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HW02, Problem 2a, 2b

2a) How many numbers in {1, . . . , 143} have 11 as a factor?

Note that 143
11 = 13. 1× 11, . . ., 13× 11 have 11 as factor.

So the answer is 13.

2b) How many numbers in {1, . . . , 143} have 13 as a factor? 11.

Generalize How many in {1, . . . , ab} have a as a factor? b.
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HW02, Problem 2c, 2d

2c) How many in {1, . . . , 143} have 11 & 13 as a factor?

11,13 are rel prime, so any such num is mult of 11 = 143. Only 1.

2d) Using 2a,2b,2c, and law of inc-excl, to find φ(143).
A = {x ∈ {1, . . . , 143} : x ≡ 0 (mod 11)}. By 2a, |A| = 13.
B = {x ∈ {1, . . . , 143} : x ≡ 0 (mod 13)}. By 2b, |B| = 11.
By 2c, |A ∩ B| = 1.
Numbers NOT rel prime to 143 have 11 or 13 as a factor. By law
of inc-exc there are

|A|+ |B| − |A ∪ B| = 13 + 11− 1 = 23 such numbers

Hence there are 143− 23 = 120 that are NOT rel prime to 143.
So φ(143) = 120.
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2e) Give a formula for φ(pq) where p, q are primes.

How many numbers in {1, . . . , pq} have p as a factor? q.
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