
BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!



The One-Time Pad
Trying to Fake the OTP

Failing To Do So



The One-Time Pad



Notation Reminder: ⊕

Notation ⊕ on bits. This is often called XOR as well.

b c b ⊕ c

0 0 0
0 1 1
1 0 1
1 1 0

Question Why do ∧, ∨, ⊕ have symbols that are commonly used
but NAND and NOR do not?

Answer ∧, ∨, ⊕ are associative ; NAND and NOR are not.

(∀a, b, c ∈ {0, 1})[(a⊕ b)⊕ c = a⊕ (b ⊕ c).



Notation Reminder: ⊕

Notation ⊕ on bits. This is often called XOR as well.

b c b ⊕ c

0 0 0
0 1 1
1 0 1
1 1 0

Question Why do ∧, ∨, ⊕ have symbols that are commonly used
but NAND and NOR do not?
Answer ∧, ∨, ⊕ are associative ; NAND and NOR are not.

(∀a, b, c ∈ {0, 1})[(a⊕ b)⊕ c = a⊕ (b ⊕ c).



Notation Reminder: ⊕

Notation ⊕ on bits. This is often called XOR as well.

b c b ⊕ c

0 0 0
0 1 1
1 0 1
1 1 0

Question Why do ∧, ∨, ⊕ have symbols that are commonly used
but NAND and NOR do not?
Answer ∧, ∨, ⊕ are associative ; NAND and NOR are not.

(∀a, b, c ∈ {0, 1})[(a⊕ b)⊕ c = a⊕ (b ⊕ c).



Useful Fact about ⊕

1. (∀b ∈ {0, 1})[b ⊕ b = 0]

2. (∀b ∈ {0, 1})[b ⊕ 0 = b]

Theorem (∀b, c ∈ {0, 1})[b ⊕ c ⊕ c = b]
Proof b ⊕ (c ⊕ c) = b ⊕ 0 = b.

The Theorem is very important for the 1-time pad.



Useful Fact about ⊕

1. (∀b ∈ {0, 1})[b ⊕ b = 0]

2. (∀b ∈ {0, 1})[b ⊕ 0 = b]

Theorem (∀b, c ∈ {0, 1})[b ⊕ c ⊕ c = b]
Proof b ⊕ (c ⊕ c) = b ⊕ 0 = b.

The Theorem is very important for the 1-time pad.



Extend ⊕ to Strings

Extend ⊕ to strings. If x , y ∈ {0, 1}n then x ⊕ y is done bitwise.
Example 0010⊕ 1110 = (0⊕ 1)(0⊕ 1)(1⊕ 1)(0⊕ 0) = 1100.

1. (∀x ∈ {0, 1}n)[x ⊕ x = 0n]

2. (∀x ∈ {0, 1}n)[x ⊕ 0n = x ]

Theorem (∀x , y ∈ {0, 1}n)[x ⊕ y ⊕ y = x ]
Proof x ⊕ (y ⊕ y) = x ⊕ 0n = x .



One-Time Pad

I Let M = {0, 1}n, the set of all messages.

I Gen: choose a uniform key k ∈ {0, 1}n.

I Enck(m) = k ⊕m.

I Deck(c) = k ⊕ c .

I Correctness:

Deck(Enck(m)) = k ⊕ (k ⊕m)

= (k ⊕ k)⊕m

= m



One-Time Pad

I Let M = {0, 1}n, the set of all messages.

I Gen: choose a uniform key k ∈ {0, 1}n.

I Enck(m) = k ⊕m.

I Deck(c) = k ⊕ c .

I Correctness:

Deck(Enck(m)) = k ⊕ (k ⊕m)

= (k ⊕ k)⊕m

= m



One-Time Pad

I Let M = {0, 1}n, the set of all messages.

I Gen: choose a uniform key k ∈ {0, 1}n.

I Enck(m) = k ⊕m.

I Deck(c) = k ⊕ c .

I Correctness:

Deck(Enck(m)) = k ⊕ (k ⊕m)

= (k ⊕ k)⊕m

= m



One-Time Pad

I Let M = {0, 1}n, the set of all messages.

I Gen: choose a uniform key k ∈ {0, 1}n.

I Enck(m) = k ⊕m.

I Deck(c) = k ⊕ c .

I Correctness:

Deck(Enck(m)) = k ⊕ (k ⊕m)

= (k ⊕ k)⊕m

= m



One-Time Pad

I Let M = {0, 1}n, the set of all messages.

I Gen: choose a uniform key k ∈ {0, 1}n.

I Enck(m) = k ⊕m.

I Deck(c) = k ⊕ c .

I Correctness:

Deck(Enck(m)) = k ⊕ (k ⊕m)

= (k ⊕ k)⊕m

= m



One-Time Pad

I Let M = {0, 1}n, the set of all messages.

I Gen: choose a uniform key k ∈ {0, 1}n.

I Enck(m) = k ⊕m.

I Deck(c) = k ⊕ c .

I Correctness:

Deck(Enck(m)) = k ⊕ (k ⊕m)

= (k ⊕ k)⊕m

= m



Example Of One-Time Pad

Key is 100010100010001111101111100

Alice wants to send Bob 1110.

She sends 1110⊕ 1000 = 0110.

Then Bob wants to send Alice 00111.

He sends 00111⊕ 10100 = 10011.

1. PRO ⊕ is FAST!

2. CON If Key is N bits long can only send N bits.

Is the one-time pad uncrackable:
VOTE: Yes, No, or Other.
Yes. Really!
Caveat: Generating truly random bits is hard.



Example Of One-Time Pad

Key is 100010100010001111101111100

Alice wants to send Bob 1110.

She sends 1110⊕ 1000 = 0110.

Then Bob wants to send Alice 00111.

He sends 00111⊕ 10100 = 10011.

1. PRO ⊕ is FAST!

2. CON If Key is N bits long can only send N bits.

Is the one-time pad uncrackable:
VOTE: Yes, No, or Other.
Yes. Really!
Caveat: Generating truly random bits is hard.



Example Of One-Time Pad

Key is 100010100010001111101111100

Alice wants to send Bob 1110.

She sends 1110⊕ 1000 = 0110.

Then Bob wants to send Alice 00111.

He sends 00111⊕ 10100 = 10011.

1. PRO ⊕ is FAST!

2. CON If Key is N bits long can only send N bits.

Is the one-time pad uncrackable:
VOTE: Yes, No, or Other.
Yes. Really!
Caveat: Generating truly random bits is hard.



Example Of One-Time Pad

Key is 100010100010001111101111100

Alice wants to send Bob 1110.

She sends 1110⊕ 1000 = 0110.

Then Bob wants to send Alice 00111.

He sends 00111⊕ 10100 = 10011.

1. PRO ⊕ is FAST!

2. CON If Key is N bits long can only send N bits.

Is the one-time pad uncrackable:
VOTE: Yes, No, or Other.
Yes. Really!
Caveat: Generating truly random bits is hard.



Example Of One-Time Pad

Key is 100010100010001111101111100

Alice wants to send Bob 1110.

She sends 1110⊕ 1000 = 0110.

Then Bob wants to send Alice 00111.

He sends 00111⊕ 10100 = 10011.

1. PRO ⊕ is FAST!

2. CON If Key is N bits long can only send N bits.

Is the one-time pad uncrackable:
VOTE: Yes, No, or Other.
Yes. Really!
Caveat: Generating truly random bits is hard.



Example Of One-Time Pad

Key is 100010100010001111101111100

Alice wants to send Bob 1110.

She sends 1110⊕ 1000 = 0110.

Then Bob wants to send Alice 00111.

He sends 00111⊕ 10100 = 10011.

1. PRO ⊕ is FAST!

2. CON If Key is N bits long can only send N bits.

Is the one-time pad uncrackable:
VOTE: Yes, No, or Other.
Yes. Really!
Caveat: Generating truly random bits is hard.



Example Of One-Time Pad

Key is 100010100010001111101111100

Alice wants to send Bob 1110.

She sends 1110⊕ 1000 = 0110.

Then Bob wants to send Alice 00111.

He sends 00111⊕ 10100 = 10011.

1. PRO ⊕ is FAST!

2. CON If Key is N bits long can only send N bits.

Is the one-time pad uncrackable:
VOTE: Yes, No, or Other.
Yes. Really!
Caveat: Generating truly random bits is hard.



Example Of One-Time Pad

Key is 100010100010001111101111100

Alice wants to send Bob 1110.

She sends 1110⊕ 1000 = 0110.

Then Bob wants to send Alice 00111.

He sends 00111⊕ 10100 = 10011.

1. PRO ⊕ is FAST!

2. CON If Key is N bits long can only send N bits.

Is the one-time pad uncrackable:
VOTE: Yes, No, or Other.

Yes. Really!
Caveat: Generating truly random bits is hard.



Example Of One-Time Pad

Key is 100010100010001111101111100

Alice wants to send Bob 1110.

She sends 1110⊕ 1000 = 0110.

Then Bob wants to send Alice 00111.

He sends 00111⊕ 10100 = 10011.

1. PRO ⊕ is FAST!

2. CON If Key is N bits long can only send N bits.

Is the one-time pad uncrackable:
VOTE: Yes, No, or Other.
Yes. Really!

Caveat: Generating truly random bits is hard.



Example Of One-Time Pad

Key is 100010100010001111101111100

Alice wants to send Bob 1110.

She sends 1110⊕ 1000 = 0110.

Then Bob wants to send Alice 00111.

He sends 00111⊕ 10100 = 10011.

1. PRO ⊕ is FAST!

2. CON If Key is N bits long can only send N bits.

Is the one-time pad uncrackable:
VOTE: Yes, No, or Other.
Yes. Really!
Caveat: Generating truly random bits is hard.



One-time pad



Alice and Bob Use the
Psuedo One Time Pad



One-time pad (OTP)

I The OTP was patented in 1917 by Vernam.

I Historical research indicates the OTP was invented at least 35
years earlier.

I The OTP was proven info-theoretic secure by Shannon in
1949.



One-time pad (OTP)

I The OTP was patented in 1917 by Vernam.

I Historical research indicates the OTP was invented at least 35
years earlier.

I The OTP was proven info-theoretic secure by Shannon in
1949.



One-time pad (OTP)

I The OTP was patented in 1917 by Vernam.

I Historical research indicates the OTP was invented at least 35
years earlier.

I The OTP was proven info-theoretic secure by Shannon in
1949.



One-time pad (OTP)

I The OTP was patented in 1917 by Vernam.

I Historical research indicates the OTP was invented at least 35
years earlier.

I The OTP was proven info-theoretic secure by Shannon in
1949.



Linear Cong. Generators



How Hard is it to Generate Truly Random Bits?

Paraphrase of a Recent Piazza conversation
Student You said that generating Random Bits is hard. Why?

Bill Truly Rand Bits are hard. How would you do it?

Student Use the Random function in Java you muffinhead!

Bill Okay. How does Java do it? Is it Truly Random?

Student Oh. Okay, you tell me– how does Java do it?

Bill I will show what Java does and why it bytes.



How Hard is it to Generate Truly Random Bits?

Paraphrase of a Recent Piazza conversation
Student You said that generating Random Bits is hard. Why?

Bill Truly Rand Bits are hard. How would you do it?

Student Use the Random function in Java you muffinhead!

Bill Okay. How does Java do it? Is it Truly Random?

Student Oh. Okay, you tell me– how does Java do it?

Bill I will show what Java does and why it bytes.



How Hard is it to Generate Truly Random Bits?

Paraphrase of a Recent Piazza conversation
Student You said that generating Random Bits is hard. Why?

Bill Truly Rand Bits are hard. How would you do it?

Student Use the Random function in Java you muffinhead!

Bill Okay. How does Java do it? Is it Truly Random?

Student Oh. Okay, you tell me– how does Java do it?

Bill I will show what Java does and why it bytes.



How Hard is it to Generate Truly Random Bits?

Paraphrase of a Recent Piazza conversation
Student You said that generating Random Bits is hard. Why?

Bill Truly Rand Bits are hard. How would you do it?

Student Use the Random function in Java you muffinhead!

Bill Okay. How does Java do it? Is it Truly Random?

Student Oh. Okay, you tell me– how does Java do it?

Bill I will show what Java does and why it bytes.



How Hard is it to Generate Truly Random Bits?

Paraphrase of a Recent Piazza conversation
Student You said that generating Random Bits is hard. Why?

Bill Truly Rand Bits are hard. How would you do it?

Student Use the Random function in Java you muffinhead!

Bill Okay. How does Java do it? Is it Truly Random?

Student Oh.

Okay, you tell me– how does Java do it?

Bill I will show what Java does and why it bytes.



How Hard is it to Generate Truly Random Bits?

Paraphrase of a Recent Piazza conversation
Student You said that generating Random Bits is hard. Why?

Bill Truly Rand Bits are hard. How would you do it?

Student Use the Random function in Java you muffinhead!

Bill Okay. How does Java do it? Is it Truly Random?

Student Oh. Okay, you tell me– how does Java do it?

Bill I will show what Java does and why it bytes.



How Hard is it to Generate Truly Random Bits?

Paraphrase of a Recent Piazza conversation
Student You said that generating Random Bits is hard. Why?

Bill Truly Rand Bits are hard. How would you do it?

Student Use the Random function in Java you muffinhead!

Bill Okay. How does Java do it? Is it Truly Random?

