
BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!



Public Key LWE Cipher



Recall Private Key LWE Cipher

Private Key ~k. Both Alice and Bob have this.
Public Info p, the mod. All math is mod p. Params γ, n.

Alice Wants to Send b ∈ {0, 1}.
1. Alice picks random vector ~r .

2. Alice computes C ≡ ~r · ~k and e ∈r {−γ, . . . , γ}.
3. To send b Alice sends (~r ;D) where D ≡ C + e + bp

4 .

4. Bob computes ~r · ~k ≡ C . If D ∼ C , b = 0, else b = 1.



Recall Private Key LWE Cipher

Private Key ~k. Both Alice and Bob have this.
Public Info p, the mod. All math is mod p. Params γ, n.

Alice Wants to Send b ∈ {0, 1}.

1. Alice picks random vector ~r .

2. Alice computes C ≡ ~r · ~k and e ∈r {−γ, . . . , γ}.
3. To send b Alice sends (~r ;D) where D ≡ C + e + bp

4 .

4. Bob computes ~r · ~k ≡ C . If D ∼ C , b = 0, else b = 1.



Recall Private Key LWE Cipher

Private Key ~k. Both Alice and Bob have this.
Public Info p, the mod. All math is mod p. Params γ, n.

Alice Wants to Send b ∈ {0, 1}.
1. Alice picks random vector ~r .

2. Alice computes C ≡ ~r · ~k and e ∈r {−γ, . . . , γ}.
3. To send b Alice sends (~r ;D) where D ≡ C + e + bp

4 .

4. Bob computes ~r · ~k ≡ C . If D ∼ C , b = 0, else b = 1.



Recall Private Key LWE Cipher

Private Key ~k. Both Alice and Bob have this.
Public Info p, the mod. All math is mod p. Params γ, n.

Alice Wants to Send b ∈ {0, 1}.
1. Alice picks random vector ~r .

2. Alice computes C ≡ ~r · ~k and e ∈r {−γ, . . . , γ}.

3. To send b Alice sends (~r ;D) where D ≡ C + e + bp
4 .

4. Bob computes ~r · ~k ≡ C . If D ∼ C , b = 0, else b = 1.



Recall Private Key LWE Cipher

Private Key ~k. Both Alice and Bob have this.
Public Info p, the mod. All math is mod p. Params γ, n.

Alice Wants to Send b ∈ {0, 1}.
1. Alice picks random vector ~r .

2. Alice computes C ≡ ~r · ~k and e ∈r {−γ, . . . , γ}.
3. To send b Alice sends (~r ;D) where D ≡ C + e + bp

4 .

4. Bob computes ~r · ~k ≡ C . If D ∼ C , b = 0, else b = 1.



Recall Private Key LWE Cipher

Private Key ~k. Both Alice and Bob have this.
Public Info p, the mod. All math is mod p. Params γ, n.

Alice Wants to Send b ∈ {0, 1}.
1. Alice picks random vector ~r .

2. Alice computes C ≡ ~r · ~k and e ∈r {−γ, . . . , γ}.
3. To send b Alice sends (~r ;D) where D ≡ C + e + bp

4 .

4. Bob computes ~r · ~k ≡ C . If D ∼ C , b = 0, else b = 1.



Thoughts on a Public Key LWE Cipher

I In private key, both Alice and Bob have ~k .

In public key, only Alice has the key ~k .

I Alice Cannot publish key ~k .

Alice Can publish noisy equations that ~k satisfies.

Eve won’t be able to use the noisy equations to find key.

How can Bob use the noisy equations to encode a bit?



Thoughts on a Public Key LWE Cipher

I In private key, both Alice and Bob have ~k .

In public key, only Alice has the key ~k .

I Alice Cannot publish key ~k .

Alice Can publish noisy equations that ~k satisfies.

Eve won’t be able to use the noisy equations to find key.

How can Bob use the noisy equations to encode a bit?



Thoughts on a Public Key LWE Cipher

I In private key, both Alice and Bob have ~k .

In public key, only Alice has the key ~k .

I Alice Cannot publish key ~k .

Alice Can publish noisy equations that ~k satisfies.

Eve won’t be able to use the noisy equations to find key.

How can Bob use the noisy equations to encode a bit?



Thoughts on a Public Key LWE Cipher

I In private key, both Alice and Bob have ~k .

In public key, only Alice has the key ~k .

I Alice Cannot publish key ~k .

Alice Can publish noisy equations that ~k satisfies.

Eve won’t be able to use the noisy equations to find key.

How can Bob use the noisy equations to encode a bit?



Thoughts on a Public Key LWE Cipher

I In private key, both Alice and Bob have ~k .

In public key, only Alice has the key ~k .

I Alice Cannot publish key ~k .

Alice Can publish noisy equations that ~k satisfies.

Eve won’t be able to use the noisy equations to find key.

How can Bob use the noisy equations to encode a bit?



Thoughts on a Public Key LWE Cipher

I In private key, both Alice and Bob have ~k .

In public key, only Alice has the key ~k .

I Alice Cannot publish key ~k .

Alice Can publish noisy equations that ~k satisfies.

Eve won’t be able to use the noisy equations to find key.

How can Bob use the noisy equations to encode a bit?



Thoughts on a Public Key LWE Cipher

I In private key, both Alice and Bob have ~k .

In public key, only Alice has the key ~k .

I Alice Cannot publish key ~k .

Alice Can publish noisy equations that ~k satisfies.

Eve won’t be able to use the noisy equations to find key.

How can Bob use the noisy equations to encode a bit?



Recall: Noisy Equations
Everything is mod p, some prime p.

Let ~k = (k1, . . . , kn), ~r = (r1, . . . , rn), and C be such that

r1k1 + · · ·+ rnkn = C

r1x1 + · · ·+ rnxn = C is an equation that ~k satisfies.

Pick e ∈r {−γ, . . . , γ}. Think of γ as small.
r1x1 + · · ·+ rnxn ∼ C + e is noisy eq that ~k satisfies.

