Public Key Crtyptography

Public Key Cryptography

Alice and Bob never have to meet!

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The following can be done quickly.

The following can be done quickly.

 Given (a, n, p) compute aⁿ (mod p). Repeated Squaring. Takes lg n + (number of 1's in n).

The following can be done quickly.

- Given (a, n, p) compute aⁿ (mod p). Repeated Squaring. Takes lg n + (number of 1's in n).
- 2. Given n, find a safe prime of length n and a generator g.

ション ふゆ アメビア メロア しょうくり

The following can be done quickly.

- Given (a, n, p) compute aⁿ (mod p). Repeated Squaring. Takes lg n + (number of 1's in n).
- 2. Given n, find a safe prime of length n and a generator g.
- 3. Given a, b rel prime find inverse of a mod b: Euclidean alg.

Number Theory Assumptions

- 1. Discrete Log is hard.
- 2. Factoring is hard.

Note Actual hardness assumptions are not quite DL hard and Factoring hard but are close.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Alice and Bob will share a secret *s*. Security parameter *L*.

Alice and Bob will share a secret *s*. Security parameter *L*. **1**. Alice finds a (p, g), *p* of length *L*, *g* gen for \mathbb{Z}_p .

Alice and Bob will share a secret s. Security parameter L.

- 1. Alice finds a (p,g), p of length L, g gen for \mathbb{Z}_p .
- 2. Alice sends (p,g) to Bob in the clear (Eve sees (p,g)).

Alice and Bob will share a secret s. Security parameter L.

- 1. Alice finds a (p,g), p of length L, g gen for \mathbb{Z}_p .
- 2. Alice sends (p,g) to Bob in the clear (Eve sees (p,g)).
- 3. Alice picks random $a \in \{1, ..., p-1\}$, computes g^a and sends it to Bob in the clear (Eve sees g^a).

Alice and Bob will share a secret s. Security parameter L.

- 1. Alice finds a (p,g), p of length L, g gen for \mathbb{Z}_p .
- 2. Alice sends (p, g) to Bob in the clear (Eve sees (p, g)).
- 3. Alice picks random $a \in \{1, ..., p-1\}$, computes g^a and sends it to Bob in the clear (Eve sees g^a).
- 4. Bob picks random $b \in \{1, ..., p-1\}$, computes g^b and sends it to Alice in the clear (Eve sees g^b).

Alice and Bob will share a secret s. Security parameter L.

- 1. Alice finds a (p,g), p of length L, g gen for \mathbb{Z}_p .
- 2. Alice sends (p, g) to Bob in the clear (Eve sees (p, g)).
- 3. Alice picks random $a \in \{1, ..., p-1\}$, computes g^a and sends it to Bob in the clear (Eve sees g^a).
- 4. Bob picks random $b \in \{1, ..., p-1\}$, computes g^b and sends it to Alice in the clear (Eve sees g^b).

5. Alice computes $(g^b)^a = g^{ab}$.

Alice and Bob will share a secret s. Security parameter L.

- 1. Alice finds a (p,g), p of length L, g gen for \mathbb{Z}_p .
- 2. Alice sends (p, g) to Bob in the clear (Eve sees (p, g)).
- Alice picks random a ∈ {1,..., p − 1}, computes g^a and sends it to Bob in the clear (Eve sees g^a).
- 4. Bob picks random $b \in \{1, ..., p-1\}$, computes g^b and sends it to Alice in the clear (Eve sees g^b).

- 5. Alice computes $(g^b)^a = g^{ab}$.
- 6. Bob computes $(g^a)^b = g^{ab}$.

Alice and Bob will share a secret s. Security parameter L.

- 1. Alice finds a (p,g), p of length L, g gen for \mathbb{Z}_p .
- 2. Alice sends (p, g) to Bob in the clear (Eve sees (p, g)).
- Alice picks random a ∈ {1,..., p − 1}, computes g^a and sends it to Bob in the clear (Eve sees g^a).
- 4. Bob picks random $b \in \{1, ..., p-1\}$, computes g^b and sends it to Alice in the clear (Eve sees g^b).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- 5. Alice computes $(g^b)^a = g^{ab}$.
- 6. Bob computes $(g^a)^b = g^{ab}$.
- 7. g^{ab} is the shared secret.

Alice and Bob will share a secret s. Security parameter L.

- 1. Alice finds a (p,g), p of length L, g gen for \mathbb{Z}_p .
- 2. Alice sends (p, g) to Bob in the clear (Eve sees (p, g)).
- Alice picks random a ∈ {1,..., p − 1}, computes g^a and sends it to Bob in the clear (Eve sees g^a).
- Bob picks random b ∈ {1,..., p − 1}, computes g^b and sends it to Alice in the clear (Eve sees g^b).

- 5. Alice computes $(g^b)^a = g^{ab}$.
- 6. Bob computes $(g^a)^b = g^{ab}$.
- 7. g^{ab} is the shared secret.