Student Oh. Okay, you tell me– how does Java do it?

Bill I will show what Java does and why it bytes.



How Does Java Produce Random Numbers

Java (and many old langs) uses a Linear Cong. Generator.
When the computer is turned on (and once a month after that):

1. Pick M large. A power of 2 makes life easier for Alice and
Bob, but might not want to do that— we’ll see why later.

2. A,B, x0 are random-looking. E.g. the number of nanoseconds
mod M since last time reboot.

3. The computer has the recurrence

xi+1 = Axi + B (mod M)

4. The ith time a random number is chosen, use xi .

5. Computer need only keep xi ,A,B,M in memory.

Depending on A,B, x0 this can look random. . . or not.



How Does Java Produce Random Numbers

Java (and many old langs) uses a Linear Cong. Generator.
When the computer is turned on (and once a month after that):

1. Pick M large. A power of 2 makes life easier for Alice and
Bob, but might not want to do that— we’ll see why later.

2. A,B, x0 are random-looking. E.g. the number of nanoseconds
mod M since last time reboot.

3. The computer has the recurrence

xi+1 = Axi + B (mod M)

4. The ith time a random number is chosen, use xi .

5. Computer need only keep xi ,A,B,M in memory.

Depending on A,B, x0 this can look random. . . or not.



How Does Java Produce Random Numbers

Java (and many old langs) uses a Linear Cong. Generator.
When the computer is turned on (and once a month after that):

1. Pick M large. A power of 2 makes life easier for Alice and
Bob, but might not want to do that— we’ll see why later.

2. A,B, x0 are random-looking. E.g. the number of nanoseconds
mod M since last time reboot.

3. The computer has the recurrence

xi+1 = Axi + B (mod M)

4. The ith time a random number is chosen, use xi .

5. Computer need only keep xi ,A,B,M in memory.

Depending on A,B, x0 this can look random. . . or not.



How Does Java Produce Random Numbers

Java (and many old langs) uses a Linear Cong. Generator.
When the computer is turned on (and once a month after that):

1. Pick M large. A power of 2 makes life easier for Alice and
Bob, but might not want to do that— we’ll see why later.

2. A,B, x0 are random-looking. E.g. the number of nanoseconds
mod M since last time reboot.

3. The computer has the recurrence

xi+1 = Axi + B (mod M)

4. The ith time a random number is chosen, use xi .

5. Computer need only keep xi ,A,B,M in memory.

Depending on A,B, x0 this can look random. . . or not.



How Does Java Produce Random Numbers

Java (and many old langs) uses a Linear Cong. Generator.
When the computer is turned on (and once a month after that):

1. Pick M large. A power of 2 makes life easier for Alice and
Bob, but might not want to do that— we’ll see why later.

2. A,B, x0 are random-looking. E.g. the number of nanoseconds
mod M since last time reboot.

3. The computer has the recurrence

xi+1 = Axi + B (mod M)

4. The ith time a random number is chosen, use xi .

5. Computer need only keep xi ,A,B,M in memory.

Depending on A,B, x0 this can look random. . . or not.



How Does Java Produce Random Numbers

Java (and many old langs) uses a Linear Cong. Generator.
When the computer is turned on (and once a month after that):

1. Pick M large. A power of 2 makes life easier for Alice and
Bob, but might not want to do that— we’ll see why later.

2. A,B, x0 are random-looking. E.g. the number of nanoseconds
mod M since last time reboot.

3. The computer has the recurrence

xi+1 = Axi + B (mod M)

4. The ith time a random number is chosen, use xi .

5. Computer need only keep xi ,A,B,M in memory.

Depending on A,B, x0 this can look random. . . or not.



How Does Java Produce Random Numbers

Java (and many old langs) uses a Linear Cong. Generator.
When the computer is turned on (and once a month after that):

1. Pick M large. A power of 2 makes life easier for Alice and
Bob, but might not want to do that— we’ll see why later.

2. A,B, x0 are random-looking. E.g. the number of nanoseconds
mod M since last time reboot.

3. The computer has the recurrence

xi+1 = Axi + B (mod M)

4. The ith time a random number is chosen, use xi .

5. Computer need only keep xi ,A,B,M in memory.

Depending on A,B, x0 this can look random. . . or not.



Restrictions on A,B,M

What if M and A share a factor?

Example
x0 = 5
xn+1 ≡ 2xn + 5 (mod 8)

x1 = 2 ∗ 5 + 5 = 15 ≡ 7
x2 = 2 ∗ 7 + 5 = 19 ≡ 3
x3 = 2 ∗ 3 + 5 = 11 ≡ 3
(∀i ≥ 2)[xi = 3].

This is typical. If A is not rel prime to M then the numbers
obtained will be only a small part of {0, . . . ,M − 1}.
Eve will assume that A and M are rel prime. We need to assume
more: next slide.



Restrictions on A,B,M

What if M and A share a factor?
Example
x0 = 5
xn+1 ≡ 2xn + 5 (mod 8)

x1 = 2 ∗ 5 + 5 = 15 ≡ 7
x2 = 2 ∗ 7 + 5 = 19 ≡ 3
x3 = 2 ∗ 3 + 5 = 11 ≡ 3
(∀i ≥ 2)[xi = 3].

This is typical. If A is not rel prime to M then the numbers
obtained will be only a small part of {0, . . . ,M − 1}.
Eve will assume that A and M are rel prime. We need to assume
more: next slide.



Restrictions on A,B,M

What if M and A share a factor?
Example
x0 = 5
xn+1 ≡ 2xn + 5 (mod 8)

x1 = 2 ∗ 5 + 5 = 15 ≡ 7

x2 = 2 ∗ 7 + 5 = 19 ≡ 3
x3 = 2 ∗ 3 + 5 = 11 ≡ 3
(∀i ≥ 2)[xi = 3].

This is typical. If A is not rel prime to M then the numbers
obtained will be only a small part of {0, . . . ,M − 1}.
Eve will assume that A and M are rel prime. We need to assume
more: next slide.



Restrictions on A,B,M

What if M and A share a factor?
Example
x0 = 5
xn+1 ≡ 2xn + 5 (mod 8)

x1 = 2 ∗ 5 + 5 = 15 ≡ 7
x2 = 2 ∗ 7 + 5 = 19 ≡ 3

x3 = 2 ∗ 3 + 5 = 11 ≡ 3
(∀i ≥ 2)[xi = 3].

This is typical. If A is not rel prime to M then the numbers
obtained will be only a small part of {0, . . . ,M − 1}.
Eve will assume that A and M are rel prime. We need to assume
more: next slide.



Restrictions on A,B,M

What if M and A share a factor?
Example
x0 = 5
xn+1 ≡ 2xn + 5 (mod 8)

x1 = 2 ∗ 5 + 5 = 15 ≡ 7
x2 = 2 ∗ 7 + 5 = 19 ≡ 3
x3 = 2 ∗ 3 + 5 = 11 ≡ 3

(∀i ≥ 2)[xi = 3].

This is typical. If A is not rel prime to M then the numbers
obtained will be only a small part of {0, . . . ,M − 1}.
Eve will assume that A and M are rel prime. We need to assume
more: next slide.



Restrictions on A,B,M

What if M and A share a factor?
Example
x0 = 5
xn+1 ≡ 2xn + 5 (mod 8)

x1 = 2 ∗ 5 + 5 = 15 ≡ 7
x2 = 2 ∗ 7 + 5 = 19 ≡ 3
x3 = 2 ∗ 3 + 5 = 11 ≡ 3
(∀i ≥ 2)[xi = 3].

This is typical. If A is not rel prime to M then the numbers
obtained will be only a small part of {0, . . . ,M − 1}.
Eve will assume that A and M are rel prime. We need to assume
more: next slide.



Restrictions on A,B,M

What if M and A share a factor?
Example
x0 = 5
xn+1 ≡ 2xn + 5 (mod 8)

x1 = 2 ∗ 5 + 5 = 15 ≡ 7
x2 = 2 ∗ 7 + 5 = 19 ≡ 3
x3 = 2 ∗ 3 + 5 = 11 ≡ 3
(∀i ≥ 2)[xi = 3].

This is typical. If A is not rel prime to M then the numbers
obtained will be only a small part of {0, . . . ,M − 1}.

Eve will assume that A and M are rel prime. We need to assume
more: next slide.



Restrictions on A,B,M

What if M and A share a factor?
Example
x0 = 5
xn+1 ≡ 2xn + 5 (mod 8)

x1 = 2 ∗ 5 + 5 = 15 ≡ 7
x2 = 2 ∗ 7 + 5 = 19 ≡ 3
x3 = 2 ∗ 3 + 5 = 11 ≡ 3
(∀i ≥ 2)[xi = 3].

This is typical. If A is not rel prime to M then the numbers
obtained will be only a small part of {0, . . . ,M − 1}.
Eve will assume that A and M are rel prime. We need to assume
more: next slide.



Conditions on x0,A,B,M

1. 1 ≤ x0,A,B ≤ 9999.

2. 1000 ≤ M ≤ 9999.

3. A,M are Rel Prime.



Example of Linear Cong. Gen

x0 = 21, A = 19, B = 30, M = 91
x0 = 21
x1 = 19 ∗ 21 + 30 (mod 91) = 65
x2 = 19 ∗ 65 + 30 (mod 91) = 82
x3 = 19 ∗ 82 + 30 (mod 91) = 41
x4 = 19 ∗ 41 + 30 (mod 91) = 81
x5 = 19 ∗ 81 + 30 (mod 91) = 22
x6 = 19 ∗ 22 + 30 (mod 91) = 84
x7 = 19 ∗ 84 + 30 (mod 91) = 79
x8 = 19 ∗ 79 + 30 (mod 91) = 75

Does this sequence look random? Hard to say.



Example of Linear Cong. Gen

x0 = 21, A = 19, B = 30, M = 91
x0 = 21
x1 = 19 ∗ 21 + 30 (mod 91) = 65
x2 = 19 ∗ 65 + 30 (mod 91) = 82
x3 = 19 ∗ 82 + 30 (mod 91) = 41
x4 = 19 ∗ 41 + 30 (mod 91) = 81
x5 = 19 ∗ 81 + 30 (mod 91) = 22
x6 = 19 ∗ 22 + 30 (mod 91) = 84
x7 = 19 ∗ 84 + 30 (mod 91) = 79
x8 = 19 ∗ 79 + 30 (mod 91) = 75
Does this sequence look random?

Hard to say.



Example of Linear Cong. Gen

x0 = 21, A = 19, B = 30, M = 91
x0 = 21
x1 = 19 ∗ 21 + 30 (mod 91) = 65
x2 = 19 ∗ 65 + 30 (mod 91) = 82
x3 = 19 ∗ 82 + 30 (mod 91) = 41
x4 = 19 ∗ 41 + 30 (mod 91) = 81
x5 = 19 ∗ 81 + 30 (mod 91) = 22
x6 = 19 ∗ 22 + 30 (mod 91) = 84
x7 = 19 ∗ 84 + 30 (mod 91) = 79
x8 = 19 ∗ 79 + 30 (mod 91) = 75
Does this sequence look random? Hard to say.



Our Running Example

x0 = 2134, A = 4381, B = 7364, M = 8397.

x0 = 2134 view as 21, 34
xn+1 = 4381xn + 7364 (mod 8397)

We use this to gen rand-looking bits, so 1-time-pad with
psuedo-random bits.

We will then crack it.

We will assume Eve knows that the random numbers are gen by a
recurrence of the form

xi+1 = Axi + B (mod M)

but that Eve do not know x0,A,B,M. Does know A,M rel prime.



Our Running Example

x0 = 2134, A = 4381, B = 7364, M = 8397.

x0 = 2134 view as 21, 34
xn+1 = 4381xn + 7364 (mod 8397)

We use this to gen rand-looking bits, so 1-time-pad with
psuedo-random bits.

We will then crack it.

We will assume Eve knows that the random numbers are gen by a
recurrence of the form

xi+1 = Axi + B (mod M)

but that Eve do not know x0,A,B,M. Does know A,M rel prime.



Our Running Example

x0 = 2134, A = 4381, B = 7364, M = 8397.

x0 = 2134 view as 21, 34
xn+1 = 4381xn + 7364 (mod 8397)

We use this to gen rand-looking bits, so 1-time-pad with
psuedo-random bits.

We will then crack it.

We will assume Eve knows that the random numbers are gen by a
recurrence of the form

xi+1 = Axi + B (mod M)

but that Eve do not know x0,A,B,M. Does know A,M rel prime.



Our Running Example

x0 = 2134, A = 4381, B = 7364, M = 8397.

x0 = 2134 view as 21, 34
xn+1 = 4381xn + 7364 (mod 8397)

We use this to gen rand-looking bits, so 1-time-pad with
psuedo-random bits.

We will then crack it.

We will assume Eve knows that the random numbers are gen by a
recurrence of the form

xi+1 = Axi + B (mod M)

but that Eve do not know x0,A,B,M. Does know A,M rel prime.



Alice and Bob Use the
Psuedo One Time Pad



Psuedo One-Time Pad

A = 01, B = 02, · · · Z = 26 (Not our usual since A = 01. )
View each letter as a two-digit number mod 26.

Want a LONG sequence of 2-digit numbers k1, k2, . . .

1. Will code m1,m2, . . . by, by adding mod 10 to each digit
Example If key is 12 38 and message is 29 23 then send

12 38
29 23

31 51

So send 31 51 (these do not correspond to letters, thats fine).

