + 5984) \equiv 0 \pmod{539873}$

 $42878 \times 54846 \equiv 0 \pmod{539873}$

We have found:

$$48862^2 - 5984^2 \equiv 0 \pmod{539873}$$

Now we use it to find a factor:

 $(48862 - 5984) \times (48862 + 5984) \equiv 0 \pmod{539873}$

 $42878 \times 54846 \equiv 0 \pmod{539873}$

GCD(42878, 539873) = 1949

ション ふゆ アメリア メリア しょうくしゃ

1949 divides 539873. Found a Factor!
We Noticed That... Can a Program?

$$\begin{bmatrix} \sqrt{539873} \end{bmatrix} = 735 735^2 \equiv 352 = 2^5 \times 11^1 \pmod{539873}. 750^2 \equiv 22627 \equiv 11^3 \times 17^1 \pmod{539873}. 783^2 \equiv 73216 \equiv 2^9 \times 11^1 \times 13^1 \pmod{539873}. 801^2 \equiv 101728 \equiv 2^5 \times 11^1 \times 17^2 \pmod{539873}.$$

Notice that

$$(735 \times 801)^2 \equiv 2^{10} \times 11^2 \times 17^2$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

How can a program **Notice That** ? What is a program supposed to notice? Discuss.

We Noticed That... Can a Program? Cont

$$\begin{bmatrix} \sqrt{539873} \end{bmatrix} = 735 735^2 \equiv 352 = 2^5 \times 11^1 \pmod{539873}. 750^2 \equiv 22627 \equiv 11^3 \times 17^1 \pmod{539873}. 783^2 \equiv 73216 \equiv 2^9 \times 11^1 \times 13^1 \pmod{539873}. 801^2 \equiv 101728 \equiv 2^5 \times 11^1 \times 17^2 \pmod{539873}.$$

$$(735 \times 801)^2 \equiv 2^{10} \times 11^2 \times 17^2$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

All of the exponents on the right-hand-side are even.

We Noticed That... Can a Program? Cont

$$\begin{bmatrix} \sqrt{539873} \end{bmatrix} = 735 735^2 \equiv 352 = 2^5 \times 11^1 \pmod{539873}. 750^2 \equiv 22627 \equiv 11^3 \times 17^1 \pmod{539873}. 783^2 \equiv 73216 \equiv 2^9 \times 11^1 \times 13^1 \pmod{539873}. 801^2 \equiv 101728 \equiv 2^5 \times 11^1 \times 17^2 \pmod{539873}$$

$$(735 \times 801)^2 \equiv 2^{10} \times 11^2 \times 17^2$$

All of the exponents on the right-hand-side are even.

We want to find a set of right-hand-sides so that when multiplied together all of the exponents are even.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Idea One

Store exponents in vector. Power-of-2, Power-of-3,...,Power-of-17. $\left\lceil \sqrt{539873} \right\rceil = 735$

Want some combination of the vectors to have all even numbers. Can we use Linear Algebra? Discuss

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Idea One

Store exponents in vector. Power-of-2, Power-of-3,...,Power-of-17. $\left\lceil \sqrt{539873} \right\rceil = 735$

Want some combination of the vectors to have all even numbers. Can we use Linear Algebra? Discuss We **do not need** the numbers. All we need are the parities!

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Idea Two

Store parities of exponents in vector. $\left\lceil \sqrt{539873} \right\rceil = 735$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Idea Two

Store parities of exponents in vector. $\lceil \sqrt{539873} \rceil = 735$

Well Defined Math Problem Given a set of 0-1 *B*-vectors over mod 2 does some subset of them sum to $\vec{0}$? Equivalent to asking if some subset is linearly dependent.

- ► Can solve using Gaussian Elimination.
- If there are B + 1 vectors then there will be such a set.