Def Let
$$f$$
 be $f(p, g, g^a, g^b) = g^{ab}$.

Hardness assumption: *f* is hard to compute.

ElGamal Uses DH So Can Control Message

- 1. Alice and Bob do Diffie Helman.
- 2. Alice and Bob share secret $s = g^{ab}$.
- 3. Alice and Bob compute $(g^{ab})^{-1} \pmod{p}$.
- 4. To send *m*, Alice sends $c = mg^{ab}$

5. To decrypt, Bob computes $c(g^{ab})^{-1} \equiv mg^{ab}(g^{ab})^{-1} \equiv m$ We omit discussion of Hardness assumption (HW)

ション ふゆ アメビア メロア しょうくり

Let *L* be a security parameter

Let L be a security parameter

1. Alice picks two primes p, q of length L. N = pq.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Let *L* be a security parameter

- 1. Alice picks two primes p, q of length L. N = pq.
- 2. Alice computes $R = \phi(N) = \phi(pq) = (p-1)(q-1)$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Let L be a security parameter

- 1. Alice picks two primes p, q of length L. N = pq.
- 2. Alice computes $R = \phi(N) = \phi(pq) = (p-1)(q-1)$.
- 3. Alice picks an $e \in \{\frac{R}{3}, \dots, \frac{2R}{3}\}$ that is relatively prime to R. Alice finds d such that $ed \equiv 1 \pmod{R}$.

ション ふゆ アメビア メロア しょうくり

Let L be a security parameter

- 1. Alice picks two primes p, q of length L. N = pq.
- 2. Alice computes $R = \phi(N) = \phi(pq) = (p-1)(q-1)$.
- 3. Alice picks an $e \in \{\frac{R}{3}, \dots, \frac{2R}{3}\}$ that is relatively prime to R. Alice finds d such that $ed \equiv 1 \pmod{R}$.

4. Alice broadcasts (N, e). (Bob and Eve both see it.)

Let L be a security parameter

- 1. Alice picks two primes p, q of length L. N = pq.
- 2. Alice computes $R = \phi(N) = \phi(pq) = (p-1)(q-1)$.
- 3. Alice picks an $e \in \{\frac{R}{3}, \dots, \frac{2R}{3}\}$ that is relatively prime to R. Alice finds d such that $ed \equiv 1 \pmod{R}$.

- 4. Alice broadcasts (N, e). (Bob and Eve both see it.)
- 5. **Bob:** To send $m \in \{1, \ldots, N-1\}$, send $m^e \pmod{N}$.

Let L be a security parameter

1. Alice picks two primes p, q of length L. N = pq.

2. Alice computes
$$R = \phi(N) = \phi(pq) = (p-1)(q-1)$$
.

- 3. Alice picks an $e \in \{\frac{R}{3}, \dots, \frac{2R}{3}\}$ that is relatively prime to R. Alice finds d such that $ed \equiv 1 \pmod{R}$.
- 4. Alice broadcasts (N, e). (Bob and Eve both see it.)
- 5. **Bob:** To send $m \in \{1, \ldots, N-1\}$, send $m^e \pmod{N}$.
- 6. If **Alice** gets $m^e \pmod{N}$ she computes

$$(m^e)^d \equiv m^{ed} \equiv m^{ed \pmod{R}} \equiv m^{1 \pmod{R}} \equiv m^1$$

Recall If Alice and Bob do RSA and Eve observes:

Recall If Alice and Bob do RSA and Eve observes: 1. Eve sees (N, e, m^e) . The message is m.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recall If Alice and Bob do RSA and Eve observes:

- 1. Eve sees (N, e, m^e) . The message is m.
- 2. Eve knows that there exists primes p, q such that N = pq, but she does not know what p, q are.

Recall If Alice and Bob do RSA and Eve observes:

- 1. Eve sees (N, e, m^e) . The message is m.
- 2. Eve knows that there exists primes p, q such that N = pq, but she does not know what p, q are.

ション ふゆ アメビア メロア しょうくり

3. Eve knows that e is relatively prime to (p-1)(q-1).

Recall If Alice and Bob do RSA and Eve observes:

- 1. Eve sees (N, e, m^e) . The message is m.
- 2. Eve knows that there exists primes p, q such that N = pq, but she does not know what p, q are.

3. Eve knows that e is relatively prime to (p-1)(q-1).

Definition: Let f be $f(N, e, m^e) = m$, where N = pq and e has an inverse mod (p-1)(q-1).

Hardness assumption (HA): *f* is hard to compute.

Plain RSA Bytes!

The RSA given above is referred to as **Plain RSA**. Insecure! m is always coded as $m^e \pmod{N}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Plain RSA Bytes!

The RSA given above is referred to as **Plain RSA**. Insecure! m is always coded as $m^e \pmod{N}$.

Make secure by padding: $m \in \{0, 1\}^{L_1}$, $r \in \{0, 1\}^{L_2}$.

