Some Solutions to HW02 Problems

BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

HW02, Problem 2

We used a generalization of this problem in RSA.

HW02, Problem 2

We used a generalization of this problem in RSA.
So we are going over it.

HW02, Problem 2a, 2b

2a) How many numbers in $\{1, \ldots, 143\}$ have 11 as a factor?

HW02, Problem 2a, 2b

2a) How many numbers in $\{1, \ldots, 143\}$ have 11 as a factor?
Note that $\frac{143}{11}=13$.

HW02, Problem 2a, 2b

2a) How many numbers in $\{1, \ldots, 143\}$ have 11 as a factor?
Note that $\frac{143}{11}=13.1 \times 11, \ldots, 13 \times 11$ have 11 as factor.

HW02, Problem 2a, 2b

2a) How many numbers in $\{1, \ldots, 143\}$ have 11 as a factor?
Note that $\frac{143}{11}=13.1 \times 11, \ldots, 13 \times 11$ have 11 as factor. So the answer is 13 .

HW02, Problem 2a, 2b

2a) How many numbers in $\{1, \ldots, 143\}$ have 11 as a factor?
Note that $\frac{143}{11}=13.1 \times 11, \ldots, 13 \times 11$ have 11 as factor. So the answer is 13 .

2b) How many numbers in $\{1, \ldots, 143\}$ have 13 as a factor?

HW02, Problem 2a, 2b

2a) How many numbers in $\{1, \ldots, 143\}$ have 11 as a factor?
Note that $\frac{143}{11}=13.1 \times 11, \ldots, 13 \times 11$ have 11 as factor. So the answer is 13 .

2b) How many numbers in $\{1, \ldots, 143\}$ have 13 as a factor? 11 .

HW02, Problem 2a, 2b

2a) How many numbers in $\{1, \ldots, 143\}$ have 11 as a factor?
Note that $\frac{143}{11}=13.1 \times 11, \ldots, 13 \times 11$ have 11 as factor. So the answer is 13 .

2b) How many numbers in $\{1, \ldots, 143\}$ have 13 as a factor? 11 .
Generalize How many in $\{1, \ldots, a b\}$ have a as a factor?

HW02, Problem 2a, 2b

2a) How many numbers in $\{1, \ldots, 143\}$ have 11 as a factor?
Note that $\frac{143}{11}=13.1 \times 11, \ldots, 13 \times 11$ have 11 as factor. So the answer is 13 .

2b) How many numbers in $\{1, \ldots, 143\}$ have 13 as a factor? 11 .
Generalize How many in $\{1, \ldots, a b\}$ have a as a factor? b.

HW02, Problem 2c, 2d

2c) How many in $\{1, \ldots, 143\}$ have $11 \& 13$ as a factor?

HW02, Problem 2c, 2d

2c) How many in $\{1, \ldots, 143\}$ have $11 \& 13$ as a factor?
11,13 are rel prime, so any such num is mult of $11=143$. Only 1 .

HW02, Problem 2c, 2d

2c) How many in $\{1, \ldots, 143\}$ have $11 \& 13$ as a factor?
11,13 are rel prime, so any such num is mult of $11=143$. Only 1 .
2d) Using $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}$, and law of inc-excl, to find $\phi(143)$.

HW02, Problem 2c, 2d

2c) How many in $\{1, \ldots, 143\}$ have $11 \& 13$ as a factor?
11,13 are rel prime, so any such num is mult of $11=143$. Only 1 .
2d) Using $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}$, and law of inc-excl, to find $\phi(143)$.
$A=\{x \in\{1, \ldots, 143\}: x \equiv 0(\bmod 11)\}$. By $2 \mathrm{a},|A|=13$.

HW02, Problem 2c, 2d

2c) How many in $\{1, \ldots, 143\}$ have $11 \& 13$ as a factor?
11,13 are rel prime, so any such num is mult of $11=143$. Only 1 .
2d) Using $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}$, and law of inc-excl, to find $\phi(143)$.
$A=\{x \in\{1, \ldots, 143\}: x \equiv 0(\bmod 11)\}$. By $2 \mathrm{a},|A|=13$.
$B=\{x \in\{1, \ldots, 143\}: x \equiv 0(\bmod 13)\}$. By $2 b,|B|=11$.

HW02, Problem 2c, 2d

2c) How many in $\{1, \ldots, 143\}$ have $11 \& 13$ as a factor?
11,13 are rel prime, so any such num is mult of $11=143$. Only 1 .
2d) Using $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}$, and law of inc-excl, to find $\phi(143)$.
$A=\{x \in\{1, \ldots, 143\}: x \equiv 0(\bmod 11)\}$. By $2 \mathrm{a},|A|=13$.
$B=\{x \in\{1, \ldots, 143\}: x \equiv 0(\bmod 13)\}$. By $2 \mathrm{~b},|B|=11$.
By 2c, $|A \cap B|=1$.