Quad Sieve Alg: First Attempt

Given N let
$$x = \left\lceil \sqrt{N} \right\rceil$$
. All \equiv are mod N. B, M are params.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Quad Sieve Alg: First Attempt

Given
$$N$$
 let $x = \left\lceil \sqrt{N} \right\rceil$. All \equiv are mod N . B, M are params.
 $(x + 0)^2 \equiv y_0$ Try to B -Factor y_0 to get parity $\vec{v_0}$.
 \vdots \vdots
 $(x + M)^2 \equiv y_M$ Try to B -Factor y_M to get parity $\vec{v_M}$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Quad Sieve Alg: First Attempt

Given
$$N$$
 let $x = \lfloor \sqrt{N} \rfloor$. All \equiv are mod N . B, M are params.
 $(x + 0)^2 \equiv y_0$ Try to B -Factor y_0 to get parity $\vec{v_0}$.
 \vdots \vdots
 $(x + M)^2 \equiv y_M$ Try to B -Factor y_M to get parity $\vec{v_M}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Some of the y_i were *B*-factored, but some were not.

Some of the y_i were *B*-factored, but some were not:

Some of the y_i were *B*-factored, but some were not:

 $(x+a)^2 \mod N = y_a = 2^{a_1} 3^{a_2} \cdots p_B^{a_B}$. $\vec{a} = (a_1, \dots, a_B) \pmod{2}$.

ション ふゆ アメリア メリア しょうくしゃ

Some of the y_i were *B*-factored, but some were not:

 $(x+a)^2 \mod N = y_a = 2^{a_1} 3^{a_2} \cdots p_B^{a_B}$. $\vec{a} = (a_1, \dots, a_B) \pmod{2}$.

Some of the y_i were B-factored, but some were not: $(x + a)^2 \mod N = y_a = 2^{a_1} 3^{a_2} \cdots p_B^{a_B}$. $\vec{a} = (a_1, \dots, a_B) \pmod{2}$. : $(x + z)^2 \mod N = y_z = 2^{z_1} 3^{z_2} \cdots p_B^{z_B}$, $\vec{b} = (z_1, \dots, z_B) \pmod{2}$.

Some of the y_i were *B*-factored, but some were not: $(x + a)^2 \mod N = y_a = 2^{a_1}3^{a_2}\cdots p_B^{a_B}$. $\vec{a} = (a_1, \dots, a_B) \pmod{2}$. \vdots $(x + z)^2 \mod N = y_z = 2^{z_1}3^{z_2}\cdots p_B^{z_B}$, $\vec{b} = (z_1, \dots, z_B) \pmod{2}$.

Try to find come combination of \vec{a} , ..., \vec{z} that sums $\vec{0}$ mod 2.

Some of the y_i were *B*-factored, but some were not: $(x + a)^2 \mod N = y_a = 2^{a_1} 3^{a_2} \cdots p_B^{a_B}$. $\vec{a} = (a_1, \dots, a_B) \pmod{2}$. \vdots $(x + z)^2 \mod N = y_z = 2^{z_1} 3^{z_2} \cdots p_B^{z_B}$, $\vec{b} = (z_1, \dots, z_B) \pmod{2}$.

Try to find come combination of \vec{a} , ..., \vec{z} that sums $\vec{0} \mod 2$. Lets say $\vec{a} + \vec{d} + \vec{q} \equiv \vec{0} \pmod{2}$. Then

$$(x+a)^2(x+d)^2(x+q)^2 \equiv y_a y_d y_q = Y^2$$

Some of the y_i were *B*-factored, but some were not: $(x + a)^2 \mod N = y_a = 2^{a_1}3^{a_2}\cdots p_B^{a_B}$. $\vec{a} = (a_1, \dots, a_B) \pmod{2}$. \vdots $(x + z)^2 \mod N = y_z = 2^{z_1}3^{z_2}\cdots p_B^{z_B}$, $\vec{b} = (z_1, \dots, z_B) \pmod{2}$.