Say ~k satisfies the noisy equations

r1x1 + · · ·+ rnxn ∼ C1 + e1

s1x1 + · · ·+ snxn ∼ C2 + e2

Does ~k satisfy the sum?

(r1 + s1)x1 + · · ·+ (rk + sk)xk ∼ C1 + C2 + e1 + e2



Recall: Noisy Equations
Everything is mod p, some prime p.

Let ~k = (k1, . . . , kn), ~r = (r1, . . . , rn), and C be such that

r1k1 + · · ·+ rnkn = C

r1x1 + · · ·+ rnxn = C is an equation that ~k satisfies.

Pick e ∈r {−γ, . . . , γ}. Think of γ as small.
r1x1 + · · ·+ rnxn ∼ C + e is noisy eq that ~k satisfies.

Say ~k satisfies the noisy equations

r1x1 + · · ·+ rnxn ∼ C1 + e1

s1x1 + · · ·+ snxn ∼ C2 + e2

Does ~k satisfy the sum?

(r1 + s1)x1 + · · ·+ (rk + sk)xk ∼ C1 + C2 + e1 + e2



Recall: Noisy Equations
Everything is mod p, some prime p.

Let ~k = (k1, . . . , kn), ~r = (r1, . . . , rn), and C be such that

r1k1 + · · ·+ rnkn = C

r1x1 + · · ·+ rnxn = C is an equation that ~k satisfies.

Pick e ∈r {−γ, . . . , γ}. Think of γ as small.
r1x1 + · · ·+ rnxn ∼ C + e is noisy eq that ~k satisfies.

Say ~k satisfies the noisy equations

r1x1 + · · ·+ rnxn ∼ C1 + e1

s1x1 + · · ·+ snxn ∼ C2 + e2

Does ~k satisfy the sum?

(r1 + s1)x1 + · · ·+ (rk + sk)xk ∼ C1 + C2 + e1 + e2



Recall: Noisy Equations
Everything is mod p, some prime p.

Let ~k = (k1, . . . , kn), ~r = (r1, . . . , rn), and C be such that

r1k1 + · · ·+ rnkn = C

r1x1 + · · ·+ rnxn = C is an equation that ~k satisfies.

Pick e ∈r {−γ, . . . , γ}. Think of γ as small.
r1x1 + · · ·+ rnxn ∼ C + e is noisy eq that ~k satisfies.

Say ~k satisfies the noisy equations

r1x1 + · · ·+ rnxn ∼ C1 + e1

s1x1 + · · ·+ snxn ∼ C2 + e2

Does ~k satisfy the sum?

(r1 + s1)x1 + · · ·+ (rk + sk)xk ∼ C1 + C2 + e1 + e2



Recall: Noisy Equations
Everything is mod p, some prime p.

Let ~k = (k1, . . . , kn), ~r = (r1, . . . , rn), and C be such that

r1k1 + · · ·+ rnkn = C

r1x1 + · · ·+ rnxn = C is an equation that ~k satisfies.

Pick e ∈r {−γ, . . . , γ}. Think of γ as small.
r1x1 + · · ·+ rnxn ∼ C + e is noisy eq that ~k satisfies.

Say ~k satisfies the noisy equations

r1x1 + · · ·+ rnxn ∼ C1 + e1

s1x1 + · · ·+ snxn ∼ C2 + e2

Does ~k satisfy the sum?

(r1 + s1)x1 + · · ·+ (rk + sk)xk ∼ C1 + C2 + e1 + e2



Recall: Noisy Equations
Everything is mod p, some prime p.

Let ~k = (k1, . . . , kn), ~r = (r1, . . . , rn), and C be such that

r1k1 + · · ·+ rnkn = C

r1x1 + · · ·+ rnxn = C is an equation that ~k satisfies.

Pick e ∈r {−γ, . . . , γ}. Think of γ as small.
r1x1 + · · ·+ rnxn ∼ C + e is noisy eq that ~k satisfies.

Say ~k satisfies the noisy equations

r1x1 + · · ·+ rnxn ∼ C1 + e1

s1x1 + · · ·+ snxn ∼ C2 + e2

Does ~k satisfy the sum?

(r1 + s1)x1 + · · ·+ (rk + sk)xk ∼ C1 + C2 + e1 + e2



Sums of Noisy Equations

Everything is mod p, some prime p.

Say ~k satisfies the noisy equations

r1x1 + · · · rkxk ∼ C1 + e1

s1x1 + · · · skxk ∼ C2 + e2

Does ~k satisfy the sum?

(r1 + s1)x1 + · · · (rk + sk)xk ∼ C1 + C2 + e1 + e2

The error is in {−2γ, . . . , 2γ}.
We take γ small so that ~k still satisfies the noisy equation.

We add lots of equations, so γ very small.



Sums of Noisy Equations

Everything is mod p, some prime p.

Say ~k satisfies the noisy equations

r1x1 + · · · rkxk ∼ C1 + e1

s1x1 + · · · skxk ∼ C2 + e2

Does ~k satisfy the sum?

(r1 + s1)x1 + · · · (rk + sk)xk ∼ C1 + C2 + e1 + e2

The error is in {−2γ, . . . , 2γ}.
We take γ small so that ~k still satisfies the noisy equation.

We add lots of equations, so γ very small.



Sums of Noisy Equations

Everything is mod p, some prime p.

Say ~k satisfies the noisy equations

r1x1 + · · · rkxk ∼ C1 + e1

s1x1 + · · · skxk ∼ C2 + e2

Does ~k satisfy the sum?

(r1 + s1)x1 + · · · (rk + sk)xk ∼ C1 + C2 + e1 + e2

The error is in {−2γ, . . . , 2γ}.
We take γ small so that ~k still satisfies the noisy equation.

We add lots of equations, so γ very small.



Sums of Noisy Equations

Everything is mod p, some prime p.

Say ~k satisfies the noisy equations

r1x1 + · · · rkxk ∼ C1 + e1

s1x1 + · · · skxk ∼ C2 + e2

Does ~k satisfy the sum?

