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Notation Reminder
1) GCD(x, y) is the Greatest Common Divisor of x , y .

2) Sums and Products

n∑
i=1

ai = a1 + a2 + · · ·+ an.

n∏
i=1

ai = a1 × a2 × · · · × an.

3) More Sums and Products We summed or producted over
{1, . . . , n}. Can use other sets.
If A = {1, 4, 9} then ∑

i∈A
ai = a1 + a4 + a9.

∏
i∈A

ai = a1 × a4 × a9.
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More Notation Reminder

4) a1, . . . , an could be vectors.∑
i∈A

~ai = ~a1 + ~a4 + ~a9.

Addition is component-wise.

We will not be using any notion of a product of vectors.

5) We extend mod notation to vectors of integers. Example:

(8, 1, 0, 9) (mod 2) = (0, 1, 0, 1).
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A LONG Aside on
Sieving



Finding all Primes ≤ 48, the Stupid Way

To find all primes ≤ 48 we could do the following:

for i = 2 to 48 if isprime(i)=YES then output i .

Is this a good idea? Discuss.

No You are testing many numbers that you could have, ahead of
time, ruled out.
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Finding all Primes ≤ 48 the Smart Way

Write down the numbers ≤ 48.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48

Now output first unmarked—2—and MARK all multiples of 2.
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We Have Marked Multiples of 2

Now Have:

2 3 4 5 6 7 8 9 10 11 12 13 14 15

X X X X X X X

16 17 18 19 20 21 22 23 24 25 26 27

X X X X X X

28 29 30 31 32 33 34 35 36 37 38 39

X X X X X X

40 41 42 43 44 45 46 47 48

X X X X X

Now output first unmarked—3—and MARK all multiples of 3.
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We Have Marked Multiples of 2 and 3

Now Have:
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Now output first unmarked—5—and MARK all multiples of 5.
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We Have Marked Multiples of 2,3 and 5

Now Have:

2 3 4 5 6 7 8 9 10 11 12 13 14 15
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X X X X X X

Now output first unmarked—7—and MARK all multiples of 7. You
get the idea so we stop here.
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A Few Points About this Process
Speed

1. This process is really fast since when (say) MARKING mults
of 3: We DO NOT look at (say) 23 and say no . WE DO
NOT look at (say) 23 at all.

2. The KEY to many Number Theory Algorithms is not looking
.

3. Good number theory algs act on a need-to-know basis.

Could we make it faster?

1. When MARKING mults of 3 we skip marking 3 + 3× 1,
3 + 3× 3 since mults of 2 are already MARKED.

2. When MARKING mults of 5 we skip marking 5 + 5× 1,
5 + 5× 3, 5 + 5× 5, since mults of 2 are already MARKED.
Hard to also avoid mults of 3, but could.

3. When MARKING mults of BLAH we could BLAHBLAH.

4. If our goal was to JUST get a list of primes, we might do this.

5. Our goal will be to FACTOR these numbers. As such we
cannot use this shortcut. (Clear later.)
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The Sieve of Eratosthenes

1. Input(N)

2. Write down 2, 3, . . . ,N. All are unmarked.

3. (MARK STEP) Goto the first unmarked element of the list p.
Output(p). Keep pointer there. (When pointer is at N or
beyond then stop.)

4. Mark all multiples of p up to
⌊
N
p

⌋
p. (This takes N

p steps.)

5. GOTO MARK STEP.

Time: ∑
p≤N

N

p
= N

∑
p≤N

1

p

New Question: What is
∑

p≤N
1
p?
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What is
∑∑∑

p≤N
1
p Asymptotically? History

When I looked up
∑

p≤N
1
p on the web I found:

1. Proofs that
∑

p<∞
1
p diverges.

2. Some of those proofs show that
∑

p≤N
1
p ≥ ln(ln(N)) + O(1).

3. Nothing on upper bounds on the sum.

4. TA Erik, when proofreading these slides, was able to find the
theorem, though it was difficult. It’s Merten’s Second Thm.

A sequence of events:

1. In 2010 Larry Washington showed Bill G a proof that∑
p≤N

1

p
≤ ln(ln(N)) + O(1).

2. Larry says its a well known theorem but never written down.
Bill suggests they write it down. It is now on arxiv.

Moral of the Story Google is not always enough.
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More on
∑∑∑

p≤N
1
p

1.
∑

n≤N
1
n ∼ ln(n).

2.
∑

p≤N
1
p ∼ ln(ln(N)).

How good is this approximation?
1) When N ≥ 286,

ln(lnN)− 1

2(lnN)2
+ C ≤

∑
p≤N

1

p
≤ ln(lnN) +

1

(2 lnN)2
+ C ,

where C ∼ 0.261497212847643.

2)

I
∑

p≤10
1
p = 1.176.

I
∑

p≤109
1
p = 3.293.

I
∑

p≤10100
1
p ∼ 5.7.

I
∑

p≤101000
1
p ∼ 7.8.



Take Away

∑
p≤N

1

p
∼ ln(lnN).

I This is a very good approximation.

I This is very small

I (Cheating to make math easier) The largest pq factored is
around 170-digits. We assume a limit of 1000 digits. Hence
we treat ln(ln(N)) as if it was

ln(ln(N)) ≤ ln(ln(1000)) ∼ 8.

(Nobody else does this.)