Try to find come combination of \vec{a} , ..., \vec{z} that sums $\vec{0} \mod 2$. Lets say $\vec{a} + \vec{d} + \vec{q} \equiv \vec{0} \pmod{2}$. Then

$$(x+a)^2(x+d)^2(x+q)^2 \equiv y_a y_d y_q = Y^2$$

$$((x+a)(x+d)(x+q))^2 \equiv y_a y_d y_q = Y^2$$

Some of the y_i were *B*-factored, but some were not: $(x + a)^2 \mod N = y_a = 2^{a_1}3^{a_2}\cdots p_B^{a_B}$. $\vec{a} = (a_1, \dots, a_B) \pmod{2}$. \vdots $(x + z)^2 \mod N = y_z = 2^{z_1}3^{z_2}\cdots p_B^{z_B}$, $\vec{b} = (z_1, \dots, z_B) \pmod{2}$.

Try to find come combination of \vec{a} , ..., \vec{z} that sums $\vec{0} \mod 2$. Lets say $\vec{a} + \vec{d} + \vec{q} \equiv \vec{0} \pmod{2}$. Then

$$(x + a)^{2}(x + d)^{2}(x + q)^{2} \equiv y_{a}y_{d}y_{q} = Y^{2}$$

$$((x+a)(x+d)(x+q))^2 \equiv y_a y_d y_q = Y^2$$

$$X^2 \equiv Y^2 \pmod{N}$$

Some of the y_i were *B*-factored, but some were not: $(x + a)^2 \mod N = y_a = 2^{a_1}3^{a_2}\cdots p_B^{a_B}$. $\vec{a} = (a_1, \dots, a_B) \pmod{2}$. \vdots $(x + z)^2 \mod N = y_z = 2^{z_1}3^{z_2}\cdots p_B^{z_B}$, $\vec{b} = (z_1, \dots, z_B) \pmod{2}$.

Try to find come combination of \vec{a} , ..., \vec{z} that sums $\vec{0} \mod 2$. Lets say $\vec{a} + \vec{d} + \vec{q} \equiv \vec{0} \pmod{2}$. Then

$$(x+a)^2(x+d)^2(x+q)^2 \equiv y_a y_d y_q = Y^2$$

$$((x+a)(x+d)(x+q))^2 \equiv y_a y_d y_q = Y^2$$

$$X^2 \equiv Y^2 \pmod{N}$$

$$(X-Y)(X+Y) \equiv 0 \pmod{N}$$

Some of the y_i were *B*-factored, but some were not: $(x + a)^2 \mod N = y_a = 2^{a_1}3^{a_2}\cdots p_B^{a_B}$. $\vec{a} = (a_1, \dots, a_B) \pmod{2}$. : $(x + z)^2 \mod N = y_z = 2^{z_1}3^{z_2}\cdots p_B^{z_B}$, $\vec{b} = (z_1, \dots, z_B) \pmod{2}$.

Try to find come combination of \vec{a} , ..., \vec{z} that sums $\vec{0} \mod 2$. Lets say $\vec{a} + \vec{d} + \vec{q} \equiv \vec{0} \pmod{2}$. Then

$$(x+a)^2(x+d)^2(x+q)^2 \equiv y_a y_d y_q = Y^2$$

$$((x+a)(x+d)(x+q))^2 \equiv y_a y_d y_q = Y^2$$

$$X^2 \equiv Y^2 \pmod{N}$$

$$(X-Y)(X+Y)\equiv 0\pmod{N}$$

GCD(X - Y, N) probably a factor of N.

Given N let $x = \left\lceil \sqrt{N} \right\rceil$. All \equiv are mod N. B, M are params.

Given
$$N$$
 let $x = \left\lceil \sqrt{N} \right\rceil$. All \equiv are mod N . B, M are params.
 $(x + 0)^2 \equiv y_0$ Try to B -Factor y_0 to get parity $\vec{v_0}$.
 \vdots \vdots
 $(x + M)^2 \equiv y_M$ Try to B -Factor y_M to get parity $\vec{v_M}$.
Let I be the set of all i such that y_i was B -factored.

Given
$$N$$
 let $x = \left\lceil \sqrt{N} \right\rceil$. All \equiv are mod N . B, M are params.
 $(x+0)^2 \equiv y_0$ Try to B -Factor y_0 to get parity \vec{v}_0 .
 \vdots \vdots
 $(x+M)^2 \equiv y_M$ Try to B -Factor y_M to get parity \vec{v}_M .
Let I be the set of all i such that y_i was B -factored.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Find $J \subseteq I$ such that $\sum_{i \in J} \vec{v}_i = \vec{0}$.