(r1 + s1)x1 + · · · (rk + sk)xk ∼ C1 + C2 + e1 + e2

The error is in {−2γ, . . . , 2γ}.
We take γ small so that ~k still satisfies the noisy equation.

We add lots of equations, so γ very small.



Sums of Noisy Equations

Everything is mod p, some prime p.

Say ~k satisfies the noisy equations

r1x1 + · · · rkxk ∼ C1 + e1

s1x1 + · · · skxk ∼ C2 + e2

Does ~k satisfy the sum?

(r1 + s1)x1 + · · · (rk + sk)xk ∼ C1 + C2 + e1 + e2

The error is in {−2γ, . . . , 2γ}.
We take γ small so that ~k still satisfies the noisy equation.

We add lots of equations, so γ very small.



Example of Setting Up The LWE-Public Cipher
Public Info Prime: 191. Length of Vector: 4. Error: {−1, 0, 1}.

Alice Wants to Enable Bob to Send b ∈ {0, 1}.
1. She picks rand: (1, 10, 21, 89). She picks 4 rand ~r .

(4, 9, 1, 89), (9, 98, 8, 1), (44, 55, 10, 8), (9, 3, 11, 99).
She picks 4 random e ∈ {−1, 0, 1}: 1,-1,0,1.
She forms 4 noisy eqs which have (1, 10, 21, 89) as “answer.”

4k1 + 9k2 + 21k3 + 89k4 ≡ 84

9k1 + 98k2 + 8k3 + k4 ≡ 99

44k1 + 558k2 + 10k3 + 8k4 ≡ 179

9k1 + 3k2 + 11k3 + 99k4 ≡ 105

These equations are published.
Note Any sum of the eqs also has (1, 10, 21, 89) as “answer.”



Example of Setting Up The LWE-Public Cipher
Public Info Prime: 191. Length of Vector: 4. Error: {−1, 0, 1}.
Alice Wants to Enable Bob to Send b ∈ {0, 1}.

1. She picks rand: (1, 10, 21, 89). She picks 4 rand ~r .
(4, 9, 1, 89), (9, 98, 8, 1), (44, 55, 10, 8), (9, 3, 11, 99).
She picks 4 random e ∈ {−1, 0, 1}: 1,-1,0,1.
She forms 4 noisy eqs which have (1, 10, 21, 89) as “answer.”

4k1 + 9k2 + 21k3 + 89k4 ≡ 84

9k1 + 98k2 + 8k3 + k4 ≡ 99

44k1 + 558k2 + 10k3 + 8k4 ≡ 179

9k1 + 3k2 + 11k3 + 99k4 ≡ 105

These equations are published.
Note Any sum of the eqs also has (1, 10, 21, 89) as “answer.”



Example of Setting Up The LWE-Public Cipher
Public Info Prime: 191. Length of Vector: 4. Error: {−1, 0, 1}.
Alice Wants to Enable Bob to Send b ∈ {0, 1}.

1. She picks rand: (1, 10, 21, 89).

She picks 4 rand ~r .
(4, 9, 1, 89), (9, 98, 8, 1), (44, 55, 10, 8), (9, 3, 11, 99).
She picks 4 random e ∈ {−1, 0, 1}: 1,-1,0,1.
She forms 4 noisy eqs which have (1, 10, 21, 89) as “answer.”

4k1 + 9k2 + 21k3 + 89k4 ≡ 84

9k1 + 98k2 + 8k3 + k4 ≡ 99

44k1 + 558k2 + 10k3 + 8k4 ≡ 179

9k1 + 3k2 + 11k3 + 99k4 ≡ 105

These equations are published.
Note Any sum of the eqs also has (1, 10, 21, 89) as “answer.”



Example of Setting Up The LWE-Public Cipher
Public Info Prime: 191. Length of Vector: 4. Error: {−1, 0, 1}.
Alice Wants to Enable Bob to Send b ∈ {0, 1}.

1. She picks rand: (1, 10, 21, 89). She picks 4 rand ~r .
(4, 9, 1, 89), (9, 98, 8, 1), (44, 55, 10, 8), (9, 3, 11, 99).

She picks 4 random e ∈ {−1, 0, 1}: 1,-1,0,1.
She forms 4 noisy eqs which have (1, 10, 21, 89) as “answer.”

4k1 + 9k2 + 21k3 + 89k4 ≡ 84

9k1 + 98k2 + 8k3 + k4 ≡ 99

44k1 + 558k2 + 10k3 + 8k4 ≡ 179

9k1 + 3k2 + 11k3 + 99k4 ≡ 105

These equations are published.
Note Any sum of the eqs also has (1, 10, 21, 89) as “answer.”



Example of Setting Up The LWE-Public Cipher
Public Info Prime: 191. Length of Vector: 4. Error: {−1, 0, 1}.
Alice Wants to Enable Bob to Send b ∈ {0, 1}.

1. She picks rand: (1, 10, 21, 89). She picks 4 rand ~r .
(4, 9, 1, 89), (9, 98, 8, 1), (44, 55, 10, 8), (9, 3, 11, 99).
She picks 4 random e ∈ {−1, 0, 1}: 1,-1,0,1.

She forms 4 noisy eqs which have (1, 10, 21, 89) as “answer.”

4k1 + 9k2 + 21k3 + 89k4 ≡ 84

9k1 + 98k2 + 8k3 + k4 ≡ 99

44k1 + 558k2 + 10k3 + 8k4 ≡ 179

9k1 + 3k2 + 11k3 + 99k4 ≡ 105

These equations are published.
Note Any sum of the eqs also has (1, 10, 21, 89) as “answer.”



Example of Setting Up The LWE-Public Cipher
Public Info Prime: 191. Length of Vector: 4. Error: {−1, 0, 1}.
Alice Wants to Enable Bob to Send b ∈ {0, 1}.

