Secret Sharing

Threshold Secret Sharing

Zelda has a secret $s \in \{0,1\}^n$.

Def: Let $1 \le t \le m$. (t, L)-secret sharing is a way for Zelda to give strings to A_1, \ldots, A_L such that:

- 1. If any t get together than they can learn the secret.
- 2. If any t 1 get together they cannot learn the secret.

Threshold Secret Sharing Caveats

Cannot learn the secret . Two flavors:

- 1. Info-theoretic
- 2. Computational.

Note Access Structure is a set of sets of students closed under superset. Can also look at Secret Sharing with other access structures.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Methods For Secret Sharing

Assume |s| = n.

- 1. Random String Method.
 - **PRO** Can be used for ANY access structure.
 - **CON** For Threshold Zelda may have to give Alice LOTS of strings

ション ふゆ アメビア メロア しょうくり

Poly Method. Uses: t points det poly of deg t - 1.
 PRO Zelda gives Alice a share of exactly n. Simple.
 CON Only used for threshold secret sharing
 DESCRIPTION Next Slide.

Zelda wants to give strings to A_1, \ldots, A_m such that Any t of A_1, \ldots, A_m can find s. Any t - 1 learn **NOTHING**.

Zelda wants to give strings to A_1, \ldots, A_m such that

Any t of A_1, \ldots, A_m can find s. Any t - 1 learn **NOTHING**.

1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.

Zelda wants to give strings to A_1, \ldots, A_m such that

Any t of A_1, \ldots, A_m can find s. Any t - 1 learn **NOTHING**.

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand $a_{t-1}, \ldots, a_1 \in \mathbb{Z}_p$.

Zelda wants to give strings to A_1, \ldots, A_m such that

Any t of A_1, \ldots, A_m can find s. Any t - 1 learn **NOTHING**.

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand $a_{t-1}, \ldots, a_1 \in \mathbb{Z}_p$.
- 3. Zelda forms polynomial $f(x) = a_{t-1}x^{t-1} + \cdots + a_1x + s$.

Zelda wants to give strings to A_1, \ldots, A_m such that

Any t of A_1, \ldots, A_m can find s. Any t - 1 learn **NOTHING**.

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand $a_{t-1}, \ldots, a_1 \in \mathbb{Z}_p$.
- 3. Zelda forms polynomial $f(x) = a_{t-1}x^{t-1} + \cdots + a_1x + s$.

4. For $1 \le i \le m$ Zelda gives $A_i f(i) \mod p$.

Zelda wants to give strings to A_1, \ldots, A_m such that

Any t of A_1, \ldots, A_m can find s. Any t - 1 learn **NOTHING**.

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand $a_{t-1}, \ldots, a_1 \in \mathbb{Z}_p$.
- 3. Zelda forms polynomial $f(x) = a_{t-1}x^{t-1} + \cdots + a_1x + s$.

- 4. For $1 \le i \le m$ Zelda gives $A_i f(i) \mod p$.
- 1. Any t have t points from f(x) so can find f(x), s.

Zelda wants to give strings to A_1, \ldots, A_m such that

Any t of A_1, \ldots, A_m can find s. Any t - 1 learn **NOTHING**.

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand $a_{t-1}, \ldots, a_1 \in \mathbb{Z}_p$.
- 3. Zelda forms polynomial $f(x) = a_{t-1}x^{t-1} + \cdots + a_1x + s$.
- 4. For $1 \le i \le m$ Zelda gives $A_i f(i) \mod p$.
- 1. Any t have t points from f(x) so can find f(x), s.
- 2. Any t 1 have t 1 points from f(x). From these t 1 points what can they conclude?

Zelda wants to give strings to A_1, \ldots, A_m such that

Any t of A_1, \ldots, A_m can find s. Any t - 1 learn **NOTHING**.

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand $a_{t-1}, \ldots, a_1 \in \mathbb{Z}_p$.
- 3. Zelda forms polynomial $f(x) = a_{t-1}x^{t-1} + \cdots + a_1x + s$.
- 4. For $1 \le i \le m$ Zelda gives $A_i f(i) \mod p$.
- 1. Any t have t points from f(x) so can find f(x), s.
- 2. Any t 1 have t 1 points from f(x). From these t 1 points what can they conclude? **NOTHING!**

Zelda wants to give strings to A_1, \ldots, A_m such that

Any t of A_1, \ldots, A_m can find s. Any t - 1 learn **NOTHING**.