2. View as One-time pad with psuedo-random sequence.

How to code and decode? Next slide.



Psuedo One-Time Pad

A = 01, B = 02, · · · Z = 26 (Not our usual since A = 01. )
View each letter as a two-digit number mod 26.
Want a LONG sequence of 2-digit numbers k1, k2, . . .

1. Will code m1,m2, . . . by, by adding mod 10 to each digit
Example If key is 12 38 and message is 29 23 then send

12 38
29 23

31 51

So send 31 51 (these do not correspond to letters, thats fine).

2. View as One-time pad with psuedo-random sequence.

How to code and decode? Next slide.



Psuedo One-Time Pad

A = 01, B = 02, · · · Z = 26 (Not our usual since A = 01. )
View each letter as a two-digit number mod 26.
Want a LONG sequence of 2-digit numbers k1, k2, . . .

1. Will code m1,m2, . . . by, by adding mod 10 to each digit
Example If key is 12 38 and message is 29 23 then send

12 38
29 23

31 51

So send 31 51 (these do not correspond to letters, thats fine).

2. View as One-time pad with psuedo-random sequence.

How to code and decode? Next slide.



Psuedo One-Time Pad

A = 01, B = 02, · · · Z = 26 (Not our usual since A = 01. )
View each letter as a two-digit number mod 26.
Want a LONG sequence of 2-digit numbers k1, k2, . . .

1. Will code m1,m2, . . . by, by adding mod 10 to each digit
Example If key is 12 38 and message is 29 23 then send

12 38
29 23

31 51

So send 31 51 (these do not correspond to letters, thats fine).

2. View as One-time pad with psuedo-random sequence.

How to code and decode? Next slide.



Psuedo One-Time Pad

A = 01, B = 02, · · · Z = 26 (Not our usual since A = 01. )
View each letter as a two-digit number mod 26.
Want a LONG sequence of 2-digit numbers k1, k2, . . .

1. Will code m1,m2, . . . by, by adding mod 10 to each digit
Example If key is 12 38 and message is 29 23 then send

12 38
29 23

31 51

So send 31 51 (these do not correspond to letters, thats fine).

2. View as One-time pad with psuedo-random sequence.

How to code and decode? Next slide.



Running Example

From Cracking a Random Number Generator by James Reed.
Paper on Course Website.

x0 = 2134, A = 4381, B = 7364, M = 8397.

x0 = 2134 view as 21, 34
xn+1 = 4381xn + 7364 (mod 8397)

x0 = 2134
x1 = 2160
x2 = 6905
x3 = 3778



Running Example

From Cracking a Random Number Generator by James Reed.
Paper on Course Website.

x0 = 2134, A = 4381, B = 7364, M = 8397.

x0 = 2134 view as 21, 34
xn+1 = 4381xn + 7364 (mod 8397)

x0 = 2134
x1 = 2160
x2 = 6905
x3 = 3778



Running Example

From Cracking a Random Number Generator by James Reed.
Paper on Course Website.

x0 = 2134, A = 4381, B = 7364, M = 8397.

x0 = 2134 view as 21, 34
xn+1 = 4381xn + 7364 (mod 8397)

x0 = 2134
x1 = 2160
x2 = 6905
x3 = 3778



How Alice Codes: An Example

x0 = 2134
x1 = 2160
x2 = 6905
x3 = 3778
They start with x1.
If the document began with the word secret then encode by
adding columns base 10:

Text-Letter S E C R E T
Text-Digits 19 05 03 18 05 20
Key–Digits 21 60 69 05 37 78
Ciphertext 30 65 62 13 32 98

Note E is coded as 65 and then later as 32. Recall that the whole
point of OTP is that a letter won’t always be coded the same way.



How Alice Codes: An Example

x0 = 2134
x1 = 2160
x2 = 6905
x3 = 3778
They start with x1.

If the document began with the word secret then encode by
adding columns base 10:

Text-Letter S E C R E T
Text-Digits 19 05 03 18 05 20
Key–Digits 21 60 69 05 37 78
Ciphertext 30 65 62 13 32 98

Note E is coded as 65 and then later as 32. Recall that the whole
point of OTP is that a letter won’t always be coded the same way.



How Alice Codes: An Example

x0 = 2134
x1 = 2160
x2 = 6905
x3 = 3778
They start with x1.
If the document began with the word secret then encode by
adding columns base 10:

Text-Letter S E C R E T
Text-Digits 19 05 03 18 05 20
Key–Digits 21 60 69 05 37 78
Ciphertext 30 65 62 13 32 98

Note E is coded as 65 and then later as 32. Recall that the whole
point of OTP is that a letter won’t always be coded the same way.



How Alice Codes: An Example

x0 = 2134
x1 = 2160
x2 = 6905
x3 = 3778
They start with x1.
If the document began with the word secret then encode by
adding columns base 10:

Text-Letter S E C R E T
Text-Digits 19 05 03 18 05 20
Key–Digits 21 60 69 05 37 78
Ciphertext 30 65 62 13 32 98

Note E is coded as 65 and then later as 32. Recall that the whole
point of OTP is that a letter won’t always be coded the same way.



How Alice Codes: An Example

x0 = 2134
x1 = 2160
x2 = 6905
x3 = 3778
They start with x1.
If the document began with the word secret then encode by
adding columns base 10:

Text-Letter S E C R E T
Text-Digits 19 05 03 18 05 20
Key–Digits 21 60 69 05 37 78
Ciphertext 30 65 62 13 32 98

Note E is coded as 65 and then later as 32. Recall that the whole
point of OTP is that a letter won’t always be coded the same way.



How Alice Codes: General

The sequence is x0, x1, x2, . . ..
Each xi is two digits : xi1, xi2.

Alice starts with x1 (not with x0).
Alice wants to send m1m2 · · · where the mi are letters.
Alice codes letters into 2-digits, so m1 is m1,1m1,2, etc.

All arithmetic is mod 10.

Plaintext m1,1m1,2 m2,1m2,2

Key x1,1x1,2 x2,1x2,2
Alice Sends (m1,1 + x1,1)(m1,2 + x1,2) (m2,1 + x2,1)(m2,2 + x2,2)

(m1,1 + x1,1)(m1,2 + x1,2) is concatenation, not multiplication.



How Alice Codes: General

The sequence is x0, x1, x2, . . ..
Each xi is two digits : xi1, xi2.

Alice starts with x1 (not with x0).

Alice wants to send m1m2 · · · where the mi are letters.
Alice codes letters into 2-digits, so m1 is m1,1m1,2, etc.

All arithmetic is mod 10.

Plaintext m1,1m1,2 m2,1m2,2

Key x1,1x1,2 x2,1x2,2
Alice Sends (m1,1 + x1,1)(m1,2 + x1,2) (m2,1 + x2,1)(m2,2 + x2,2)

(m1,1 + x1,1)(m1,2 + x1,2) is concatenation, not multiplication.



How Alice Codes: General

The sequence is x0, x1, x2, . . ..
Each xi is two digits : xi1, xi2.

Alice starts with x1 (not with x0).
Alice wants to send m1m2 · · · where the mi are letters.

Alice codes letters into 2-digits, so m1 is m1,1m1,2, etc.

All arithmetic is mod 10.

Plaintext m1,1m1,2 m2,1m2,2

Key x1,1x1,2 x2,1x2,2
Alice Sends (m1,1 + x1,1)(m1,2 + x1,2) (m2,1 + x2,1)(m2,2 + x2,2)

(m1,1 + x1,1)(m1,2 + x1,2) is concatenation, not multiplication.



How Alice Codes: General

The sequence is x0, x1, x2, . . ..
Each xi is two digits : xi1, xi2.

Alice starts with x1 (not with x0).
Alice wants to send m1m2 · · · where the mi are letters.
Alice codes letters into 2-digits, so m1 is m1,1m1,2, etc.

All arithmetic is mod 10.

Plaintext m1,1m1,2 m2,1m2,2

Key x1,1x1,2 x2,1x2,2
Alice Sends (m1,1 + x1,1)(m1,2 + x1,2) (m2,1 + x2,1)(m2,2 + x2,2)

(m1,1 + x1,1)(m1,2 + x1,2) is concatenation, not multiplication.



How Alice Codes: General

The sequence is x0, x1, x2, . . ..
Each xi is two digits : xi1, xi2.

Alice starts with x1 (not with x0).
Alice wants to send m1m2 · · · where the mi are letters.
Alice codes letters into 2-digits, so m1 is m1,1m1,2, etc.

All arithmetic is mod 10.

Plaintext m1,1m1,2 m2,1m2,2

Key x1,1x1,2 x2,1x2,2
Alice Sends (m1,1 + x1,1)(m1,2 + x1,2) (m2,1 + x2,1)(m2,2 + x2,2)

(m1,1 + x1,1)(m1,2 + x1,2) is concatenation, not multiplication.



How Alice Codes: General

The sequence is x0, x1, x2, . . ..
Each xi is two digits : xi1, xi2.

Alice starts with x1 (not with x0).
Alice wants to send m1m2 · · · where the mi are letters.
Alice codes letters into 2-digits, so m1 is m1,1m1,2, etc.

All arithmetic is mod 10.

Plaintext m1,1m1,2 m2,1m2,2

Key x1,1x1,2 x2,1x2,2
Alice Sends (m1,1 + x1,1)(m1,2 + x1,2) (m2,1 + x2,1)(m2,2 + x2,2)

(m1,1 + x1,1)(m1,2 + x1,2) is concatenation, not multiplication.



How Alice Codes: General

The sequence is x0, x1, x2, . . ..
Each xi is two digits : xi1, xi2.

Alice starts with x1 (not with x0).
Alice wants to send m1m2 · · · where the mi are letters.
Alice codes letters into 2-digits, so m1 is m1,1m1,2, etc.

All arithmetic is mod 10.

Plaintext m1,1m1,2 m2,1m2,2

Key x1,1x1,2 x2,1x2,2
Alice Sends (m1,1 + x1,1)(m1,2 + x1,2) (m2,1 + x2,1)(m2,2 + x2,2)

(m1,1 + x1,1)(m1,2 + x1,2) is concatenation, not multiplication.



How Bob Decodes: An Example

Note Alice and Bob both know x0,A,B,M so both know
x1, x2, . . . ,.

Bob Wants m1,1m1,2 m2,1m2,2 m3,1m3,2

Bob Knows Key 21 60 69

Bob Sees 30 65 62

Bob does the following, all mod 10:

m1,1 + 2 ≡ 3 so m1,1 ≡ 3− 2 ≡ 1.
m1,2 + 1 ≡ 0 so m1,2 ≡ −1 ≡ 9.

Hence the first letter is 19 which is S.
Bob can keep doing this to get the entire message.



How Bob Decodes: An Example

Note Alice and Bob both know x0,A,B,M so both know
x1, x2, . . . ,.

Bob Wants m1,1m1,2 m2,1m2,2 m3,1m3,2

Bob Knows Key 21 60 69

Bob Sees 30 65 62

Bob does the following, all mod 10:

m1,1 + 2 ≡ 3 so m1,1 ≡ 3− 2 ≡ 1.
m1,2 + 1 ≡ 0 so m1,2 ≡ −1 ≡ 9.

Hence the first letter is 19 which is S.
Bob can keep doing this to get the entire message.



How Bob Decodes: An Example

Note Alice and Bob both know x0,A,B,M so both know
x1, x2, . . . ,.

Bob Wants m1,1m1,2 m2,1m2,2 m3,1m3,2

Bob Knows Key 21 60 69

Bob Sees 30 65 62

Bob does the following, all mod 10:

m1,1 + 2 ≡ 3 so m1,1 ≡ 3− 2 ≡ 1.
m1,2 + 1 ≡ 0 so m1,2 ≡ −1 ≡ 9.

Hence the first letter is 19 which is S.
Bob can keep doing this to get the entire message.



How Bob Decodes: An Example

Note Alice and Bob both know x0,A,B,M so both know
x1, x2, . . . ,.

Bob Wants m1,1m1,2 m2,1m2,2 m3,1m3,2

Bob Knows Key 21 60 69

Bob Sees 30 65 62

Bob does the following, all mod 10:

m1,1 + 2 ≡ 3 so m1,1 ≡ 3− 2 ≡ 1.

m1,2 + 1 ≡ 0 so m1,2 ≡ −1 ≡ 9.

Hence the first letter is 19 which is S.
Bob can keep doing this to get the entire message.



How Bob Decodes: An Example

Note Alice and Bob both know x0,A,B,M so both know
x1, x2, . . . ,.

Bob Wants m1,1m1,2 m2,1m2,2 m3,1m3,2

Bob Knows Key 21 60 69

Bob Sees 30 65 62

Bob does the following, all mod 10:

m1,1 + 2 ≡ 3 so m1,1 ≡ 3− 2 ≡ 1.
m1,2 + 1 ≡ 0 so m1,2 ≡ −1 ≡ 9.

Hence the first letter is 19 which is S.
Bob can keep doing this to get the entire message.



How Bob Decodes: An Example

Note Alice and Bob both know x0,A,B,M so both know
x1, x2, . . . ,.

Bob Wants m1,1m1,2 m2,1m2,2 m3,1m3,2

Bob Knows Key 21 60 69

Bob Sees 30 65 62

Bob does the following, all mod 10:

m1,1 + 2 ≡ 3 so m1,1 ≡ 3− 2 ≡ 1.
m1,2 + 1 ≡ 0 so m1,2 ≡ −1 ≡ 9.