1. She picks rand: (1, 10, 21, 89). She picks 4 rand ~r .
(4, 9, 1, 89), (9, 98, 8, 1), (44, 55, 10, 8), (9, 3, 11, 99).
She picks 4 random e ∈ {−1, 0, 1}: 1,-1,0,1.
She forms 4 noisy eqs which have (1, 10, 21, 89) as “answer.”

4k1 + 9k2 + 21k3 + 89k4 ≡ 84

9k1 + 98k2 + 8k3 + k4 ≡ 99

44k1 + 558k2 + 10k3 + 8k4 ≡ 179

9k1 + 3k2 + 11k3 + 99k4 ≡ 105

These equations are published.
Note Any sum of the eqs also has (1, 10, 21, 89) as “answer.”



Example of Setting Up The LWE-Public Cipher
Public Info Prime: 191. Length of Vector: 4. Error: {−1, 0, 1}.
Alice Wants to Enable Bob to Send b ∈ {0, 1}.

1. She picks rand: (1, 10, 21, 89). She picks 4 rand ~r .
(4, 9, 1, 89), (9, 98, 8, 1), (44, 55, 10, 8), (9, 3, 11, 99).
She picks 4 random e ∈ {−1, 0, 1}: 1,-1,0,1.
She forms 4 noisy eqs which have (1, 10, 21, 89) as “answer.”

4k1 + 9k2 + 21k3 + 89k4 ≡ 84

9k1 + 98k2 + 8k3 + k4 ≡ 99

44k1 + 558k2 + 10k3 + 8k4 ≡ 179

9k1 + 3k2 + 11k3 + 99k4 ≡ 105

These equations are published.
Note Any sum of the eqs also has (1, 10, 21, 89) as “answer.”



Example of Setting Up The LWE-Public Cipher
Public Info Prime: 191. Length of Vector: 4. Error: {−1, 0, 1}.
Alice Wants to Enable Bob to Send b ∈ {0, 1}.

1. She picks rand: (1, 10, 21, 89). She picks 4 rand ~r .
(4, 9, 1, 89), (9, 98, 8, 1), (44, 55, 10, 8), (9, 3, 11, 99).
She picks 4 random e ∈ {−1, 0, 1}: 1,-1,0,1.
She forms 4 noisy eqs which have (1, 10, 21, 89) as “answer.”

4k1 + 9k2 + 21k3 + 89k4 ≡ 84

9k1 + 98k2 + 8k3 + k4 ≡ 99

44k1 + 558k2 + 10k3 + 8k4 ≡ 179

9k1 + 3k2 + 11k3 + 99k4 ≡ 105

These equations are published.

Note Any sum of the eqs also has (1, 10, 21, 89) as “answer.”



Example of Setting Up The LWE-Public Cipher
Public Info Prime: 191. Length of Vector: 4. Error: {−1, 0, 1}.
Alice Wants to Enable Bob to Send b ∈ {0, 1}.

1. She picks rand: (1, 10, 21, 89). She picks 4 rand ~r .
(4, 9, 1, 89), (9, 98, 8, 1), (44, 55, 10, 8), (9, 3, 11, 99).
She picks 4 random e ∈ {−1, 0, 1}: 1,-1,0,1.
She forms 4 noisy eqs which have (1, 10, 21, 89) as “answer.”

4k1 + 9k2 + 21k3 + 89k4 ≡ 84

9k1 + 98k2 + 8k3 + k4 ≡ 99

44k1 + 558k2 + 10k3 + 8k4 ≡ 179

9k1 + 3k2 + 11k3 + 99k4 ≡ 105

These equations are published.
Note Any sum of the eqs also has (1, 10, 21, 89) as “answer.”



Bob Wants to Send a Bit

Bob wants to send bit 0.

Pick two of the equations, add them, and sends publicly:

13k1 + 12k2 + 32k3 + 188k4 ≡ 189

Eve She sees this equation but does not know which equations
were added to form this one.
Alice She finds that (1, 10, 21, 99) is close to solution, so b = 0.

Bob want to send bit 1.
Pick two of the equations, add them, add 50, and sends publicly:

13k1 + 12k2 + 32k3 + 188k4 ≡ 49

Eve She sees this equation but does not know which equations
were added to form this one.
Alice She finds that (1, 10, 21, 99) is far from solution, so b = 1.



Bob Wants to Send a Bit

Bob wants to send bit 0.
Pick two of the equations, add them, and sends publicly:

13k1 + 12k2 + 32k3 + 188k4 ≡ 189

Eve She sees this equation but does not know which equations
were added to form this one.
Alice She finds that (1, 10, 21, 99) is close to solution, so b = 0.

Bob want to send bit 1.
Pick two of the equations, add them, add 50, and sends publicly:

13k1 + 12k2 + 32k3 + 188k4 ≡ 49

Eve She sees this equation but does not know which equations
were added to form this one.
Alice She finds that (1, 10, 21, 99) is far from solution, so b = 1.



Bob Wants to Send a Bit

Bob wants to send bit 0.
Pick two of the equations, add them, and sends publicly:

13k1 + 12k2 + 32k3 + 188k4 ≡ 189

Eve She sees this equation but does not know which equations
were added to form this one.
Alice She finds that (1, 10, 21, 99) is close to solution, so b = 0.

Bob want to send bit 1.
Pick two of the equations, add them, add 50, and sends publicly:

13k1 + 12k2 + 32k3 + 188k4 ≡ 49

Eve She sees this equation but does not know which equations
were added to form this one.
Alice She finds that (1, 10, 21, 99) is far from solution, so b = 1.



Bob Wants to Send a Bit

Bob wants to send bit 0.
Pick two of the equations, add them, and sends publicly:

13k1 + 12k2 + 32k3 + 188k4 ≡ 189

Eve She sees this equation but does not know which equations
were added to form this one.

Alice She finds that (1, 10, 21, 99) is close to solution, so b = 0.

Bob want to send bit 1.
Pick two of the equations, add them, add 50, and sends publicly:

13k1 + 12k2 + 32k3 + 188k4 ≡ 49

Eve She sees this equation but does not know which equations
were added to form this one.
Alice She finds that (1, 10, 21, 99) is far from solution, so b = 1.