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand $a_{t-1}, \ldots, a_1 \in \mathbb{Z}_p$.
- 3. Zelda forms polynomial $f(x) = a_{t-1}x^{t-1} + \cdots + a_1x + s$.
- 4. For $1 \le i \le m$ Zelda gives A_i $f(i) \mod p$.
- 1. Any t have t points from f(x) so can find f(x), s.
- Any t 1 have t 1 points from f(x). From these t 1 points what can they conclude? NOTHING! Any constant term is consistent with what they know.' So they know NOTHING about s.

If demand Info-theoretic security then shares have to be $\geq |s|$.

We did that in class: If A_t gets a share of length < |s| - 1then A_1, \ldots, A_{t-1} an simulate all $2^{|s|-1}$ possible shares of A_t to find $2^{|s|-1}$ possibilities for the secret. Violates info-theory security.

Using Hardness Assumptions can get shares of length $\beta |s|$ for $\beta < 1$. This gives comp security.

Def An **Access Structure** is a set of subset of $\{A_1, \ldots, A_m\}$ closed under superset.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Def An Access Structure is a set of subset of $\{A_1, \ldots, A_m\}$ closed under superset.

1. If \mathcal{X} is an access structure then the following questions make sense:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Def An Access Structure is a set of subset of $\{A_1, \ldots, A_m\}$ closed under superset.

1. If \mathcal{X} is an access structure then the following questions make sense:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

1.1 Is there a secret sharing scheme for \mathcal{X} ?

Def An Access Structure is a set of subset of $\{A_1, \ldots, A_m\}$ closed under superset.

- 1. If \mathcal{X} is an access structure then the following questions make sense:
 - 1.1 Is there a secret sharing scheme for \mathcal{X} ?
 - 1.2 Is there a secret sharing scheme for \mathcal{X} where all shares are the same size as the secret?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Def An Access Structure is a set of subset of $\{A_1, \ldots, A_m\}$ closed under superset.

- 1. If \mathcal{X} is an access structure then the following questions make sense:
 - 1.1 Is there a secret sharing scheme for \mathcal{X} ?
 - 1.2 Is there a secret sharing scheme for \mathcal{X} where all shares are the same size as the secret?

2. (t, m)-Threshold is an Access structure. The poly method gives a Secret Sharing scheme where all the shares are the same length as the secret.

Def An Access Structure is a set of subset of $\{A_1, \ldots, A_m\}$ closed under superset.

- 1. If \mathcal{X} is an access structure then the following questions make sense:
 - 1.1 Is there a secret sharing scheme for \mathcal{X} ?
 - 1.2 Is there a secret sharing scheme for \mathcal{X} where all shares are the same size as the secret?
- 2. (t, m)-Threshold is an Access structure. The poly method gives a Secret Sharing scheme where all the shares are the same length as the secret.

Def A secret sharing scheme is **ideal** if all shares come from the same domain as the secret.

Let $TH_A(t, m)$ be the Boolean Formula that represents at least t out of m of the A_i 's.

・ロト・日本・ヨト・ヨト・日・ つへぐ

Let $TH_A(t, m)$ be the Boolean Formula that represents at least t out of m of the A_i 's. **Example** $TH_A(2, 4)$ is At least 2 of A_1, A_2, A_3, A_4 .

Let $TH_A(t, m)$ be the Boolean Formula that represents at least t out of m of the A_i 's. **Example** $TH_A(2, 4)$ is At least 2 of A_1, A_2, A_3, A_4 . **Example** $TH_B(3, 6)$ is At least 3 of B_1, \ldots, B_6 .

Let $TH_A(t, m)$ be the Boolean Formula that represents at least t out of m of the A_i 's. **Example** $TH_A(2, 4)$ is At least 2 of A_1, A_2, A_3, A_4 . **Example** $TH_B(3, 6)$ is At least 3 of B_1, \ldots, B_6 . **Note** $TH_A(t, m)$ has ideal secret sharing.