Hence the first letter is 19 which is S.

Bob can keep doing this to get the entire message.



How Bob Decodes: An Example

Note Alice and Bob both know x0,A,B,M so both know
x1, x2, . . . ,.

Bob Wants m1,1m1,2 m2,1m2,2 m3,1m3,2

Bob Knows Key 21 60 69

Bob Sees 30 65 62

Bob does the following, all mod 10:

m1,1 + 2 ≡ 3 so m1,1 ≡ 3− 2 ≡ 1.
m1,2 + 1 ≡ 0 so m1,2 ≡ −1 ≡ 9.

Hence the first letter is 19 which is S.
Bob can keep doing this to get the entire message.



How Bob Decodes: General

Note Alice and Bob both know x0,A,B,M so both know
x1, x2, . . . ,.
Bob starts with x1 (not with x0).

All arithmetic is mod 10.

Bob Wants m1,1m1,2 m2,1m2,2 m3,1m3,2

Bob Knows Key x1,1x1,2 x2,1x2,2 x3,1x3,2
Bob Sees c1,1c1,2 c2,1c2,2 c3,1c3,2

Bob does the following, all mod 10:

m1,1 + x1,1 ≡ c1,1 so m1,1 ≡ c1,1 − x1,1.
m1,2 + x1,2 ≡ c1,2 so m1,2 ≡ c1,2 − x1,2.

So first letter is (c1,1 − x1,1)(c1,2 − x1,2).

He can keep on doing this.



How Bob Decodes: General

Note Alice and Bob both know x0,A,B,M so both know
x1, x2, . . . ,.
Bob starts with x1 (not with x0).

All arithmetic is mod 10.

Bob Wants m1,1m1,2 m2,1m2,2 m3,1m3,2

Bob Knows Key x1,1x1,2 x2,1x2,2 x3,1x3,2
Bob Sees c1,1c1,2 c2,1c2,2 c3,1c3,2

Bob does the following, all mod 10:

m1,1 + x1,1 ≡ c1,1 so m1,1 ≡ c1,1 − x1,1.
m1,2 + x1,2 ≡ c1,2 so m1,2 ≡ c1,2 − x1,2.

So first letter is (c1,1 − x1,1)(c1,2 − x1,2).

He can keep on doing this.



How Bob Decodes: General

Note Alice and Bob both know x0,A,B,M so both know
x1, x2, . . . ,.
Bob starts with x1 (not with x0).

All arithmetic is mod 10.

Bob Wants m1,1m1,2 m2,1m2,2 m3,1m3,2

Bob Knows Key x1,1x1,2 x2,1x2,2 x3,1x3,2
Bob Sees c1,1c1,2 c2,1c2,2 c3,1c3,2

Bob does the following, all mod 10:

m1,1 + x1,1 ≡ c1,1 so m1,1 ≡ c1,1 − x1,1.
m1,2 + x1,2 ≡ c1,2 so m1,2 ≡ c1,2 − x1,2.

So first letter is (c1,1 − x1,1)(c1,2 − x1,2).

He can keep on doing this.



How Bob Decodes: General

Note Alice and Bob both know x0,A,B,M so both know
x1, x2, . . . ,.
Bob starts with x1 (not with x0).

All arithmetic is mod 10.

Bob Wants m1,1m1,2 m2,1m2,2 m3,1m3,2

Bob Knows Key x1,1x1,2 x2,1x2,2 x3,1x3,2
Bob Sees c1,1c1,2 c2,1c2,2 c3,1c3,2

Bob does the following, all mod 10:

m1,1 + x1,1 ≡ c1,1 so m1,1 ≡ c1,1 − x1,1.
m1,2 + x1,2 ≡ c1,2 so m1,2 ≡ c1,2 − x1,2.

So first letter is (c1,1 − x1,1)(c1,2 − x1,2).

He can keep on doing this.



How Bob Decodes: General

Note Alice and Bob both know x0,A,B,M so both know
x1, x2, . . . ,.
Bob starts with x1 (not with x0).

All arithmetic is mod 10.

Bob Wants m1,1m1,2 m2,1m2,2 m3,1m3,2

Bob Knows Key x1,1x1,2 x2,1x2,2 x3,1x3,2
Bob Sees c1,1c1,2 c2,1c2,2 c3,1c3,2

Bob does the following, all mod 10:

m1,1 + x1,1 ≡ c1,1 so m1,1 ≡ c1,1 − x1,1.

m1,2 + x1,2 ≡ c1,2 so m1,2 ≡ c1,2 − x1,2.

So first letter is (c1,1 − x1,1)(c1,2 − x1,2).

He can keep on doing this.



How Bob Decodes: General

Note Alice and Bob both know x0,A,B,M so both know
x1, x2, . . . ,.
Bob starts with x1 (not with x0).

All arithmetic is mod 10.

Bob Wants m1,1m1,2 m2,1m2,2 m3,1m3,2

Bob Knows Key x1,1x1,2 x2,1x2,2 x3,1x3,2
Bob Sees c1,1c1,2 c2,1c2,2 c3,1c3,2

Bob does the following, all mod 10:

m1,1 + x1,1 ≡ c1,1 so m1,1 ≡ c1,1 − x1,1.
m1,2 + x1,2 ≡ c1,2 so m1,2 ≡ c1,2 − x1,2.

So first letter is (c1,1 − x1,1)(c1,2 − x1,2).

He can keep on doing this.



How Bob Decodes: General

Note Alice and Bob both know x0,A,B,M so both know
x1, x2, . . . ,.
Bob starts with x1 (not with x0).

All arithmetic is mod 10.

Bob Wants m1,1m1,2 m2,1m2,2 m3,1m3,2

Bob Knows Key x1,1x1,2 x2,1x2,2 x3,1x3,2
Bob Sees c1,1c1,2 c2,1c2,2 c3,1c3,2

Bob does the following, all mod 10:

m1,1 + x1,1 ≡ c1,1 so m1,1 ≡ c1,1 − x1,1.
m1,2 + x1,2 ≡ c1,2 so m1,2 ≡ c1,2 − x1,2.

So first letter is (c1,1 − x1,1)(c1,2 − x1,2).

He can keep on doing this.



Eve Can Crack
The Psuedo One Time

Pad



Credit Where Credit is Due

This presentation is based on the paper
Cracking a Random Number Generator by James Reed.
which is on the Course Website.



Eve Can Crack the Code

Alice sends Bob a document using the xi as a two chars at a time.

Eve knows rec of form xn+1 = Axn + B (mod M).

Eve knows that A,B,M are all 4-digits. If she fails she may try
again with 6-digits.

Eve knows that the document is about India and Pakistan.

Eve thinks Pakistan will be in the document.
Eve thinks M is 4-digits.

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14



Eve Can Crack the Code

Alice sends Bob a document using the xi as a two chars at a time.

Eve knows rec of form xn+1 = Axn + B (mod M).

Eve knows that A,B,M are all 4-digits. If she fails she may try
again with 6-digits.

Eve knows that the document is about India and Pakistan.

Eve thinks Pakistan will be in the document.
Eve thinks M is 4-digits.

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14



Eve Can Crack the Code

Alice sends Bob a document using the xi as a two chars at a time.

Eve knows rec of form xn+1 = Axn + B (mod M).

Eve knows that A,B,M are all 4-digits. If she fails she may try
again with 6-digits.

Eve knows that the document is about India and Pakistan.

Eve thinks Pakistan will be in the document.
Eve thinks M is 4-digits.

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14



Eve Can Crack the Code

Alice sends Bob a document using the xi as a two chars at a time.

Eve knows rec of form xn+1 = Axn + B (mod M).

Eve knows that A,B,M are all 4-digits. If she fails she may try
again with 6-digits.

Eve knows that the document is about India and Pakistan.

Eve thinks Pakistan will be in the document.
Eve thinks M is 4-digits.

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14



Eve Can Crack the Code

Alice sends Bob a document using the xi as a two chars at a time.

Eve knows rec of form xn+1 = Axn + B (mod M).

Eve knows that A,B,M are all 4-digits. If she fails she may try
again with 6-digits.

Eve knows that the document is about India and Pakistan.

Eve thinks Pakistan will be in the document.
Eve thinks M is 4-digits.

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14



Eve Can Crack the Code

Alice sends Bob a document using the xi as a two chars at a time.

Eve knows rec of form xn+1 = Axn + B (mod M).

Eve knows that A,B,M are all 4-digits. If she fails she may try
again with 6-digits.

Eve knows that the document is about India and Pakistan.

Eve thinks Pakistan will be in the document.
Eve thinks M is 4-digits.

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14



Thought Experiment

Eve sees

Ciphertext 24 66 87 47 17 45 26 96

And thinks it is PAKISTAN.

So Eve thinks the following:

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Key-Digits k11k12 k21k22 k31k32 k41k42 k51k52 k61k62 k71k72 k81k82
Ciphertext 24 66 87 47 17 45 26 96

Can Eve find the Key-Digits? Yes! all ≡ are mod 10.

1 + k11 ≡ 2 so k11 ≡ 2− 1 ≡ 1.
6 + k12 ≡ 4 so k12 ≡ 4− 6 ≡ −2 ≡ 8.
Etc.

Next slide gives complete answer.



Thought Experiment

Eve sees

Ciphertext 24 66 87 47 17 45 26 96

And thinks it is PAKISTAN.

So Eve thinks the following:

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Key-Digits k11k12 k21k22 k31k32 k41k42 k51k52 k61k62 k71k72 k81k82
Ciphertext 24 66 87 47 17 45 26 96

Can Eve find the Key-Digits? Yes! all ≡ are mod 10.

1 + k11 ≡ 2 so k11 ≡ 2− 1 ≡ 1.
6 + k12 ≡ 4 so k12 ≡ 4− 6 ≡ −2 ≡ 8.
Etc.

Next slide gives complete answer.



Thought Experiment

Eve sees

Ciphertext 24 66 87 47 17 45 26 96

And thinks it is PAKISTAN.

So Eve thinks the following:

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Key-Digits k11k12 k21k22 k31k32 k41k42 k51k52 k61k62 k71k72 k81k82
Ciphertext 24 66 87 47 17 45 26 96

Can Eve find the Key-Digits? Yes! all ≡ are mod 10.

1 + k11 ≡ 2 so k11 ≡ 2− 1 ≡ 1.
6 + k12 ≡ 4 so k12 ≡ 4− 6 ≡ −2 ≡ 8.
Etc.

Next slide gives complete answer.



Thought Experiment

Eve sees

Ciphertext 24 66 87 47 17 45 26 96

And thinks it is PAKISTAN.

So Eve thinks the following:

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Key-Digits k11k12 k21k22 k31k32 k41k42 k51k52 k61k62 k71k72 k81k82
Ciphertext 24 66 87 47 17 45 26 96

Can Eve find the Key-Digits? Yes! all ≡ are mod 10.

1 + k11 ≡ 2 so k11 ≡ 2− 1 ≡ 1.
6 + k12 ≡ 4 so k12 ≡ 4− 6 ≡ −2 ≡ 8.
Etc.

Next slide gives complete answer.



Thought Experiment

Eve sees

Ciphertext 24 66 87 47 17 45 26 96

And thinks it is PAKISTAN.

So Eve thinks the following:

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Key-Digits k11k12 k21k22 k31k32 k41k42 k51k52 k61k62 k71k72 k81k82
Ciphertext 24 66 87 47 17 45 26 96

Can Eve find the Key-Digits? Yes! all ≡ are mod 10.

1 + k11 ≡ 2 so k11 ≡ 2− 1 ≡ 1.
6 + k12 ≡ 4 so k12 ≡ 4− 6 ≡ −2 ≡ 8.
Etc.

Next slide gives complete answer.



Thought Experiment

Eve sees

Ciphertext 24 66 87 47 17 45 26 96

And thinks it is PAKISTAN.

So Eve thinks the following:

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Key-Digits k11k12 k21k22 k31k32 k41k42 k51k52 k61k62 k71k72 k81k82
Ciphertext 24 66 87 47 17 45 26 96

Can Eve find the Key-Digits?

Yes! all ≡ are mod 10.

1 + k11 ≡ 2 so k11 ≡ 2− 1 ≡ 1.
6 + k12 ≡ 4 so k12 ≡ 4− 6 ≡ −2 ≡ 8.
Etc.

Next slide gives complete answer.



Thought Experiment

Eve sees

Ciphertext 24 66 87 47 17 45 26 96

And thinks it is PAKISTAN.

So Eve thinks the following:

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Key-Digits k11k12 k21k22 k31k32 k41k42 k51k52 k61k62 k71k72 k81k82
Ciphertext 24 66 87 47 17 45 26 96

Can Eve find the Key-Digits? Yes!

all ≡ are mod 10.

1 + k11 ≡ 2 so k11 ≡ 2− 1 ≡ 1.
6 + k12 ≡ 4 so k12 ≡ 4− 6 ≡ −2 ≡ 8.
Etc.

Next slide gives complete answer.



Thought Experiment

Eve sees

Ciphertext 24 66 87 47 17 45 26 96

And thinks it is PAKISTAN.

So Eve thinks the following:

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Key-Digits k11k12 k21k22 k31k32 k41k42 k51k52 k61k62 k71k72 k81k82
Ciphertext 24 66 87 47 17 45 26 96

Can Eve find the Key-Digits? Yes! all ≡ are mod 10.