Given $N \text{ let } x = \left\lceil \sqrt{N} \right\rceil$. All \equiv are mod N. B, M are params. $(x + 0)^2 \equiv y_0$ Try to B-Factor y_0 to get parity \vec{v}_0 . \vdots \vdots $(x + M)^2 \equiv y_M$ Try to B-Factor y_M to get parity \vec{v}_M . Let I be the set of all i such that y_i was B-factored.

Find
$$J \subseteq I$$
 such that $\sum_{i \in J} \vec{v}_i = \vec{0}$.

Hence $\prod_{i \in J} y_i$ has all even exponents. **Important!** Since $\prod_{i \in J} y_i$ has all even exponents, there exists Y

$$\prod_{i\in J} y_i = Y^2$$

Quad Sieve Alg: First Attempt, Cont

$$\left(\prod_{i\in J} (x+i)\right)^2 \equiv \prod_{i\in J} y_i = Y^2 \pmod{N}$$

Let $X = \prod_{i\in J} (x+i) \pmod{N}$ and $Y = \prod_{i\in J} y_i \pmod{N}$.
 $X^2 - Y^2 \equiv 0 \pmod{N}$.

$$(X - Y)(X + Y) = kN$$
 for some k
 $\operatorname{GCD}(X - Y, N)$, $\operatorname{GCD}(X + Y, N)$ should yield factors.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

A Tip for Learning This Material

We will revisit the above algorithm later when we get it to really work.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

A Tip for Learning This Material

We will revisit the above algorithm later when we get it to really work.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

When we do we are not going to redo the $y_a y_d y_q$ example.

A Tip for Learning This Material

We will revisit the above algorithm later when we get it to really work.

When we do we are not going to redo the $y_a y_d y_q$ example.

SO – Make sure you understand the algorithm before the next lecture (and the one after that).

What Could go Wrong

▲ロト ◆聞 ト ◆ 臣 ト ◆ 臣 ト ○臣 ○ の Q @

What Could go Wrong

1. There is no set of rows that is linearly dependent.

What Could go Wrong

- 1. There is no set of rows that is linearly dependent.
- 2. You find X, Y such that $X^2 \equiv Y^2 \mod N$ but then GCD(X - Y, N) = 1 and GCD(X + Y, N) = N. This is very rare so we will not worry about it.

1. Run time will depend on B and M. Gaussian Elimination is $O(B^3)$ which will be the main time sink. So want B small.

(ロト (個) (E) (E) (E) (E) のへの

- 1. Run time will depend on B and M. Gaussian Elimination is $O(B^3)$ which will be the main time sink. So want B small.
- If B is large then more numbers are B-fact, so have to go through less numbers to get B + 1 B-fact numbers (hence B + 1 vectors of dim B) so guaranteed to have a linear dependency. Hence want B large.

ション ふゆ アメリア メリア しょうくしゃ

- 1. Run time will depend on B and M. Gaussian Elimination is $O(B^3)$ which will be the main time sink. So want B small.
- If B is large then more numbers are B-fact, so have to go through less numbers to get B + 1 B-fact numbers (hence B + 1 vectors of dim B) so guaranteed to have a linear dependency. Hence want B large.
- 3. In practice *B* is chosen carefully based on computation and conjectures in Number Theory.

ション ふゆ アメリア メリア しょうくしゃ

Most Important Step to Speed Up

An earlier slide said **Gaussian Elimination is** $O(B^3)$ which will be the main time sink.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Most Important Step to Speed Up

An earlier slide said Gaussian Elimination is $O(B^3)$ which will be the main time sink.

What about B factoring M numbers. That would seem to also be a time sink.

Most Important Step to Speed Up

An earlier slide said Gaussian Elimination is $O(B^3)$ which will be the main time sink.

What about B factoring M numbers. That would seem to also be a time sink.

The key to making the algorithm practical is Carl Pomerance's insight which is the how to do all that B-factoring fast. To do this we need a LOOOOONG aside on Sieving.