HW02, Problem 2c, 2d

2c) How many in $\{1, \ldots, 143\}$ have $11 \& 13$ as a factor?
11,13 are rel prime, so any such num is mult of $11=143$. Only 1 .
2d) Using $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}$, and law of inc-excl, to find $\phi(143)$.
$A=\{x \in\{1, \ldots, 143\}: x \equiv 0(\bmod 11)\}$. By $2 \mathrm{a},|A|=13$.
$B=\{x \in\{1, \ldots, 143\}: x \equiv 0(\bmod 13)\}$. By $2 \mathrm{~b},|B|=11$.
By $2 \mathrm{c},|A \cap B|=1$.
Numbers NOT rel prime to 143 have 11 or 13 as a factor. By law of inc-exc there are

$$
|A|+|B|-|A \cup B|=13+11-1=23 \text { such numbers }
$$

HW02, Problem 2c, 2d

2c) How many in $\{1, \ldots, 143\}$ have $11 \& 13$ as a factor?
11,13 are rel prime, so any such num is mult of $11=143$. Only 1 .
2d) Using $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}$, and law of inc-excl, to find $\phi(143)$.
$A=\{x \in\{1, \ldots, 143\}: x \equiv 0(\bmod 11)\}$. By $2 \mathrm{a},|A|=13$.
$B=\{x \in\{1, \ldots, 143\}: x \equiv 0(\bmod 13)\}$. By $2 \mathrm{~b},|B|=11$.
By $2 \mathrm{c},|A \cap B|=1$.
Numbers NOT rel prime to 143 have 11 or 13 as a factor. By law of inc-exc there are

$$
|A|+|B|-|A \cup B|=13+11-1=23 \text { such numbers }
$$

Hence there are $143-23=120$ that are NOT rel prime to 143 .

HW02, Problem 2c, 2d

2c) How many in $\{1, \ldots, 143\}$ have $11 \& 13$ as a factor?
11,13 are rel prime, so any such num is mult of $11=143$. Only 1 .
2d) Using $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}$, and law of inc-excl, to find $\phi(143)$.
$A=\{x \in\{1, \ldots, 143\}: x \equiv 0(\bmod 11)\}$. By $2 \mathrm{a},|A|=13$.
$B=\{x \in\{1, \ldots, 143\}: x \equiv 0(\bmod 13)\}$. By $2 \mathrm{~b},|B|=11$.
By $2 \mathrm{c},|A \cap B|=1$.
Numbers NOT rel prime to 143 have 11 or 13 as a factor. By law of inc-exc there are

$$
|A|+|B|-|A \cup B|=13+11-1=23 \text { such numbers }
$$

Hence there are $143-23=120$ that are NOT rel prime to 143 .
So $\phi(143)=120$.

HW02, Problem 2e

$2 \mathrm{e})$ Give a formula for $\phi(p q)$ where p, q are primes.

HW02, Problem 2e

2e) Give a formula for $\phi(p q)$ where p, q are primes.
How many numbers in $\{1, \ldots, p q\}$ have p as a factor?

HW02, Problem 2e

2e) Give a formula for $\phi(p q)$ where p, q are primes.
How many numbers in $\{1, \ldots, p q\}$ have p as a factor? q.

HW02, Problem 2e

2e) Give a formula for $\phi(p q)$ where p, q are primes.
How many numbers in $\{1, \ldots, p q\}$ have p as a factor? q.
How many numbers in $\{1, \ldots, p q\}$ have q as a factor?

HW02, Problem 2e

2e) Give a formula for $\phi(p q)$ where p, q are primes.
How many numbers in $\{1, \ldots, p q\}$ have p as a factor? q.
How many numbers in $\{1, \ldots, p q\}$ have q as a factor? p.

HW02, Problem 2e

2e) Give a formula for $\phi(p q)$ where p, q are primes.
How many numbers in $\{1, \ldots, p q\}$ have p as a factor? q.
How many numbers in $\{1, \ldots, p q\}$ have q as a factor? p.
How many in $\{1, \ldots, p q\}$ have $p \& q$ as factors

HW02, Problem 2e

2e) Give a formula for $\phi(p q)$ where p, q are primes.
How many numbers in $\{1, \ldots, p q\}$ have p as a factor? q.
How many numbers in $\{1, \ldots, p q\}$ have q as a factor? p. How many in $\{1, \ldots, p q\}$ have $p \& q$ as factors 1 .

HW02, Problem 2e

2e) Give a formula for $\phi(p q)$ where p, q are primes.
How many numbers in $\{1, \ldots, p q\}$ have p as a factor? q.
How many numbers in $\{1, \ldots, p q\}$ have q as a factor? p. How many in $\{1, \ldots, p q\}$ have $p \& q$ as factors 1 . $A=\{x \in\{1, \ldots, p q\}: x \equiv 0(\bmod p)\} .|A|=q$.