1 + k11 ≡ 2 so k11 ≡ 2− 1 ≡ 1.
6 + k12 ≡ 4 so k12 ≡ 4− 6 ≡ −2 ≡ 8.
Etc.

Next slide gives complete answer.



Thought Experiment

Eve sees

Ciphertext 24 66 87 47 17 45 26 96

And thinks it is PAKISTAN.

So Eve thinks the following:

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Key-Digits k11k12 k21k22 k31k32 k41k42 k51k52 k61k62 k71k72 k81k82
Ciphertext 24 66 87 47 17 45 26 96

Can Eve find the Key-Digits? Yes! all ≡ are mod 10.

1 + k11 ≡ 2 so k11 ≡ 2− 1 ≡ 1.

6 + k12 ≡ 4 so k12 ≡ 4− 6 ≡ −2 ≡ 8.
Etc.

Next slide gives complete answer.



Thought Experiment

Eve sees

Ciphertext 24 66 87 47 17 45 26 96

And thinks it is PAKISTAN.

So Eve thinks the following:

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Key-Digits k11k12 k21k22 k31k32 k41k42 k51k52 k61k62 k71k72 k81k82
Ciphertext 24 66 87 47 17 45 26 96

Can Eve find the Key-Digits? Yes! all ≡ are mod 10.

1 + k11 ≡ 2 so k11 ≡ 2− 1 ≡ 1.
6 + k12 ≡ 4 so k12 ≡ 4− 6 ≡ −2 ≡ 8.
Etc.

Next slide gives complete answer.



Thought Experiment

Eve sees

Ciphertext 24 66 87 47 17 45 26 96

And thinks it is PAKISTAN.

So Eve thinks the following:

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Key-Digits k11k12 k21k22 k31k32 k41k42 k51k52 k61k62 k71k72 k81k82
Ciphertext 24 66 87 47 17 45 26 96

Can Eve find the Key-Digits? Yes! all ≡ are mod 10.

1 + k11 ≡ 2 so k11 ≡ 2− 1 ≡ 1.
6 + k12 ≡ 4 so k12 ≡ 4− 6 ≡ −2 ≡ 8.
Etc.

Next slide gives complete answer.



Thought Experiment Continued

Eve Thinks:

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Ciphertext 24 66 87 47 17 45 26 96

If Eve is correct then:

Key–Digits 18 65 76 48 08 25 25 82



Thought Experiment Continued

Eve Thinks:

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Ciphertext 24 66 87 47 17 45 26 96

If Eve is correct then:

Key–Digits 18 65 76 48 08 25 25 82



Thought Experiment Continued

Eve Thinks:

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Ciphertext 24 66 87 47 17 45 26 96

If Eve is correct then:

Key–Digits 18 65 76 48 08 25 25 82



Thought Experiment Continued

Eve Thinks:

Text-Letter P A K I S T A N
Text-Digits 16 01 11 09 19 20 01 14
Ciphertext 24 66 87 47 17 45 26 96

If Eve is correct then:

Key–Digits 18 65 76 48 08 25 25 82



Thought Experiment Continued: Eve gets Equations

If Eve is correct then:

Key–Digits 18 65 76 48 08 25 25 82

Since xn+1 ≡ Axn + B (mod M)

7648 ≡ 1865A + B (mod M)

825 ≡ 7648A + B (mod M)

2582 ≡ 825A + B (mod M)

Can we solve these? Yes!



Thought Experiment Continued: Eve gets Equations

If Eve is correct then:

Key–Digits 18 65 76 48 08 25 25 82

Since xn+1 ≡ Axn + B (mod M)

7648 ≡ 1865A + B (mod M)

825 ≡ 7648A + B (mod M)

2582 ≡ 825A + B (mod M)

Can we solve these? Yes!



Thought Experiment Continued: Eve gets Equations

If Eve is correct then:

Key–Digits 18 65 76 48 08 25 25 82

Since xn+1 ≡ Axn + B (mod M)

7648 ≡ 1865A + B (mod M)

825 ≡ 7648A + B (mod M)

2582 ≡ 825A + B (mod M)

Can we solve these? Yes!



Thought Experiment Continued: Eve gets Equations

If Eve is correct then:

Key–Digits 18 65 76 48 08 25 25 82

Since xn+1 ≡ Axn + B (mod M)

7648 ≡ 1865A + B (mod M)

825 ≡ 7648A + B (mod M)

2582 ≡ 825A + B (mod M)

Can we solve these? Yes!



Thought Experiment Continued: Eve gets Equations

If Eve is correct then:

Key–Digits 18 65 76 48 08 25 25 82

Since xn+1 ≡ Axn + B (mod M)

7648 ≡ 1865A + B (mod M)

825 ≡ 7648A + B (mod M)

2582 ≡ 825A + B (mod M)

Can we solve these? Yes!



Thought Experiment Continued: Eve gets Equations

If Eve is correct then:

Key–Digits 18 65 76 48 08 25 25 82

Since xn+1 ≡ Axn + B (mod M)

7648 ≡ 1865A + B (mod M)

825 ≡ 7648A + B (mod M)

2582 ≡ 825A + B (mod M)

Can we solve these? Yes!



Thought Experiment Continued: Eve gets Equations

If Eve is correct then:

Key–Digits 18 65 76 48 08 25 25 82

Since xn+1 ≡ Axn + B (mod M)

7648 ≡ 1865A + B (mod M)

825 ≡ 7648A + B (mod M)

2582 ≡ 825A + B (mod M)

Can we solve these?

Yes!



Thought Experiment Continued: Eve gets Equations

If Eve is correct then:

Key–Digits 18 65 76 48 08 25 25 82

Since xn+1 ≡ Axn + B (mod M)

7648 ≡ 1865A + B (mod M)

825 ≡ 7648A + B (mod M)

2582 ≡ 825A + B (mod M)

Can we solve these? Yes!



Thought Exp: Eve Can Find M (I)

EQ1: 7648 ≡ 1865A + B (mod M)
EQ2: 825 ≡ 7648A + B (mod M)
EQ3: 2582 ≡ 825A + B (mod M)

By looking at EQ2−EQ1 and EQ3−EQ1 get 2 equations and no B

EQ4: −6823 ≡ 5783A (mod M)
EQ5: −5066 ≡ −1040A (mod M)



Thought Exp: Eve Can Find M (I)

EQ1: 7648 ≡ 1865A + B (mod M)
EQ2: 825 ≡ 7648A + B (mod M)
EQ3: 2582 ≡ 825A + B (mod M)

By looking at EQ2−EQ1 and EQ3−EQ1 get 2 equations and no B

EQ4: −6823 ≡ 5783A (mod M)
EQ5: −5066 ≡ −1040A (mod M)



Thought Exp: Eve Can Find M (I)

EQ1: 7648 ≡ 1865A + B (mod M)
EQ2: 825 ≡ 7648A + B (mod M)
EQ3: 2582 ≡ 825A + B (mod M)

By looking at EQ2−EQ1 and EQ3−EQ1 get 2 equations and no B

EQ4: −6823 ≡ 5783A (mod M)
EQ5: −5066 ≡ −1040A (mod M)



Thought Exp: Eve can Find M (II)

EQ4: −6823 ≡ 5783A (mod M)
EQ5: −5066 ≡ −1040A (mod M)

Mult EQ4 by 1040 and EQ5 by 5783 to get:

EQ4’: −6823× 1040 ≡ 5783× 1040× A (mod M)
EQ5’: −5066× 5783 ≡ −1040× 5783× A (mod M)

We rewrite a bit:

EQ4’: −7095920 ≡ 5783× 1040× A (mod M)
EQ5’: −29296678 ≡ −5783× 1040× A (mod M)

Add EQ4’ and EQ5’ to get:

−36392598 ≡ 0 (mod M)

Can we use this? Yes We Can!



Thought Exp: Eve can Find M (II)

EQ4: −6823 ≡ 5783A (mod M)
EQ5: −5066 ≡ −1040A (mod M)

Mult EQ4 by 1040 and EQ5 by 5783 to get:

EQ4’: −6823× 1040 ≡ 5783× 1040× A (mod M)
EQ5’: −5066× 5783 ≡ −1040× 5783× A (mod M)

We rewrite a bit:

EQ4’: −7095920 ≡ 5783× 1040× A (mod M)
EQ5’: −29296678 ≡ −5783× 1040× A (mod M)

Add EQ4’ and EQ5’ to get:

−36392598 ≡ 0 (mod M)

Can we use this? Yes We Can!



Thought Exp: Eve can Find M (II)

EQ4: −6823 ≡ 5783A (mod M)
EQ5: −5066 ≡ −1040A (mod M)

Mult EQ4 by 1040 and EQ5 by 5783 to get:

EQ4’: −6823× 1040 ≡ 5783× 1040× A (mod M)
EQ5’: −5066× 5783 ≡ −1040× 5783× A (mod M)

We rewrite a bit:

EQ4’: −7095920 ≡ 5783× 1040× A (mod M)
EQ5’: −29296678 ≡ −5783× 1040× A (mod M)

Add EQ4’ and EQ5’ to get:

−36392598 ≡ 0 (mod M)

Can we use this? Yes We Can!



Thought Exp: Eve can Find M (II)

EQ4: −6823 ≡ 5783A (mod M)
EQ5: −5066 ≡ −1040A (mod M)

Mult EQ4 by 1040 and EQ5 by 5783 to get:

EQ4’: −6823× 1040 ≡ 5783× 1040× A (mod M)
EQ5’: −5066× 5783 ≡ −1040× 5783× A (mod M)

We rewrite a bit:

EQ4’: −7095920 ≡ 5783× 1040× A (mod M)
EQ5’: −29296678 ≡ −5783× 1040× A (mod M)

Add EQ4’ and EQ5’ to get:

−36392598 ≡ 0 (mod M)

Can we use this? Yes We Can!



Thought Exp: Eve can Find M (II)

EQ4: −6823 ≡ 5783A (mod M)
EQ5: −5066 ≡ −1040A (mod M)

Mult EQ4 by 1040 and EQ5 by 5783 to get:

EQ4’: −6823× 1040 ≡ 5783× 1040× A (mod M)
EQ5’: −5066× 5783 ≡ −1040× 5783× A (mod M)

We rewrite a bit:

EQ4’: −7095920 ≡ 5783× 1040× A (mod M)
EQ5’: −29296678 ≡ −5783× 1040× A (mod M)

Add EQ4’ and EQ5’ to get:

−36392598 ≡ 0 (mod M)

Can we use this?

Yes We Can!



Thought Exp: Eve can Find M (II)

EQ4: −6823 ≡ 5783A (mod M)
EQ5: −5066 ≡ −1040A (mod M)

Mult EQ4 by 1040 and EQ5 by 5783 to get:

EQ4’: −6823× 1040 ≡ 5783× 1040× A (mod M)
EQ5’: −5066× 5783 ≡ −1040× 5783× A (mod M)

We rewrite a bit:

EQ4’: −7095920 ≡ 5783× 1040× A (mod M)
EQ5’: −29296678 ≡ −5783× 1040× A (mod M)

Add EQ4’ and EQ5’ to get:

−36392598 ≡ 0 (mod M)

Can we use this? Yes We Can!



Thought Exp: Eve Finds M (III)

36392598 ≡ 0 (mod M)

1. M divides 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648, hence
7649 ≤ M ≤ 9999.

Hence a SMALL number of possibilities for M.
Two ways to find possibilities for M on next few slides.



Thought Exp: Eve Finds M (III)

36392598 ≡ 0 (mod M)

1. M divides 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648, hence
7649 ≤ M ≤ 9999.

Hence a SMALL number of possibilities for M.
Two ways to find possibilities for M on next few slides.



Thought Exp: Eve Finds M (III)

36392598 ≡ 0 (mod M)

1. M divides 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648, hence
7649 ≤ M ≤ 9999.

Hence a SMALL number of possibilities for M.
Two ways to find possibilities for M on next few slides.



Thought Exp: Eve Finds M (III)

36392598 ≡ 0 (mod M)

1. M divides 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648, hence
7649 ≤ M ≤ 9999.

Hence a SMALL number of possibilities for M.

Two ways to find possibilities for M on next few slides.



Thought Exp: Eve Finds M (III)

36392598 ≡ 0 (mod M)

1. M divides 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648, hence
7649 ≤ M ≤ 9999.

Hence a SMALL number of possibilities for M.
Two ways to find possibilities for M on next few slides.



Eve Factors to Find M

Eve factors 36392598.

36392598 = 2× 33 × 11× 197× 311

Factoring? Really? Eve has to Factor?
(Sarcastic) does she have a quantum computer?
We will address this point later.

1. M is a divisor of 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648.



Eve Factors to Find M

Eve factors 36392598.

36392598 = 2× 33 × 11× 197× 311
Factoring? Really? Eve has to Factor?

(Sarcastic) does she have a quantum computer?
We will address this point later.

1. M is a divisor of 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648.



Eve Factors to Find M

Eve factors 36392598.

36392598 = 2× 33 × 11× 197× 311
Factoring? Really? Eve has to Factor?
(Sarcastic) does she have a quantum computer?

We will address this point later.

1. M is a divisor of 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648.



Eve Factors to Find M

Eve factors 36392598.