Bob Wants to Send a Bit

Bob wants to send bit 0.
Pick two of the equations, add them, and sends publicly:

13k1 + 12k2 + 32k3 + 188k4 ≡ 189

Eve She sees this equation but does not know which equations
were added to form this one.
Alice She finds that (1, 10, 21, 99) is close to solution, so b = 0.

Bob want to send bit 1.
Pick two of the equations, add them, add 50, and sends publicly:

13k1 + 12k2 + 32k3 + 188k4 ≡ 49

Eve She sees this equation but does not know which equations
were added to form this one.
Alice She finds that (1, 10, 21, 99) is far from solution, so b = 1.



Bob Wants to Send a Bit

Bob wants to send bit 0.
Pick two of the equations, add them, and sends publicly:

13k1 + 12k2 + 32k3 + 188k4 ≡ 189

Eve She sees this equation but does not know which equations
were added to form this one.
Alice She finds that (1, 10, 21, 99) is close to solution, so b = 0.

Bob want to send bit 1.

Pick two of the equations, add them, add 50, and sends publicly:

13k1 + 12k2 + 32k3 + 188k4 ≡ 49

Eve She sees this equation but does not know which equations
were added to form this one.
Alice She finds that (1, 10, 21, 99) is far from solution, so b = 1.



Bob Wants to Send a Bit

Bob wants to send bit 0.
Pick two of the equations, add them, and sends publicly:

13k1 + 12k2 + 32k3 + 188k4 ≡ 189

Eve She sees this equation but does not know which equations
were added to form this one.
Alice She finds that (1, 10, 21, 99) is close to solution, so b = 0.

Bob want to send bit 1.
Pick two of the equations, add them, add 50, and sends publicly:

13k1 + 12k2 + 32k3 + 188k4 ≡ 49

Eve She sees this equation but does not know which equations
were added to form this one.
Alice She finds that (1, 10, 21, 99) is far from solution, so b = 1.



Bob Wants to Send a Bit

Bob wants to send bit 0.
Pick two of the equations, add them, and sends publicly:

13k1 + 12k2 + 32k3 + 188k4 ≡ 189

Eve She sees this equation but does not know which equations
were added to form this one.
Alice She finds that (1, 10, 21, 99) is close to solution, so b = 0.

Bob want to send bit 1.
Pick two of the equations, add them, add 50, and sends publicly:

13k1 + 12k2 + 32k3 + 188k4 ≡ 49

Eve She sees this equation but does not know which equations
were added to form this one.

Alice She finds that (1, 10, 21, 99) is far from solution, so b = 1.



Bob Wants to Send a Bit

Bob wants to send bit 0.
Pick two of the equations, add them, and sends publicly:

13k1 + 12k2 + 32k3 + 188k4 ≡ 189

Eve She sees this equation but does not know which equations
were added to form this one.
Alice She finds that (1, 10, 21, 99) is close to solution, so b = 0.

Bob want to send bit 1.
Pick two of the equations, add them, add 50, and sends publicly:

13k1 + 12k2 + 32k3 + 188k4 ≡ 49

Eve She sees this equation but does not know which equations
were added to form this one.
Alice She finds that (1, 10, 21, 99) is far from solution, so b = 1.



Public Key LWE Cipher

Public Info p, the mod. Math is mod p. Param γ, n,m.

Alice Wants to Enable Bob to Send b ∈ {0, 1}.
1. Alice picks random ~k of length n, her private key.

2. Alice picks m random ~r . For each ~r pick e ∈r {−γ, . . . , γ}.
Let D = ~r · ~k + e. Broadcast all (~r ;D).
Note ~k satisfies the noisy equations and any sum of them.

3. Bob wants to send bit b. He picks a uniform random set of
the public noisy equations and adds them, AND adds bp

2 .

s1x1 + · · ·+ snxn ∼ D ′ +
bp

2
iff b = 0

D ′ is sum of Ds. Broadcasts (~s;F ) where F = D ′ + bp
2 .



Public Key LWE Cipher

Public Info p, the mod. Math is mod p. Param γ, n,m.

Alice Wants to Enable Bob to Send b ∈ {0, 1}.

1. Alice picks random ~k of length n, her private key.

2. Alice picks m random ~r . For each ~r pick e ∈r {−γ, . . . , γ}.
Let D = ~r · ~k + e. Broadcast all (~r ;D).
Note ~k satisfies the noisy equations and any sum of them.

3. Bob wants to send bit b. He picks a uniform random set of
the public noisy equations and adds them, AND adds bp

2 .

s1x1 + · · ·+ snxn ∼ D ′ +
bp

2
iff b = 0

D ′ is sum of Ds. Broadcasts (~s;F ) where F = D ′ + bp
2 .



Public Key LWE Cipher

Public Info p, the mod. Math is mod p. Param γ, n,m.

Alice Wants to Enable Bob to Send b ∈ {0, 1}.
1. Alice picks random ~k of length n, her private key.

2. Alice picks m random ~r . For each ~r pick e ∈r {−γ, . . . , γ}.
Let D = ~r · ~k + e. Broadcast all (~r ;D).
Note ~k satisfies the noisy equations and any sum of them.

3. Bob wants to send bit b. He picks a uniform random set of
the public noisy equations and adds them, AND adds bp

2 .

s1x1 + · · ·+ snxn ∼ D ′ +
bp

2
iff b = 0

D ′ is sum of Ds. Broadcasts (~s;F ) where F = D ′ + bp
2 .



Public Key LWE Cipher

Public Info p, the mod. Math is mod p. Param γ, n,m.

Alice Wants to Enable Bob to Send b ∈ {0, 1}.
1. Alice picks random ~k of length n, her private key.

2. Alice picks m random ~r . For each ~r pick e ∈r {−γ, . . . , γ}.
Let D = ~r · ~k + e.

Broadcast all (~r ;D).
Note ~k satisfies the noisy equations and any sum of them.