The RSA given above is referred to as **Plain RSA**. Insecure! m is always coded as $m^e \pmod{N}$.

Make secure by padding: $m \in \{0,1\}^{L_1}$, $r \in \{0,1\}^{L_2}$.

To send $m \in \{0,1\}^{L_1}$, pick rand $r \in \{0,1\}^{L_2}$, send $(rm)^e$. (NOTE- rm means r CONCAT with m here and elsewhere.) **DEC:** Alice finds rm and takes rightmost L_1 bits. **Caveat:** RSA still has issues when used in real world. They have been fixed. Maybe.

- 1. Factoring Algs we did: Jevons, Pollard ρ , Pollard p-1,
- 2. Factoring Algs we didn't do: Quad Sieve, Number Field Sieve.
- 3. Low-*e* attack, Same-*N* attacks.
- 4. There are also hardware and sociology attacks. We did not cover them, and could not have.

- 1. Factoring Algs we did: Jevons, Pollard ρ , Pollard p-1,
- 2. Factoring Algs we didn't do: Quad Sieve, Number Field Sieve.
- 3. Low-*e* attack, Same-*N* attacks.
- 4. There are also hardware and sociology attacks. We did not cover them, and could not have.

These attacks tell Alice and Bob how to up their game .

Factoring Algorithms: Pollard ρ

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Pollard ρ **Algorithm**

Define $f_c(x) \leftarrow x * x + c$. Looks random.

 $x \leftarrow RAND(0, N - 1), c \leftarrow RAND(0, N - 1), y \leftarrow f_c(x)$ while TRUE

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

$$\begin{array}{l} x \leftarrow f_c(x) \\ y \leftarrow f_c(f_c(y)) \\ d \leftarrow GCD(x - y, N) \\ \text{if } d \neq 1 \text{ and } d \neq N \text{ then break} \\ \text{output}(d) \end{array}$$

Let p be the least prime that div N. We do not know p.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Let p be the least prime that div N. We do not know p. The sequence x, $f_c(x)$, $f(f_c(x))$, ... is random-looking.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Let *p* be the least prime that div *N*. We do not know *p*. The sequence *x*, $f_c(x)$, $f(f_c(x))$, ... is random-looking. Put each element of the seq into its \equiv class mod *p*.

Let *p* be the least prime that div *N*. We do not know *p*. The sequence *x*, $f_c(x)$, $f(f_c(x))$, ... is random-looking. Put each element of the seq into its \equiv class mod *p*. View the \equiv -classes as buckets at the sequence as balls.

Let *p* be the least prime that div *N*. We do not know *p*. The sequence *x*, $f_c(x)$, $f(f_c(x))$, ... is random-looking.

Put each element of the seq into its \equiv class mod p.

View the \equiv -classes as buckets at the sequence as balls.

By Bday Paradox \exists 2 elements of the seq in same bucket within the first $2\sqrt{p} \leq 2N^{1/4}$ with high prob.

Let p be the least prime that div N. We do not know p.

The sequence x, $f_c(x)$, $f(f_c(x))$, ... is random-looking.

Put each element of the seq into its \equiv class mod p.

View the \equiv -classes as buckets at the sequence as balls.

By Bday Paradox \exists 2 elements of the seq in same bucket within the first $2\sqrt{p} \leq 2N^{1/4}$ with high prob.

By Thm there is an *i* such that the *i*th element in same bucket as 2ith element, some $i \leq 3N^{1/4}$, with high prob.

Let p be the least prime that div N. We do not know p.

The sequence x, $f_c(x)$, $f(f_c(x))$, ... is random-looking.

Put each element of the seq into its \equiv class mod p.

View the \equiv -classes as buckets at the sequence as balls.

By Bday Paradox \exists 2 elements of the seq in same bucket within the first $2\sqrt{p} \leq 2N^{1/4}$ with high prob.

By Thm there is an *i* such that the *i*th element in same bucket as 2*i*th element, some $i \leq 3N^{1/4}$, with high prob.

Hence $(\exists x, y)[x \equiv y \pmod{p}]$ so $GCD(x - y, N) \neq 1$.

Let p be the least prime that div N. We do not know p.

The sequence x, $f_c(x)$, $f(f_c(x))$, ... is random-looking.

Put each element of the seq into its \equiv class mod p.

View the \equiv -classes as buckets at the sequence as balls.

By Bday Paradox \exists 2 elements of the seq in same bucket within the first $2\sqrt{p} \leq 2N^{1/4}$ with high prob.

By Thm there is an *i* such that the *i*th element in same bucket as 2ith element, some $i \leq 3N^{1/4}$, with high prob.

Hence $(\exists x, y)[x \equiv y \pmod{p}]$ so $GCD(x - y, N) \neq 1$.

Caveat Need the sequence to be truly random to prove it works. Don't have that, but it works in practice.