36392598 = 2× 33 × 11× 197× 311
Factoring? Really? Eve has to Factor?
(Sarcastic) does she have a quantum computer?
We will address this point later.

1. M is a divisor of 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648.



Eve Factors to Find M

Eve factors 36392598.

36392598 = 2× 33 × 11× 197× 311
Factoring? Really? Eve has to Factor?
(Sarcastic) does she have a quantum computer?
We will address this point later.

1. M is a divisor of 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648.



Eve Factors to Find M

Eve factors 36392598.

36392598 = 2× 33 × 11× 197× 311
Factoring? Really? Eve has to Factor?
(Sarcastic) does she have a quantum computer?
We will address this point later.

1. M is a divisor of 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648.



Eve Factors to Find M

Eve factors 36392598.

36392598 = 2× 33 × 11× 197× 311
Factoring? Really? Eve has to Factor?
(Sarcastic) does she have a quantum computer?
We will address this point later.

1. M is a divisor of 36392598.

2. M is 4 digits long.

3. The cipher used 7648, so M > 7648.



Eve Can Crack It!–Finding M

36392598 = 2× 33 × 11× 197× 311
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.
How many factors of 2× 33 × 11× 197× 311?

2× 4× 2× 2× 2 = 64.

1. Can’t use 197 AND 311: 197× 311 = 61267 > 9999.

2. Could continue to do this by hand.

We won’t—we are busy people and we have computers to
do it for us.

The original article did do it by hand. It was written in 1977.

The next slide shows how to do it by hand. We won’t go over
it, but you can if you want.



Eve Can Crack It!–Finding M

36392598 = 2× 33 × 11× 197× 311
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.
How many factors of 2× 33 × 11× 197× 311?
2× 4× 2× 2× 2 = 64.

1. Can’t use 197 AND 311: 197× 311 = 61267 > 9999.

2. Could continue to do this by hand.

We won’t—we are busy people and we have computers to
do it for us.

The original article did do it by hand. It was written in 1977.

The next slide shows how to do it by hand. We won’t go over
it, but you can if you want.



Eve Can Crack It!–Finding M

36392598 = 2× 33 × 11× 197× 311
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.
How many factors of 2× 33 × 11× 197× 311?
2× 4× 2× 2× 2 = 64.

1. Can’t use 197 AND 311: 197× 311 = 61267 > 9999.

2. Could continue to do this by hand.

We won’t—we are busy people and we have computers to
do it for us.

The original article did do it by hand. It was written in 1977.

The next slide shows how to do it by hand. We won’t go over
it, but you can if you want.



Eve Can Crack It!–Finding M

36392598 = 2× 33 × 11× 197× 311
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.
How many factors of 2× 33 × 11× 197× 311?
2× 4× 2× 2× 2 = 64.

1. Can’t use 197 AND 311: 197× 311 = 61267 > 9999.

2. Could continue to do this by hand.

We won’t—we are busy people and we have computers to
do it for us.

The original article did do it by hand. It was written in 1977.

The next slide shows how to do it by hand. We won’t go over
it, but you can if you want.



Eve Can Crack It!–Finding M

36392598 = 2× 33 × 11× 197× 311
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.
How many factors of 2× 33 × 11× 197× 311?
2× 4× 2× 2× 2 = 64.

1. Can’t use 197 AND 311: 197× 311 = 61267 > 9999.

2. Could continue to do this by hand.

We won’t—we are busy people and we have computers to
do it for us.

The original article did do it by hand. It was written in 1977.

The next slide shows how to do it by hand. We won’t go over
it, but you can if you want.



Eve Can Crack It!–Finding M

36392598 = 2× 33 × 11× 197× 311
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.
How many factors of 2× 33 × 11× 197× 311?
2× 4× 2× 2× 2 = 64.

1. Can’t use 197 AND 311: 197× 311 = 61267 > 9999.

2. Could continue to do this by hand.

We won’t—we are busy people and we have computers to
do it for us.

The original article did do it by hand. It was written in 1977.

The next slide shows how to do it by hand. We won’t go over
it, but you can if you want.



Eve Can Crack It!–Finding M

36392598 = 2× 33 × 11× 197× 311
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.
How many factors of 2× 33 × 11× 197× 311?
2× 4× 2× 2× 2 = 64.

1. Can’t use 197 AND 311: 197× 311 = 61267 > 9999.

2. Could continue to do this by hand.

We won’t—we are busy people and we have computers to
do it for us.

The original article did do it by hand. It was written in 1977.

The next slide shows how to do it by hand. We won’t go over
it, but you can if you want.



Eve Can Crack It!–Finding M OLD WAY
THIS SLIDE IS OPTIONAL
36392598 = 2× 33 × 11× 197× 311
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.
How many factors of 2× 33 × 11× 197× 311?

2× 4× 2× 2× 2 = 64.

1. Can’t use 197 AND 311: 197× 311 = 61267 > 9999.

2. If use 311 then need a 3: 2× 11× 311 = 6842 < 7648.

3. If use 311 and exactly one 3 does not work:
(a) Use 2 but not 11: 311× 3× 2 = 1866 < 7648
(b) Use 11: ≥ 311× 3× 11 = 10263 > 9999.

4. If use 311, at least two 3’s, and 11:
311× 11× 9 = 30789 > 9999.

5. If use 311 and 9 does not work: 311× 2× 9 = 5598 < 7648.

6. If use 311 and 27: 311× 27 = 8397. WORKS!

7. Leave it to you to show that using 197 does not work.

8. So M = 8397.



Eve Can Crack It!–Finding M OLD WAY
THIS SLIDE IS OPTIONAL
36392598 = 2× 33 × 11× 197× 311
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.
How many factors of 2× 33 × 11× 197× 311?
2× 4× 2× 2× 2 = 64.

1. Can’t use 197 AND 311: 197× 311 = 61267 > 9999.

2. If use 311 then need a 3: 2× 11× 311 = 6842 < 7648.

3. If use 311 and exactly one 3 does not work:
(a) Use 2 but not 11: 311× 3× 2 = 1866 < 7648
(b) Use 11: ≥ 311× 3× 11 = 10263 > 9999.

4. If use 311, at least two 3’s, and 11:
311× 11× 9 = 30789 > 9999.

5. If use 311 and 9 does not work: 311× 2× 9 = 5598 < 7648.

6. If use 311 and 27: 311× 27 = 8397. WORKS!

7. Leave it to you to show that using 197 does not work.

8. So M = 8397.



Eve Can Crack It!–Finding M OLD WAY
THIS SLIDE IS OPTIONAL
36392598 = 2× 33 × 11× 197× 311
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.
How many factors of 2× 33 × 11× 197× 311?
2× 4× 2× 2× 2 = 64.

1. Can’t use 197 AND 311: 197× 311 = 61267 > 9999.

2. If use 311 then need a 3: 2× 11× 311 = 6842 < 7648.

3. If use 311 and exactly one 3 does not work:
(a) Use 2 but not 11: 311× 3× 2 = 1866 < 7648
(b) Use 11: ≥ 311× 3× 11 = 10263 > 9999.

4. If use 311, at least two 3’s, and 11:
311× 11× 9 = 30789 > 9999.

5. If use 311 and 9 does not work: 311× 2× 9 = 5598 < 7648.

6. If use 311 and 27: 311× 27 = 8397. WORKS!

7. Leave it to you to show that using 197 does not work.

8. So M = 8397.



How to do it in 2021

Recall
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.

36392598 = 2× 33 × 11× 197× 311

36392598 has 2× 4× 2× 2× 2 = 64 factors.
Two ways to find possibilities for M

1. Look at all 64 factors and see which ones are in [7648, 9999].

2. Even less clever: Look at ALL numbers in [7648, 9999] and
see which ones are factors of M.



How to do it in 2021

Recall
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.

36392598 = 2× 33 × 11× 197× 311

36392598 has 2× 4× 2× 2× 2 = 64 factors.
Two ways to find possibilities for M

1. Look at all 64 factors and see which ones are in [7648, 9999].

2. Even less clever: Look at ALL numbers in [7648, 9999] and
see which ones are factors of M.



How to do it in 2021

Recall
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.

36392598 = 2× 33 × 11× 197× 311

36392598 has 2× 4× 2× 2× 2 = 64 factors.
Two ways to find possibilities for M

1. Look at all 64 factors and see which ones are in [7648, 9999].

2. Even less clever: Look at ALL numbers in [7648, 9999] and
see which ones are factors of M.



How to do it in 2021

Recall
M is a factor of 36392598 such that 7648 ≤ M ≤ 9999.

36392598 = 2× 33 × 11× 197× 311

36392598 has 2× 4× 2× 2× 2 = 64 factors.
Two ways to find possibilities for M

1. Look at all 64 factors and see which ones are in [7648, 9999].

2. Even less clever: Look at ALL numbers in [7648, 9999] and
see which ones are factors of M.



Reflect

If we do this we find that the only candidate that works is
M = 8397.

We might have found no M works. So Eve was wrong.

We might have found several M works. In that case, do what is
on the next few slides with each one.



Reflect

If we do this we find that the only candidate that works is
M = 8397.

We might have found no M works. So Eve was wrong.

We might have found several M works. In that case, do what is
on the next few slides with each one.



Reflect

If we do this we find that the only candidate that works is
M = 8397.

We might have found no M works. So Eve was wrong.

We might have found several M works. In that case, do what is
on the next few slides with each one.



Eve Determines Which M Is Correct, If Any

EQ4: −6823 ≡ 5783A (mod M)
By either brute force of cleverness we found that
If Eve’s Guess Is Correct then M = 8397.

EQ4: −6823 ≡ 5783A (mod 8397)

Use Euclid algorithm to find that 5783−1 (mod 8397) ≡ 1982.
Reflect It is possible the inverse does not exist. Then Eve is
wrong. In the case at hand, the inverse exists.
Multiply both sides of EQ4 by 1982 to get:

−6823× 1982 ≡ A (mod 8397)

A ≡ −6823× 1982 ≡ 4381 (mod 8397)



Eve Determines Which M Is Correct, If Any

EQ4: −6823 ≡ 5783A (mod M)
By either brute force of cleverness we found that
If Eve’s Guess Is Correct then M = 8397.

EQ4: −6823 ≡ 5783A (mod 8397)
Use Euclid algorithm to find that 5783−1 (mod 8397) ≡ 1982.

Reflect It is possible the inverse does not exist. Then Eve is
wrong. In the case at hand, the inverse exists.
Multiply both sides of EQ4 by 1982 to get:

−6823× 1982 ≡ A (mod 8397)

A ≡ −6823× 1982 ≡ 4381 (mod 8397)



Eve Determines Which M Is Correct, If Any

EQ4: −6823 ≡ 5783A (mod M)
By either brute force of cleverness we found that
If Eve’s Guess Is Correct then M = 8397.

EQ4: −6823 ≡ 5783A (mod 8397)
Use Euclid algorithm to find that 5783−1 (mod 8397) ≡ 1982.
Reflect It is possible the inverse does not exist. Then Eve is
wrong. In the case at hand, the inverse exists.

Multiply both sides of EQ4 by 1982 to get:

−6823× 1982 ≡ A (mod 8397)

A ≡ −6823× 1982 ≡ 4381 (mod 8397)



Eve Determines Which M Is Correct, If Any

EQ4: −6823 ≡ 5783A (mod M)
By either brute force of cleverness we found that
If Eve’s Guess Is Correct then M = 8397.

EQ4: −6823 ≡ 5783A (mod 8397)
Use Euclid algorithm to find that 5783−1 (mod 8397) ≡ 1982.
Reflect It is possible the inverse does not exist. Then Eve is
wrong. In the case at hand, the inverse exists.
Multiply both sides of EQ4 by 1982 to get:

−6823× 1982 ≡ A (mod 8397)

A ≡ −6823× 1982 ≡ 4381 (mod 8397)



Eve Checks M

Now want to find B. Recall:

EQ1: 7648 ≡ 1865A + B (mod M)

By plugging in M = 8397 and A = 4381 we get

7648 ≡ 1865 ∗ 4381 + B (mod 8397)

B ≡ 7648− 1865 ∗ 4381 ≡ 7364 (mod 8397)

Upshot If Eve’s Guess Is Correct Then A = 4381, B = 7364,
M = 8397.



Eve Checks M

Now want to find B. Recall:

EQ1: 7648 ≡ 1865A + B (mod M)

By plugging in M = 8397 and A = 4381 we get

7648 ≡ 1865 ∗ 4381 + B (mod 8397)

B ≡ 7648− 1865 ∗ 4381 ≡ 7364 (mod 8397)

Upshot If Eve’s Guess Is Correct Then A = 4381, B = 7364,
M = 8397.



Eve Checks M

Now want to find B. Recall:

EQ1: 7648 ≡ 1865A + B (mod M)

By plugging in M = 8397 and A = 4381 we get

7648 ≡ 1865 ∗ 4381 + B (mod 8397)

B ≡ 7648− 1865 ∗ 4381 ≡ 7364 (mod 8397)

Upshot If Eve’s Guess Is Correct Then A = 4381, B = 7364,
M = 8397.



Eve Checks M

Now want to find B. Recall:

EQ1: 7648 ≡ 1865A + B (mod M)

By plugging in M = 8397 and A = 4381 we get

7648 ≡ 1865 ∗ 4381 + B (mod 8397)

B ≡ 7648− 1865 ∗ 4381 ≡ 7364 (mod 8397)

Upshot If Eve’s Guess Is Correct Then A = 4381, B = 7364,
M = 8397.