Let $TH_A(t, m)$ be the Boolean Formula that represents at least t out of m of the A_i 's. **Example** $TH_A(2, 4)$ is At least 2 of A_1, A_2, A_3, A_4 . **Example** $TH_B(3, 6)$ is At least 3 of B_1, \ldots, B_6 . Note $TH_A(t, m)$ has ideal secret sharing. Notation $TH_A(t_1, m_1) \vee TH_B(t_2, m_2)$ means that:

Let $TH_A(t, m)$ be the Boolean Formula that represents at least tout of m of the A_i 's. **Example** $TH_A(2, 4)$ is At least 2 of A_1, A_2, A_3, A_4 . **Example** $TH_B(3, 6)$ is At least 3 of B_1, \ldots, B_6 . Note $TH_A(t, m)$ has ideal secret sharing. Notation $TH_A(t_1, m_1) \vee TH_B(t_2, m_2)$ means that:

1. $\geq t_1 A_1, \ldots, A_{m_1}$ can learn the secret.

Let $TH_A(t, m)$ be the Boolean Formula that represents at least t out of m of the A_i 's. **Example** $TH_A(2, 4)$ is At least 2 of A_1, A_2, A_3, A_4 . **Example** $TH_B(3, 6)$ is At least 3 of B_1, \ldots, B_6 . Note $TH_A(t, m)$ has ideal secret sharing. Notation $TH_A(t_1, m_1) \vee TH_B(t_2, m_2)$ means that:

ション ふゆ アメビア メロア しょうくり

- 1. $\geq t_1 A_1, \ldots, A_{m_1}$ can learn the secret.
- 2. $\geq t_2 B_1, \ldots, B_{m_2}$ can learn the secret.

Let $TH_A(t, m)$ be the Boolean Formula that represents at least t out of m of the A_i 's. **Example** $TH_A(2, 4)$ is At least 2 of A_1, A_2, A_3, A_4 . **Example** $TH_B(3, 6)$ is At least 3 of B_1, \ldots, B_6 . Note $TH_A(t, m)$ has ideal secret sharing. Notation $TH_A(t_1, m_1) \vee TH_B(t_2, m_2)$ means that:

- 1. $\geq t_1 A_1, \ldots, A_{m_1}$ can learn the secret.
- 2. $\geq t_2 B_1, \ldots, B_{m_2}$ can learn the secret.
- 3. No other group can learn the secret (e.g., A_1, A_2, B_1 cannot)

Disjoint OR of $TH_A(t, m)$'s: Ideal Sec Sharing

There is Ideal Secret Sharing for $TH_A(t_1, m_1) \lor \cdots \lor TH_Z(t_{26}, m_{26})$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

We want that if ≥ 2 of A_1, A_2, A_3, A_4 AND ≥ 4 of B_1, \ldots, B_7 get together than they can learn the secret, but no other groups can.

We want that if ≥ 2 of A_1, A_2, A_3, A_4 AND ≥ 4 of B_1, \ldots, B_7 get together than they can learn the secret, but no other groups can.

1. Zelda has secret s, |s| = n.

We want that if ≥ 2 of A_1, A_2, A_3, A_4 AND ≥ 4 of B_1, \ldots, B_7 get together than they can learn the secret, but no other groups can.

ション ふゆ アメビア メロア しょうくり

- 1. Zelda has secret s, |s| = n.
- 2. Zelda generates random $r \in \{0, 1\}^n$.

We want that if ≥ 2 of A_1, A_2, A_3, A_4 AND ≥ 4 of B_1, \ldots, B_7 get together than they can learn the secret, but no other groups can.

- 1. Zelda has secret s, |s| = n.
- 2. Zelda generates random $r \in \{0, 1\}^n$.
- 3. Zelda does (2, 4) secret sharing of r with A_1, A_2, A_3, A_4 .

ション ふゆ アメリア メリア しょうくしゃ

We want that if ≥ 2 of A_1, A_2, A_3, A_4 AND ≥ 4 of B_1, \ldots, B_7 get together than they can learn the secret, but no other groups can.