3. Bob wants to send bit b. He picks a uniform random set of
the public noisy equations and adds them, AND adds bp

2 .

s1x1 + · · ·+ snxn ∼ D ′ +
bp

2
iff b = 0

D ′ is sum of Ds. Broadcasts (~s;F ) where F = D ′ + bp
2 .



Public Key LWE Cipher

Public Info p, the mod. Math is mod p. Param γ, n,m.

Alice Wants to Enable Bob to Send b ∈ {0, 1}.
1. Alice picks random ~k of length n, her private key.

2. Alice picks m random ~r . For each ~r pick e ∈r {−γ, . . . , γ}.
Let D = ~r · ~k + e. Broadcast all (~r ;D).

Note ~k satisfies the noisy equations and any sum of them.

3. Bob wants to send bit b. He picks a uniform random set of
the public noisy equations and adds them, AND adds bp

2 .

s1x1 + · · ·+ snxn ∼ D ′ +
bp

2
iff b = 0

D ′ is sum of Ds. Broadcasts (~s;F ) where F = D ′ + bp
2 .



Public Key LWE Cipher

Public Info p, the mod. Math is mod p. Param γ, n,m.

Alice Wants to Enable Bob to Send b ∈ {0, 1}.
1. Alice picks random ~k of length n, her private key.

2. Alice picks m random ~r . For each ~r pick e ∈r {−γ, . . . , γ}.
Let D = ~r · ~k + e. Broadcast all (~r ;D).
Note ~k satisfies the noisy equations and any sum of them.

3. Bob wants to send bit b. He picks a uniform random set of
the public noisy equations and adds them, AND adds bp

2 .

s1x1 + · · ·+ snxn ∼ D ′ +
bp

2
iff b = 0

D ′ is sum of Ds. Broadcasts (~s;F ) where F = D ′ + bp
2 .



Public Key LWE Cipher

Public Info p, the mod. Math is mod p. Param γ, n,m.

Alice Wants to Enable Bob to Send b ∈ {0, 1}.
1. Alice picks random ~k of length n, her private key.

2. Alice picks m random ~r . For each ~r pick e ∈r {−γ, . . . , γ}.
Let D = ~r · ~k + e. Broadcast all (~r ;D).
Note ~k satisfies the noisy equations and any sum of them.

3. Bob wants to send bit b. He picks a uniform random set of
the public noisy equations and adds them, AND adds bp

2 .

s1x1 + · · ·+ snxn ∼ D ′ +
bp

2
iff b = 0

D ′ is sum of Ds. Broadcasts (~s;F ) where F = D ′ + bp
2 .



Public Key LWE Cipher (cont)

Where were we:

1. Alice has ~k .

2. Bob send Alice (~s,F ) where F = D ′ + bp
2 .

3. Alice computes ~s · ~k − F .
IF SMALL then b = 0.
If LARGE then b = 1.

Details omitted, but:

I Will need to take γ ≤ p
2m .

I Will need p large so that p
2m is large enough for a variety of

error values for increased security.



Public Key LWE Cipher (cont)

Where were we:

1. Alice has ~k .

2. Bob send Alice (~s,F ) where F = D ′ + bp
2 .

3. Alice computes ~s · ~k − F .
IF SMALL then b = 0.
If LARGE then b = 1.

Details omitted, but:

I Will need to take γ ≤ p
2m .

I Will need p large so that p
2m is large enough for a variety of

error values for increased security.



Public Key LWE Cipher (cont)

Where were we:

1. Alice has ~k .

2. Bob send Alice (~s,F ) where F = D ′ + bp
2 .

3. Alice computes ~s · ~k − F .
IF SMALL then b = 0.
If LARGE then b = 1.

Details omitted, but:

I Will need to take γ ≤ p
2m .

I Will need p large so that p
2m is large enough for a variety of

error values for increased security.



Public Key LWE Cipher (cont)

Where were we:

1. Alice has ~k .

2. Bob send Alice (~s,F ) where F = D ′ + bp
2 .

3. Alice computes ~s · ~k − F .

IF SMALL then b = 0.
If LARGE then b = 1.

Details omitted, but:

I Will need to take γ ≤ p
2m .

I Will need p large so that p
2m is large enough for a variety of

error values for increased security.



Public Key LWE Cipher (cont)

Where were we:

1. Alice has ~k .

2. Bob send Alice (~s,F ) where F = D ′ + bp
2 .

3. Alice computes ~s · ~k − F .
IF SMALL then b = 0.
If LARGE then b = 1.

Details omitted, but:

I Will need to take γ ≤ p
2m .

I Will need p large so that p
2m is large enough for a variety of

error values for increased security.



Public Key LWE Cipher (cont)

Where were we:

1. Alice has ~k .

2. Bob send Alice (~s,F ) where F = D ′ + bp
2 .

3. Alice computes ~s · ~k − F .
IF SMALL then b = 0.
If LARGE then b = 1.

Details omitted, but:

I Will need to take γ ≤ p
2m .

I Will need p large so that p
2m is large enough for a variety of

error values for increased security.



Public Key LWE Cipher (cont)

Where were we:

1. Alice has ~k .

2. Bob send Alice (~s,F ) where F = D ′ + bp
2 .

3. Alice computes ~s · ~k − F .
IF SMALL then b = 0.
If LARGE then b = 1.

Details omitted, but:

I Will need to take γ ≤ p
2m .

I Will need p large so that p
2m is large enough for a variety of

error values for increased security.



Public Key LWE Cipher (cont)

Where were we:

1. Alice has ~k .

2. Bob send Alice (~s,F ) where F = D ′ + bp
2 .

3. Alice computes ~s · ~k − F .
IF SMALL then b = 0.
If LARGE then b = 1.

Details omitted, but:

I Will need to take γ ≤ p
2m .

I Will need p large so that p
2m is large enough for a variety of

error values for increased security.



LWE-Public: Security

What problem does Eve need to solve to find the key? (Same one
as LWE-private.)

Learning With Errors Problem (LWE) Eve is given p, n, γ and
told there is a key ~k of length n that she wants to find.