Eve Checks M

Now want to find B. Recall:

EQ1: 7648 ≡ 1865A + B (mod M)

By plugging in M = 8397 and A = 4381 we get

7648 ≡ 1865 ∗ 4381 + B (mod 8397)

B ≡ 7648− 1865 ∗ 4381 ≡ 7364 (mod 8397)

Upshot If Eve’s Guess Is Correct Then A = 4381, B = 7364,
M = 8397.



Eve Can Find x0

Eve wants to test A = 4381,B = 7634,M = 8397.

xn+1 ≡ 4381xn + 7364 (mod 8397)

Need x0.

4381 is rel prime to 8397 so (4381)−1 (mod 8397) exists.
It is 8374. Mult equation by 8374.

8374xn+1 ≡ 8374 ∗ 4381xn + 8374 ∗ 7364 (mod 8397)

8374xn+1 ≡ xn + 6965 (mod 8397)

xn ≡ 8374xn+1 − 6965 ≡ 8374xn+1 + 1432

How will this help us?



Eve Can Find x0

Eve wants to test A = 4381,B = 7634,M = 8397.

xn+1 ≡ 4381xn + 7364 (mod 8397)

Need x0.

4381 is rel prime to 8397 so (4381)−1 (mod 8397) exists.
It is 8374. Mult equation by 8374.

8374xn+1 ≡ 8374 ∗ 4381xn + 8374 ∗ 7364 (mod 8397)

8374xn+1 ≡ xn + 6965 (mod 8397)

xn ≡ 8374xn+1 − 6965 ≡ 8374xn+1 + 1432

How will this help us?



Eve Can Find x0

Eve wants to test A = 4381,B = 7634,M = 8397.

xn+1 ≡ 4381xn + 7364 (mod 8397)

Need x0.

4381 is rel prime to 8397 so (4381)−1 (mod 8397) exists.
It is 8374. Mult equation by 8374.

8374xn+1 ≡ 8374 ∗ 4381xn + 8374 ∗ 7364 (mod 8397)

8374xn+1 ≡ xn + 6965 (mod 8397)

xn ≡ 8374xn+1 − 6965 ≡ 8374xn+1 + 1432

How will this help us?



Eve Can Find x0

Eve wants to test A = 4381,B = 7634,M = 8397.

xn+1 ≡ 4381xn + 7364 (mod 8397)

Need x0.

4381 is rel prime to 8397 so (4381)−1 (mod 8397) exists.
It is 8374. Mult equation by 8374.

8374xn+1 ≡ 8374 ∗ 4381xn + 8374 ∗ 7364 (mod 8397)

8374xn+1 ≡ xn + 6965 (mod 8397)

xn ≡ 8374xn+1 − 6965 ≡ 8374xn+1 + 1432

How will this help us?



Eve Can Find x0

Eve wants to test A = 4381,B = 7634,M = 8397.

xn+1 ≡ 4381xn + 7364 (mod 8397)

Need x0.

4381 is rel prime to 8397 so (4381)−1 (mod 8397) exists.
It is 8374. Mult equation by 8374.

8374xn+1 ≡ 8374 ∗ 4381xn + 8374 ∗ 7364 (mod 8397)

8374xn+1 ≡ xn + 6965 (mod 8397)

xn ≡ 8374xn+1 − 6965 ≡ 8374xn+1 + 1432

How will this help us?



Eve Can Find x0

Eve wants to test A = 4381,B = 7634,M = 8397.

xn+1 ≡ 4381xn + 7364 (mod 8397)

Need x0.

4381 is rel prime to 8397 so (4381)−1 (mod 8397) exists.
It is 8374. Mult equation by 8374.

8374xn+1 ≡ 8374 ∗ 4381xn + 8374 ∗ 7364 (mod 8397)

8374xn+1 ≡ xn + 6965 (mod 8397)

xn ≡ 8374xn+1 − 6965 ≡ 8374xn+1 + 1432

How will this help us?



Eve Can Find x0

Eve wants to test A = 4381,B = 7634,M = 8397.

xn+1 ≡ 4381xn + 7364 (mod 8397)

Need x0.

4381 is rel prime to 8397 so (4381)−1 (mod 8397) exists.
It is 8374. Mult equation by 8374.

8374xn+1 ≡ 8374 ∗ 4381xn + 8374 ∗ 7364 (mod 8397)

8374xn+1 ≡ xn + 6965 (mod 8397)

xn ≡ 8374xn+1 − 6965 ≡ 8374xn+1 + 1432

How will this help us?



Eve Finds x0 (cont)

xn ≡ 8374xn+1 + 1432

PAKISTAN had the P on the (say) 191st spot. We know the key
at 191 spot. Hence can use recurrence above to get key at 190th,
189th, . . ., 0th spot.

So can get x0.

Are we done yet? No.



Eve Finds x0 (cont)

xn ≡ 8374xn+1 + 1432

PAKISTAN had the P on the (say) 191st spot. We know the key
at 191 spot. Hence can use recurrence above to get key at 190th,
189th, . . ., 0th spot.

So can get x0.

Are we done yet? No.



Eve Finds x0 (cont)

xn ≡ 8374xn+1 + 1432

PAKISTAN had the P on the (say) 191st spot. We know the key
at 191 spot. Hence can use recurrence above to get key at 190th,
189th, . . ., 0th spot.

So can get x0.

Are we done yet? No.



Eve Finds x0 (cont)

xn ≡ 8374xn+1 + 1432

PAKISTAN had the P on the (say) 191st spot. We know the key
at 191 spot. Hence can use recurrence above to get key at 190th,
189th, . . ., 0th spot.

So can get x0.

Are we done yet? No.



Eve Uses Is-English

Eve has x0,A,B,M so Eve can generate the entire key.

She uses it to recover the entire plaintext.

Use IS-ENGLISH.

If Eve’s Guess Is Correct then it will return YES-IS ENGLISH.
So Eve is done!

If Eve’s Guess Is Not Correct then either the procedure would
have failed long before this point OR we find ISNOT-English.



Eve Uses Is-English

Eve has x0,A,B,M so Eve can generate the entire key.

She uses it to recover the entire plaintext.

Use IS-ENGLISH.

If Eve’s Guess Is Correct then it will return YES-IS ENGLISH.
So Eve is done!

If Eve’s Guess Is Not Correct then either the procedure would
have failed long before this point OR we find ISNOT-English.



Eve Uses Is-English

Eve has x0,A,B,M so Eve can generate the entire key.

She uses it to recover the entire plaintext.

Use IS-ENGLISH.

If Eve’s Guess Is Correct then it will return YES-IS ENGLISH.
So Eve is done!

If Eve’s Guess Is Not Correct then either the procedure would
have failed long before this point OR we find ISNOT-English.



Eve Uses Is-English

Eve has x0,A,B,M so Eve can generate the entire key.

She uses it to recover the entire plaintext.

Use IS-ENGLISH.

If Eve’s Guess Is Correct then it will return YES-IS ENGLISH.
So Eve is done!

If Eve’s Guess Is Not Correct then either the procedure would
have failed long before this point OR we find ISNOT-English.



Eve Uses Is-English

Eve has x0,A,B,M so Eve can generate the entire key.

She uses it to recover the entire plaintext.

Use IS-ENGLISH.

If Eve’s Guess Is Correct then it will return YES-IS ENGLISH.
So Eve is done!

If Eve’s Guess Is Not Correct then either the procedure would
have failed long before this point OR we find ISNOT-English.



But This Was All Predicated on Eve’s Guess

We just showed that IF Eve thinks that PAKISTAN occurred in
(say) spaces 190 to 197 then:

1. She can test if the guess is correct.

2. If the guess is correct then she can find A,B,M, x0 and
decode the message

How can Eve use this to break the cipher?
For every 8-letter sequence Eve guess’s that it is PAKISTAN
and does out the procedure above.

Most of the time she will be wrong. But the one time she is right,
she will have decoded the message.



But This Was All Predicated on Eve’s Guess

We just showed that IF Eve thinks that PAKISTAN occurred in
(say) spaces 190 to 197 then:

1. She can test if the guess is correct.

2. If the guess is correct then she can find A,B,M, x0 and
decode the message

How can Eve use this to break the cipher?
For every 8-letter sequence Eve guess’s that it is PAKISTAN
and does out the procedure above.

Most of the time she will be wrong. But the one time she is right,
she will have decoded the message.



But This Was All Predicated on Eve’s Guess

We just showed that IF Eve thinks that PAKISTAN occurred in
(say) spaces 190 to 197 then:

1. She can test if the guess is correct.

2. If the guess is correct then she can find A,B,M, x0 and
decode the message

How can Eve use this to break the cipher?
For every 8-letter sequence Eve guess’s that it is PAKISTAN
and does out the procedure above.

Most of the time she will be wrong. But the one time she is right,
she will have decoded the message.



But This Was All Predicated on Eve’s Guess

We just showed that IF Eve thinks that PAKISTAN occurred in
(say) spaces 190 to 197 then:

1. She can test if the guess is correct.

2. If the guess is correct then she can find A,B,M, x0 and
decode the message

How can Eve use this to break the cipher?

For every 8-letter sequence Eve guess’s that it is PAKISTAN
and does out the procedure above.

Most of the time she will be wrong. But the one time she is right,
she will have decoded the message.



But This Was All Predicated on Eve’s Guess

We just showed that IF Eve thinks that PAKISTAN occurred in
(say) spaces 190 to 197 then:

1. She can test if the guess is correct.

2. If the guess is correct then she can find A,B,M, x0 and
decode the message

How can Eve use this to break the cipher?
For every 8-letter sequence Eve guess’s that it is PAKISTAN
and does out the procedure above.

Most of the time she will be wrong. But the one time she is right,
she will have decoded the message.



But This Was All Predicated on Eve’s Guess

We just showed that IF Eve thinks that PAKISTAN occurred in
(say) spaces 190 to 197 then:

1. She can test if the guess is correct.

2. If the guess is correct then she can find A,B,M, x0 and
decode the message

How can Eve use this to break the cipher?
For every 8-letter sequence Eve guess’s that it is PAKISTAN
and does out the procedure above.

Most of the time she will be wrong. But the one time she is right,
she will have decoded the message.



Putting it All Together

1. Input is long ciphertext T that Eve knows was coded with
recurrence. Eve knows a word w that she is sure appears in
the text and is L letters.

2. For EVERY L-letter seq Eve does the following:

2.1 Assuming L-letter seq is w form equations and try to solve
them. If can’t then goto next L-letter seq.

2.2 Use A,B,M, x0 to generate entire key. Decode entire text.
If IS-ENGLISH=YES, DONE! Else goto next L-let-seq.



Putting it All Together

1. Input is long ciphertext T that Eve knows was coded with
recurrence. Eve knows a word w that she is sure appears in
the text and is L letters.

2. For EVERY L-letter seq Eve does the following:

2.1 Assuming L-letter seq is w form equations and try to solve
them. If can’t then goto next L-letter seq.

2.2 Use A,B,M, x0 to generate entire key. Decode entire text.
If IS-ENGLISH=YES, DONE! Else goto next L-let-seq.



Putting it All Together

1. Input is long ciphertext T that Eve knows was coded with
recurrence. Eve knows a word w that she is sure appears in
the text and is L letters.

2. For EVERY L-letter seq Eve does the following:

2.1 Assuming L-letter seq is w form equations and try to solve
them. If can’t then goto next L-letter seq.

2.2 Use A,B,M, x0 to generate entire key. Decode entire text.
If IS-ENGLISH=YES, DONE! Else goto next L-let-seq.



Putting it All Together

1. Input is long ciphertext T that Eve knows was coded with
recurrence. Eve knows a word w that she is sure appears in
the text and is L letters.

2. For EVERY L-letter seq Eve does the following:

2.1 Assuming L-letter seq is w form equations and try to solve
them. If can’t then goto next L-letter seq.

2.2 Use A,B,M, x0 to generate entire key. Decode entire text.
If IS-ENGLISH=YES, DONE! Else goto next L-let-seq.



Putting it All Together

1. Input is long ciphertext T that Eve knows was coded with
recurrence. Eve knows a word w that she is sure appears in
the text and is L letters.

2. For EVERY L-letter seq Eve does the following:

2.1 Assuming L-letter seq is w form equations and try to solve
them. If can’t then goto next L-letter seq.

2.2 Use A,B,M, x0 to generate entire key. Decode entire text.
If IS-ENGLISH=YES, DONE! Else goto next L-let-seq.



About Eve Factoring Fast

Eve had to factor:

36, 392, 598 = 2× 33 × 11× 197× 311

We usually say
Factoring is Hard

But what do we mean by Factoring is Hard ?

1. If Alice picks two primes p, q of length n and picks N = pq
then factoring N is hard.

2. If a random number is given then half the time it’s even. A
third of the time is divided by 3. Not so hard to factor.

Our scenario is closer to random than to Alice .



About Eve Factoring Fast

Eve had to factor:

36, 392, 598 = 2× 33 × 11× 197× 311

We usually say
Factoring is Hard

But what do we mean by Factoring is Hard ?

1. If Alice picks two primes p, q of length n and picks N = pq
then factoring N is hard.

2. If a random number is given then half the time it’s even. A
third of the time is divided by 3. Not so hard to factor.

Our scenario is closer to random than to Alice .



