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HW07, Problem 1

SOLUTION
What DAY and TIME are the TIMED FINAL?
SOLUTION Friday Dec 17 at 8:00PM on Zoom.

If that DAY/TIME is not good for you then EMAIL ME.
SOLUTION If this applies to you, EMAIL ME.

We are NOT meeting the Tuesday of Thankgiving. When is the
make-up lecture?
SOLUTION Wed Nov 17 at 8:00PM on my zoom
https://umd.zoom.us/my/gasarch
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HW07, Problem 2

Let a1, a2, a3 be such that every pair ai , aj are relatively prime.
Show that

φ(a1a2a3) = φ(a1)φ(a2)φ(a3).

You may use that if a, b are rel prime then φ(ab) = φ(a)φ(b).

SOLUTION
Since a1a2 is rel prime to a3 we know that

φ(a1(a2a3)) = φ(a1)φ(a2an).

We now use φ(a2a3) = φ(a2)φ(a3) to get

φ(a1(a2a3)) = φ(a1)φ(a2a3) = φ(a1)φ(a2)φ(a3).
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HW07, Problem 3, EXTRA

If a1, . . . , an are such that every pair is rel prime then

φ(a1a2 · · · an) = φ(a1)φ(a2) · · ·φ(an).

How do you prove this?

By Induction!
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HW07, Problem 3

Let p be a prime and a ≥ 1. Find and prove a formula for φ(pa).

SOLUTION
We need to know:
How many elements of {1, . . . , pa} are rel prime to pa?

It is easier to find
How many elements of {1, . . . , pa} are not rel prime to pa?

Those elements are

{p, 2p, 3p, . . . , pa−1p}.

So there are pa−1 such elements.

So the number that are rel prime to pa is

pa − pa−1
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HW07, Problem 4

Using the last two problems, compute by hand: φ(3528).

SOLUTION
We first FACTOR 3528. Since the last digit is even, 2 divides it.
TRICK: since the last 2 digits, 28, is div by 4, its div by 4.

3528 = 22 × 882. 882 is div by 2 so we get

3528 = 23 × 441. Sum of digits of 441 is 9, so 441 ≡ 0 (mod 9).

3528 = 23 × 32 × 49 = 23 × 32 × 72.

φ(233272) = φ(23)φ(32)φ(72) = (23 − 22)(32 − 31)(72 − 71)

= 4× 6× 42 = 1008
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Point of the Problem
Its often said (correctly)

If Factoring is easy than RSA can be cracked.

Recall that in RSA
N = pq is public.
p, q are private.
R = φ(N) = (p − 1)(q − 1) is private.
e is public and rel prime to R.
d is private. Recall that ed ≡ 1 (mod R).

If Eve knows d she can crack RSA.

We just showed that
Factoring easy ⇒ φ easy.

Putting it all together we get
Factoring easy ⇒ φ easy ⇒ inv mod R easy ⇒ RSA cracked.

Proving converses of any of the above would be interesting.

Next Slide has some possible futures!
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RSA Might be Cracked Without Factoring

Possible futures:

1. Factoring easy! RSA is cracked!

2. Factoring hard; φ easy! RSA is cracked!

3. Factoring hard; φ hard; The following easy:
Given N = pq (but not p, q) and e rel prime to
R = (p − 1)(q − 1) can find d such that ed ≡ 1 (mod R).

4. RSA remains uncracked.
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HW07, Problem 5

For (x , y) =
(0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), . . .

1. Compute M = 2x3y .

2. Compute d = GCD(2M − 1 mod 143, 143). (The (mod 143)
keeps the numbers small.)

3. If d 6= 1 and d 6= 143 then output d (it will divide 143) and
BREAK OUT of the for loop.



HW07, Problem 5

For (x , y) =
(0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), . . .

1. Compute M = 2x3y .

2. Compute d = GCD(2M − 1 mod 143, 143). (The (mod 143)
keeps the numbers small.)

3. If d 6= 1 and d 6= 143 then output d (it will divide 143) and
BREAK OUT of the for loop.



HW07, Problem 5

For (x , y) =
(0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), . . .

1. Compute M = 2x3y .

2. Compute d = GCD(2M − 1 mod 143, 143). (The (mod 143)
keeps the numbers small.)

3. If d 6= 1 and d 6= 143 then output d (it will divide 143) and
BREAK OUT of the for loop.



HW07, Problem 5

For (x , y) =
(0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), . . .

1. Compute M = 2x3y .

2. Compute d = GCD(2M − 1 mod 143, 143). (The (mod 143)
keeps the numbers small.)

3. If d 6= 1 and d 6= 143 then output d (it will divide 143) and
BREAK OUT of the for loop.



HW07, Problem 5, Solution

(x , y) = (0, 1): M = 20 × 31 = 3.
d = GCD(23 − 1 (mod 143), 143) = GCD(7, 143) = 1. Darn!

(x , y) = (1, 0): M = 21 × 30 = 2.
d = GCD(22 − 1 (mod 143), 143) = GCD(3, 143) = 1. Darn!

(x , y) = (0, 2): M = 20 × 32 = 9.
d = GCD(29 − 1 (mod 143), 143) = GCD(83, 143) = 1. Darn!

(x , y) = (1, 1): M = 21 × 31 = 6.
d = GCD(26 − 1 (mod 143), 143) = GCD(63, 143) = 1. Darn!

(x , y) = (2, 0): M = 22 × 30 = 4.
d = GCD(24 − 1 (mod 143), 143) = GCD(15, 143) = 1. Darn!
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HW07, Problem 5, Solution. Cont

(x , y) = (0, 3): M = 20 × 33 = 27.
d = GCD(227 − 1 (mod 143), 143) = GCD(72, 143) = 1. Darn!

(x , y) = (1, 2): M = 21 × 32 = 18.
d = GCD(218 − 1 (mod 143), 143) = GCD(24, 143) = 1. Darn!

(x , y) = (2, 1): M = 22 × 31 = 12.
d = GCD(212 − 1 (mod 143), 143) = GCD(91, 143) = 13. Yeah!
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