- 1. Zelda has secret s, |s| = n.
- 2. Zelda generates random $r \in \{0, 1\}^n$.
- 3. Zelda does (2, 4) secret sharing of r with A_1, A_2, A_3, A_4 .
- 4. Zelda does (4,7) secret sharing of $r \oplus s$ with B_1, \ldots, B_7 .

We want that if ≥ 2 of A_1, A_2, A_3, A_4 AND ≥ 4 of B_1, \ldots, B_7 get together than they can learn the secret, but no other groups can.

- 1. Zelda has secret s, |s| = n.
- 2. Zelda generates random $r \in \{0, 1\}^n$.
- 3. Zelda does (2, 4) secret sharing of r with A_1, A_2, A_3, A_4 .
- 4. Zelda does (4,7) secret sharing of $r \oplus s$ with B_1, \ldots, B_7 .

5. If ≥ 2 of A_i 's get together they can find r.

We want that if ≥ 2 of A_1, A_2, A_3, A_4 AND ≥ 4 of B_1, \ldots, B_7 get together than they can learn the secret, but no other groups can.

- 1. Zelda has secret s, |s| = n.
- 2. Zelda generates random $r \in \{0, 1\}^n$.
- 3. Zelda does (2, 4) secret sharing of r with A_1, A_2, A_3, A_4 .
- 4. Zelda does (4,7) secret sharing of $r \oplus s$ with B_1, \ldots, B_7 .

5. If ≥ 2 of A_i 's get together they can find r. If ≥ 4 of B_i 's get together they can find $r \oplus s$.

We want that if ≥ 2 of A_1, A_2, A_3, A_4 AND ≥ 4 of B_1, \ldots, B_7 get together than they can learn the secret, but no other groups can.

- 1. Zelda has secret s, |s| = n.
- 2. Zelda generates random $r \in \{0, 1\}^n$.
- 3. Zelda does (2,4) secret sharing of r with A_1, A_2, A_3, A_4 .
- 4. Zelda does (4,7) secret sharing of $r \oplus s$ with B_1, \ldots, B_7 .
- If ≥ 2 of A_i's get together they can find r.
 If ≥ 4 of B_i's get together they can find r ⊕ s.
 So if they all get together they can find

$$r \oplus (r \oplus s) = s$$

AND of $TH_A(t, m)$ s: General

$TH_A(t_1, m_1) \land \cdots \land TH_Z(t_{26}, m_{26})$ can do secret sharing.

General Theorem

Definition A **monotone formula** is a Boolean formula with no NOT signs.

If you put together what we did with TH and use induction you can prove the following:

Theorem Let X_1, \ldots, X_N each be a threshold $TH_A(t, m)$ but all using DIFFERENT players.

Let $F(X_1, ..., X_N)$ be a monotone Boolean formula where each X_i appears only once. Then Zelda can do ideal secret sharing where only sets that satisfy $F(X_1, ..., X_N)$ can learn the secret.

General Theorem

Definition A **monotone formula** is a Boolean formula with no NOT signs.

If you put together what we did with TH and use induction you can prove the following:

Theorem Let X_1, \ldots, X_N each be a threshold $TH_A(t, m)$ but all using DIFFERENT players.

Let $F(X_1, ..., X_N)$ be a monotone Boolean formula where each X_i appears only once. Then Zelda can do ideal secret sharing where only sets that satisfy $F(X_1, ..., X_N)$ can learn the secret.

Routine proof left to the reader. Might be on a HW or the Final.

Non-Ideal Access Structures

There are some- we skip this for the review.

Can Zelda Always Secret Share?

Zelda wants to share secret such that:

1. If A_1, A_2, A_3 get together they can get secret.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 2. If A_1, A_4 get together they can get secret.
- 3. If A_2 , A_4 get together they can get secret.

Can do by Random String Method.

Zelda wants to share secret such that:

- 1. If A_1, A_2, A_3 get together they can get secret.
- 2. If A_1, A_4 get together they can get secret.
- 3. If A_2 , A_4 get together they can get secret.

Can do by Random String Method.

Can do ANY access structure with Random String Method, though may be lots of shares.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Good Luck on the Exam

Good Luck on the Exam!