Eve is given a set of tuples (~r ,D) and told that

~r · ~k − D ∈r {−γ, . . . , γ}.

From these noisy equations she wants to learn ~k .
Hard? We discuss why this problem is thought to be hard.



LWE-Public: Security

What problem does Eve need to solve to find the key? (Same one
as LWE-private.)

Learning With Errors Problem (LWE) Eve is given p, n, γ and
told there is a key ~k of length n that she wants to find.

Eve is given a set of tuples (~r ,D) and told that

~r · ~k − D ∈r {−γ, . . . , γ}.

From these noisy equations she wants to learn ~k .
Hard? We discuss why this problem is thought to be hard.



LWE-Public: Security

What problem does Eve need to solve to find the key? (Same one
as LWE-private.)

Learning With Errors Problem (LWE) Eve is given p, n, γ and
told there is a key ~k of length n that she wants to find.

Eve is given a set of tuples (~r ,D) and told that

~r · ~k − D ∈r {−γ, . . . , γ}.

From these noisy equations she wants to learn ~k .
Hard? We discuss why this problem is thought to be hard.



LWE-Public: Security

What problem does Eve need to solve to find the key? (Same one
as LWE-private.)

Learning With Errors Problem (LWE) Eve is given p, n, γ and
told there is a key ~k of length n that she wants to find.

Eve is given a set of tuples (~r ,D) and told that

~r · ~k − D ∈r {−γ, . . . , γ}.

From these noisy equations she wants to learn ~k .

Hard? We discuss why this problem is thought to be hard.



LWE-Public: Security

What problem does Eve need to solve to find the key? (Same one
as LWE-private.)

Learning With Errors Problem (LWE) Eve is given p, n, γ and
told there is a key ~k of length n that she wants to find.

Eve is given a set of tuples (~r ,D) and told that

~r · ~k − D ∈r {−γ, . . . , γ}.

From these noisy equations she wants to learn ~k .
Hard?

We discuss why this problem is thought to be hard.



LWE-Public: Security

What problem does Eve need to solve to find the key? (Same one
as LWE-private.)

Learning With Errors Problem (LWE) Eve is given p, n, γ and
told there is a key ~k of length n that she wants to find.

Eve is given a set of tuples (~r ,D) and told that

~r · ~k − D ∈r {−γ, . . . , γ}.

From these noisy equations she wants to learn ~k .
Hard? We discuss why this problem is thought to be hard.



LWE-Public: Security (cont)

Theorem If Eve can crack the LWE-public cipher then Eve can
solve the LWE-problem. Note that this is the direction you want.

Proof We won’t prove this, but we note that it requires some work.

When discussing LWE-Private we just said
LWE-problem is thought to be hard.

We now go into that some more.



LWE-Public: Security (cont)

Theorem If Eve can crack the LWE-public cipher then Eve can
solve the LWE-problem. Note that this is the direction you want.
Proof We won’t prove this, but we note that it requires some work.

When discussing LWE-Private we just said
LWE-problem is thought to be hard.

We now go into that some more.



LWE-Public: Security (cont)

Theorem If Eve can crack the LWE-public cipher then Eve can
solve the LWE-problem. Note that this is the direction you want.
Proof We won’t prove this, but we note that it requires some work.

When discussing LWE-Private we just said
LWE-problem is thought to be hard.

We now go into that some more.



LWE-Public: Security (cont)

Theorem If Eve can crack the LWE-public cipher then Eve can
solve the LWE-problem. Note that this is the direction you want.
Proof We won’t prove this, but we note that it requires some work.

When discussing LWE-Private we just said
LWE-problem is thought to be hard.

We now go into that some more.



Shortest Vector Problem (SVP)

SVP Given a lattice, find the shortest Vector out of the origin.

(Picture by Sebastian Schmittner - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=44488873)

Hardness Known to be NP-hard under randomized reductions.
Want SVP ≤ LWE ≤ LWE-Public.
We don’t have this but we have something similar.

https://commons.wikimedia.org/w/index.php?curid=44488873


Shortest Vector Problem (SVP)

SVP Given a lattice, find the shortest Vector out of the origin.

(Picture by Sebastian Schmittner - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=44488873)

Hardness Known to be NP-hard under randomized reductions.

Want SVP ≤ LWE ≤ LWE-Public.
We don’t have this but we have something similar.

https://commons.wikimedia.org/w/index.php?curid=44488873


Shortest Vector Problem (SVP)

SVP Given a lattice, find the shortest Vector out of the origin.

(Picture by Sebastian Schmittner - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=44488873)

Hardness Known to be NP-hard under randomized reductions.
Want SVP ≤ LWE ≤ LWE-Public.

We don’t have this but we have something similar.

https://commons.wikimedia.org/w/index.php?curid=44488873


Shortest Vector Problem (SVP)

SVP Given a lattice, find the shortest Vector out of the origin.

(Picture by Sebastian Schmittner - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=44488873)

Hardness Known to be NP-hard under randomized reductions.
Want SVP ≤ LWE ≤ LWE-Public.
We don’t have this but we have something similar.

https://commons.wikimedia.org/w/index.php?curid=44488873


Gap-Shortest Vector Problem (Gap-SVP)

SVP Given a lattice, find the shortest Vector out of the origin.

Gap-SVP Given a lattice, find if the shortest Vector out of the
origin is LONG or SHORT. If its neither, still give an answer, but it
won’t mean anything.

Want Gap-SVP ≤ LWE ≤ LWE-Public. We do have this! Sort of.



Gap-Shortest Vector Problem (Gap-SVP)

SVP Given a lattice, find the shortest Vector out of the origin.

Gap-SVP Given a lattice, find if the shortest Vector out of the
origin is LONG or SHORT. If its neither, still give an answer, but it
won’t mean anything.

Want Gap-SVP ≤ LWE ≤ LWE-Public. We do have this! Sort of.



Gap-Shortest Vector Problem (Gap-SVP)

SVP Given a lattice, find the shortest Vector out of the origin.