HW02, Problem 2e

2e) Give a formula for $\phi(p q)$ where p, q are primes.
How many numbers in $\{1, \ldots, p q\}$ have p as a factor? q.
How many numbers in $\{1, \ldots, p q\}$ have q as a factor? p. How many in $\{1, \ldots, p q\}$ have $p \& q$ as factors 1 .
$A=\{x \in\{1, \ldots, p q\}: x \equiv 0(\bmod p)\} .|A|=q$.
$B=\{x \in\{1, \ldots, p q\}: x \equiv 0(\bmod q)\} .|B|=p$.

HW02, Problem 2e

2e) Give a formula for $\phi(p q)$ where p, q are primes.
How many numbers in $\{1, \ldots, p q\}$ have p as a factor? q.
How many numbers in $\{1, \ldots, p q\}$ have q as a factor? p.
How many in $\{1, \ldots, p q\}$ have $p \& q$ as factors 1 .
$A=\{x \in\{1, \ldots, p q\}: x \equiv 0(\bmod p)\} .|A|=q$.
$B=\{x \in\{1, \ldots, p q\}: x \equiv 0(\bmod q)\} .|B|=p$.
$|A \cap B|=1$.

HW02, Problem 2e

2e) Give a formula for $\phi(p q)$ where p, q are primes.
How many numbers in $\{1, \ldots, p q\}$ have p as a factor? q.
How many numbers in $\{1, \ldots, p q\}$ have q as a factor? p.
How many in $\{1, \ldots, p q\}$ have $p \& q$ as factors 1 .
$A=\{x \in\{1, \ldots, p q\}: x \equiv 0(\bmod p)\} .|A|=q$.
$B=\{x \in\{1, \ldots, p q\}: x \equiv 0(\bmod q)\} .|B|=p$.
$|A \cap B|=1$.
Nums NOT rel prime to $p q$ have p or q as factor. By inc-exc there are

$$
|A|+|B|-|A \cap B|=p+q-1 \text { such numbers }
$$

HW02, Problem 2e

2e) Give a formula for $\phi(p q)$ where p, q are primes.
How many numbers in $\{1, \ldots, p q\}$ have p as a factor? q.
How many numbers in $\{1, \ldots, p q\}$ have q as a factor? p.
How many in $\{1, \ldots, p q\}$ have $p \& q$ as factors 1 .
$A=\{x \in\{1, \ldots, p q\}: x \equiv 0(\bmod p)\} .|A|=q$.
$B=\{x \in\{1, \ldots, p q\}: x \equiv 0(\bmod q)\} .|B|=p$.
$|A \cap B|=1$.
Nums NOT rel prime to $p q$ have p or q as factor. By inc-exc there are

$$
|A|+|B|-|A \cap B|=p+q-1 \text { such numbers }
$$

There are $p+q-1$ that are NOT rel prime to 143 .

HW02, Problem 2e

2e) Give a formula for $\phi(p q)$ where p, q are primes.
How many numbers in $\{1, \ldots, p q\}$ have p as a factor? q.
How many numbers in $\{1, \ldots, p q\}$ have q as a factor? p.
How many in $\{1, \ldots, p q\}$ have $p \& q$ as factors 1 .
$A=\{x \in\{1, \ldots, p q\}: x \equiv 0(\bmod p)\} .|A|=q$.
$B=\{x \in\{1, \ldots, p q\}: x \equiv 0(\bmod q)\} .|B|=p$.
$|A \cap B|=1$.
Nums NOT rel prime to $p q$ have p or q as factor. By inc-exc there are

$$
|A|+|B|-|A \cap B|=p+q-1 \text { such numbers }
$$

There are $p+q-1$ that are NOT rel prime to 143 . So there are

HW02, Problem 2e

2e) Give a formula for $\phi(p q)$ where p, q are primes.
How many numbers in $\{1, \ldots, p q\}$ have p as a factor? q.
How many numbers in $\{1, \ldots, p q\}$ have q as a factor? p.
How many in $\{1, \ldots, p q\}$ have $p \& q$ as factors 1 .
$A=\{x \in\{1, \ldots, p q\}: x \equiv 0(\bmod p)\} .|A|=q$.
$B=\{x \in\{1, \ldots, p q\}: x \equiv 0(\bmod q)\} .|B|=p$.
$|A \cap B|=1$.
Nums NOT rel prime to $p q$ have p or q as factor. By inc-exc there are

$$
|A|+|B|-|A \cap B|=p+q-1 \text { such numbers }
$$

There are $p+q-1$ that are NOT rel prime to 143 . So there are

$$
\phi(p q)=p q-(p+q-1)=p q-p-q+1=(p-1)(q-1)=\phi(p) \phi(q)
$$