Gap-SVP Given a lattice, find if the shortest Vector out of the
origin is LONG or SHORT. If its neither, still give an answer, but it
won’t mean anything.

Want Gap-SVP ≤ LWE ≤ LWE-Public.

We do have this! Sort of.



Gap-Shortest Vector Problem (Gap-SVP)

SVP Given a lattice, find the shortest Vector out of the origin.

Gap-SVP Given a lattice, find if the shortest Vector out of the
origin is LONG or SHORT. If its neither, still give an answer, but it
won’t mean anything.

Want Gap-SVP ≤ LWE ≤ LWE-Public. We do have this! Sort of.



LWE-Public. Hardness Assumption – A Caveat

Want:

Gap-SVP ≤ LWE ≤ LWE-Public

This is true. Sort of.
Gap-SVP ≤ LWE is a Quantum Reduction

Quantum Reduction means the reduction works if you have a
quantum computer.
Its a Win-Win!
QC means that Quantum Computing is Practical.

1. ¬QC : RSA secure (against Quantum Factoring).

2. QC : LWE-Public is secure (assuming GAP-SVP is hard).

Caveat Regev showed the quantum reduction in 2009. Peikert
obtained a randomized reduction in 2014. The quantum reduction
works for a wider range of parameters.



LWE-Public. Hardness Assumption – A Caveat

Want:

Gap-SVP ≤ LWE ≤ LWE-Public

This is true. Sort of.

Gap-SVP ≤ LWE is a Quantum Reduction
Quantum Reduction means the reduction works if you have a
quantum computer.
Its a Win-Win!
QC means that Quantum Computing is Practical.

1. ¬QC : RSA secure (against Quantum Factoring).

2. QC : LWE-Public is secure (assuming GAP-SVP is hard).

Caveat Regev showed the quantum reduction in 2009. Peikert
obtained a randomized reduction in 2014. The quantum reduction
works for a wider range of parameters.



LWE-Public. Hardness Assumption – A Caveat

Want:

Gap-SVP ≤ LWE ≤ LWE-Public

This is true. Sort of.
Gap-SVP ≤ LWE is a Quantum Reduction

Quantum Reduction means the reduction works if you have a
quantum computer.

Its a Win-Win!
QC means that Quantum Computing is Practical.

1. ¬QC : RSA secure (against Quantum Factoring).

2. QC : LWE-Public is secure (assuming GAP-SVP is hard).

Caveat Regev showed the quantum reduction in 2009. Peikert
obtained a randomized reduction in 2014. The quantum reduction
works for a wider range of parameters.



LWE-Public. Hardness Assumption – A Caveat

Want:

Gap-SVP ≤ LWE ≤ LWE-Public

This is true. Sort of.
Gap-SVP ≤ LWE is a Quantum Reduction

Quantum Reduction means the reduction works if you have a
quantum computer.
Its a Win-Win!
QC means that Quantum Computing is Practical.

1. ¬QC : RSA secure (against Quantum Factoring).

2. QC : LWE-Public is secure (assuming GAP-SVP is hard).

Caveat Regev showed the quantum reduction in 2009. Peikert
obtained a randomized reduction in 2014. The quantum reduction
works for a wider range of parameters.



LWE-Public. Hardness Assumption – A Caveat

Want:

Gap-SVP ≤ LWE ≤ LWE-Public

This is true. Sort of.
Gap-SVP ≤ LWE is a Quantum Reduction

Quantum Reduction means the reduction works if you have a
quantum computer.
Its a Win-Win!
QC means that Quantum Computing is Practical.

1. ¬QC : RSA secure (against Quantum Factoring).

2. QC : LWE-Public is secure (assuming GAP-SVP is hard).

Caveat Regev showed the quantum reduction in 2009. Peikert
obtained a randomized reduction in 2014. The quantum reduction
works for a wider range of parameters.



LWE-Public. Hardness Assumption – A Caveat

Want:

Gap-SVP ≤ LWE ≤ LWE-Public

This is true. Sort of.
Gap-SVP ≤ LWE is a Quantum Reduction

Quantum Reduction means the reduction works if you have a
quantum computer.
Its a Win-Win!
QC means that Quantum Computing is Practical.

1. ¬QC : RSA secure (against Quantum Factoring).

2. QC : LWE-Public is secure (assuming GAP-SVP is hard).

Caveat Regev showed the quantum reduction in 2009. Peikert
obtained a randomized reduction in 2014. The quantum reduction
works for a wider range of parameters.



LWE-Public. Hardness Assumption – A Caveat

Want:

Gap-SVP ≤ LWE ≤ LWE-Public

This is true. Sort of.
Gap-SVP ≤ LWE is a Quantum Reduction

Quantum Reduction means the reduction works if you have a
quantum computer.
Its a Win-Win!
QC means that Quantum Computing is Practical.

1. ¬QC : RSA secure (against Quantum Factoring).

2. QC : LWE-Public is secure (assuming GAP-SVP is hard).

Caveat Regev showed the quantum reduction in 2009. Peikert
obtained a randomized reduction in 2014. The quantum reduction
works for a wider range of parameters.



Is LWE-private Being Used?

NIST has initiated a process to solicit, evaluate, and standardize
one or more quantum-resistant public-key cryptosystems:

Many of the finalists are LWE or similar to LWE.
Note that what I showed here were the IDEAS behind LWE-public.
Getting it to actually work requires many modifications.



Is LWE-private Being Used?

NIST has initiated a process to solicit, evaluate, and standardize
one or more quantum-resistant public-key cryptosystems:

Many of the finalists are LWE or similar to LWE.

Note that what I showed here were the IDEAS behind LWE-public.
Getting it to actually work requires many modifications.



Is LWE-private Being Used?

NIST has initiated a process to solicit, evaluate, and standardize
one or more quantum-resistant public-key cryptosystems:

Many of the finalists are LWE or similar to LWE.
Note that what I showed here were the IDEAS behind LWE-public.
Getting it to actually work requires many modifications.



BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!