About Eve Factoring Fast

Eve had to factor:

36, 392, 598 = 2× 33 × 11× 197× 311

We usually say
Factoring is Hard

But what do we mean by Factoring is Hard ?

1. If Alice picks two primes p, q of length n and picks N = pq
then factoring N is hard.

2. If a random number is given then half the time it’s even. A
third of the time is divided by 3. Not so hard to factor.

Our scenario is closer to random than to Alice .



About Eve Factoring Fast

Eve had to factor:

36, 392, 598 = 2× 33 × 11× 197× 311

We usually say
Factoring is Hard

But what do we mean by Factoring is Hard ?

1. If Alice picks two primes p, q of length n and picks N = pq
then factoring N is hard.

2. If a random number is given then half the time it’s even. A
third of the time is divided by 3. Not so hard to factor.

Our scenario is closer to random than to Alice .



About Eve Factoring Fast

Eve had to factor:

36, 392, 598 = 2× 33 × 11× 197× 311

We usually say
Factoring is Hard

But what do we mean by Factoring is Hard ?

1. If Alice picks two primes p, q of length n and picks N = pq
then factoring N is hard.

2. If a random number is given then half the time it’s even. A
third of the time is divided by 3. Not so hard to factor.

Our scenario is closer to random than to Alice .



About Eve Factoring Fast

Eve had to factor:

36, 392, 598 = 2× 33 × 11× 197× 311

We usually say
Factoring is Hard

But what do we mean by Factoring is Hard ?

1. If Alice picks two primes p, q of length n and picks N = pq
then factoring N is hard.

2. If a random number is given then half the time it’s even. A
third of the time is divided by 3. Not so hard to factor.

Our scenario is closer to random than to Alice .



Some Real World Notes

1. Java and other langs use an LCG with some A,B,M. Actually
the M is always 232 or 264. This makes the LCG even easier
to crack.

2. Python and other modern language use The Mersenne
Twister to generate random numbers. It is also not secure.
(I will discuss it very soon.)

3. Why do Java and Python and other langs have such bad
random number generators?

3.1 They are bad for crypto.
3.2 They are fine for randomized algorithms (like quicksort).



Some Real World Notes

1. Java and other langs use an LCG with some A,B,M. Actually
the M is always 232 or 264. This makes the LCG even easier
to crack.

2. Python and other modern language use The Mersenne
Twister to generate random numbers. It is also not secure.
(I will discuss it very soon.)

3. Why do Java and Python and other langs have such bad
random number generators?

3.1 They are bad for crypto.
3.2 They are fine for randomized algorithms (like quicksort).



Some Real World Notes

1. Java and other langs use an LCG with some A,B,M. Actually
the M is always 232 or 264. This makes the LCG even easier
to crack.

2. Python and other modern language use The Mersenne
Twister to generate random numbers. It is also not secure.
(I will discuss it very soon.)

3. Why do Java and Python and other langs have such bad
random number generators?

3.1 They are bad for crypto.
3.2 They are fine for randomized algorithms (like quicksort).



Some Real World Notes

1. Java and other langs use an LCG with some A,B,M. Actually
the M is always 232 or 264. This makes the LCG even easier
to crack.

2. Python and other modern language use The Mersenne
Twister to generate random numbers. It is also not secure.
(I will discuss it very soon.)

3. Why do Java and Python and other langs have such bad
random number generators?

3.1 They are bad for crypto.
3.2 They are fine for randomized algorithms (like quicksort).



Some Real World Notes

1. Java and other langs use an LCG with some A,B,M. Actually
the M is always 232 or 264. This makes the LCG even easier
to crack.

2. Python and other modern language use The Mersenne
Twister to generate random numbers. It is also not secure.
(I will discuss it very soon.)

3. Why do Java and Python and other langs have such bad
random number generators?

3.1 They are bad for crypto.
3.2 They are fine for randomized algorithms (like quicksort).



Some Real World Notes

1. Java and other langs use an LCG with some A,B,M. Actually
the M is always 232 or 264. This makes the LCG even easier
to crack.

2. Python and other modern language use The Mersenne
Twister to generate random numbers. It is also not secure.
(I will discuss it very soon.)

3. Why do Java and Python and other langs have such bad
random number generators?

3.1 They are bad for crypto.

3.2 They are fine for randomized algorithms (like quicksort).



Some Real World Notes

1. Java and other langs use an LCG with some A,B,M. Actually
the M is always 232 or 264. This makes the LCG even easier
to crack.

2. Python and other modern language use The Mersenne
Twister to generate random numbers. It is also not secure.
(I will discuss it very soon.)

3. Why do Java and Python and other langs have such bad
random number generators?

3.1 They are bad for crypto.
3.2 They are fine for randomized algorithms (like quicksort).



Mersenne Twister

We do a very small example with a smaller word size than is used.
The Mersenne Twister generates a sequence of 10-bit numbers
(two 5-bit numbers, so for us 2 numbers in {01, . . . , 26}).

We give an example:
Params: 7 ,5 ,3 ,5 ,3 ,x0, . . . , x6, unknown to Eve.

xn+7 = xn+5 ⊕ f (xfirst3bits
n x last5bits

n+1 )

f shifts bits 3 to the left (its more complicated).

1. Very fast since ⊕ and concat and shift are fast.

2. Has same problem for crypto that LCG does: its a recurrence.
Can guess that a word or phrase is in the text.

3. Would need to be a very long phrase so that the recurrence
produces equations.

4. The larger the parameter which we have as 7, the longer the
phrase has to be.



Mersenne Twister

We do a very small example with a smaller word size than is used.
The Mersenne Twister generates a sequence of 10-bit numbers
(two 5-bit numbers, so for us 2 numbers in {01, . . . , 26}).

We give an example:
Params: 7 ,5 ,3 ,5 ,3 ,x0, . . . , x6, unknown to Eve.

xn+7 = xn+5 ⊕ f (xfirst3bits
n x last5bits

n+1 )

f shifts bits 3 to the left (its more complicated).

1. Very fast since ⊕ and concat and shift are fast.

2. Has same problem for crypto that LCG does: its a recurrence.
Can guess that a word or phrase is in the text.

3. Would need to be a very long phrase so that the recurrence
produces equations.

4. The larger the parameter which we have as 7, the longer the
phrase has to be.



Mersenne Twister

We do a very small example with a smaller word size than is used.
The Mersenne Twister generates a sequence of 10-bit numbers
(two 5-bit numbers, so for us 2 numbers in {01, . . . , 26}).

We give an example:
Params: 7 ,5 ,3 ,5 ,3 ,x0, . . . , x6, unknown to Eve.

xn+7 = xn+5 ⊕ f (xfirst3bits
n x last5bits

n+1 )

f shifts bits 3 to the left (its more complicated).

1. Very fast since ⊕ and concat and shift are fast.

2. Has same problem for crypto that LCG does: its a recurrence.
Can guess that a word or phrase is in the text.

3. Would need to be a very long phrase so that the recurrence
produces equations.

4. The larger the parameter which we have as 7, the longer the
phrase has to be.



Mersenne Twister

We do a very small example with a smaller word size than is used.
The Mersenne Twister generates a sequence of 10-bit numbers
(two 5-bit numbers, so for us 2 numbers in {01, . . . , 26}).

We give an example:
Params: 7 ,5 ,3 ,5 ,3 ,x0, . . . , x6, unknown to Eve.

xn+7 = xn+5 ⊕ f (xfirst3bits
n x last5bits

n+1 )

f shifts bits 3 to the left (its more complicated).

1. Very fast since ⊕ and concat and shift are fast.

2. Has same problem for crypto that LCG does: its a recurrence.
Can guess that a word or phrase is in the text.

3. Would need to be a very long phrase so that the recurrence
produces equations.

4. The larger the parameter which we have as 7, the longer the
phrase has to be.



Mersenne Twister

We do a very small example with a smaller word size than is used.
The Mersenne Twister generates a sequence of 10-bit numbers
(two 5-bit numbers, so for us 2 numbers in {01, . . . , 26}).

We give an example:
Params: 7 ,5 ,3 ,5 ,3 ,x0, . . . , x6, unknown to Eve.

xn+7 = xn+5 ⊕ f (xfirst3bits
n x last5bits

n+1 )

f shifts bits 3 to the left (its more complicated).

1. Very fast since ⊕ and concat and shift are fast.

2. Has same problem for crypto that LCG does: its a recurrence.
Can guess that a word or phrase is in the text.

3. Would need to be a very long phrase so that the recurrence
produces equations.

4. The larger the parameter which we have as 7, the longer the
phrase has to be.



Mersenne Twister

We do a very small example with a smaller word size than is used.
The Mersenne Twister generates a sequence of 10-bit numbers
(two 5-bit numbers, so for us 2 numbers in {01, . . . , 26}).

We give an example:
Params: 7 ,5 ,3 ,5 ,3 ,x0, . . . , x6, unknown to Eve.

xn+7 = xn+5 ⊕ f (xfirst3bits
n x last5bits

n+1 )

f shifts bits 3 to the left (its more complicated).

1. Very fast since ⊕ and concat and shift are fast.

2. Has same problem for crypto that LCG does: its a recurrence.
Can guess that a word or phrase is in the text.

3. Would need to be a very long phrase so that the recurrence
produces equations.

4. The larger the parameter which we have as 7, the longer the
phrase has to be.



Mersenne Twister

We do a very small example with a smaller word size than is used.
The Mersenne Twister generates a sequence of 10-bit numbers
(two 5-bit numbers, so for us 2 numbers in {01, . . . , 26}).

We give an example:
Params: 7 ,5 ,3 ,5 ,3 ,x0, . . . , x6, unknown to Eve.

xn+7 = xn+5 ⊕ f (xfirst3bits
n x last5bits

n+1 )

f shifts bits 3 to the left (its more complicated).

1. Very fast since ⊕ and concat and shift are fast.

2. Has same problem for crypto that LCG does: its a recurrence.
Can guess that a word or phrase is in the text.

3. Would need to be a very long phrase so that the recurrence
produces equations.

4. The larger the parameter which we have as 7, the longer the
phrase has to be.



Mersenne Twister Example with Digits
Text-Letter P A K I S T A N B O
Text-Digits 16 01 11 09 19 20 01 14 02 15
Cipher-text 24 66 87 47 17 45 26 96 06 11
Key 18 65 76 48 08 25 25 82 04 04

Text-Letter R D E R S I N D I A
Text-Digits 18 04 05 18 19 09 14 04 09 01
Cipher-text 23 16 01 11 09 19 20 01 14 02
Key 95 12 04 03 90 10 16 07 15 09

Eve will guess the 7 and 5, does not know f , a, b

xn+7 = xn+5 ⊕ f (xfirst a digs
n x last b digs

n+1 )

1509 = 9010⊕ f (0825first a digs, 2528last b digs)
1607 = 0403⊕ f (7648first a digs, 4808last b digs)
9010 = 9512⊕ f (1865first a digs, 6576last b digs)

Can use recurrences to find f , a, b.Will need more equations and
some guesswork, but crackable!



Mersenne Twister Example with Digits
Text-Letter P A K I S T A N B O
Text-Digits 16 01 11 09 19 20 01 14 02 15
Cipher-text 24 66 87 47 17 45 26 96 06 11
Key 18 65 76 48 08 25 25 82 04 04

Text-Letter R D E R S I N D I A
Text-Digits 18 04 05 18 19 09 14 04 09 01
Cipher-text 23 16 01 11 09 19 20 01 14 02
Key 95 12 04 03 90 10 16 07 15 09

Eve will guess the 7 and 5, does not know f , a, b

xn+7 = xn+5 ⊕ f (xfirst a digs
n x last b digs

n+1 )

1509 = 9010⊕ f (0825first a digs, 2528last b digs)
1607 = 0403⊕ f (7648first a digs, 4808last b digs)
9010 = 9512⊕ f (1865first a digs, 6576last b digs)

Can use recurrences to find f , a, b.Will need more equations and
some guesswork, but crackable!



Mersenne Twister Example with Digits
Text-Letter P A K I S T A N B O
Text-Digits 16 01 11 09 19 20 01 14 02 15
Cipher-text 24 66 87 47 17 45 26 96 06 11
Key 18 65 76 48 08 25 25 82 04 04

Text-Letter R D E R S I N D I A
Text-Digits 18 04 05 18 19 09 14 04 09 01
Cipher-text 23 16 01 11 09 19 20 01 14 02
Key 95 12 04 03 90 10 16 07 15 09

Eve will guess the 7 and 5, does not know f , a, b

xn+7 = xn+5 ⊕ f (xfirst a digs
n x last b digs

n+1 )

1509 = 9010⊕ f (0825first a digs, 2528last b digs)
1607 = 0403⊕ f (7648first a digs, 4808last b digs)
9010 = 9512⊕ f (1865first a digs, 6576last b digs)

Can use recurrences to find f , a, b.Will need more equations and
some guesswork, but crackable!



Mersenne Twister Example with Digits
Text-Letter P A K I S T A N B O
Text-Digits 16 01 11 09 19 20 01 14 02 15
Cipher-text 24 66 87 47 17 45 26 96 06 11
Key 18 65 76 48 08 25 25 82 04 04

Text-Letter R D E R S I N D I A
Text-Digits 18 04 05 18 19 09 14 04 09 01
Cipher-text 23 16 01 11 09 19 20 01 14 02
Key 95 12 04 03 90 10 16 07 15 09

Eve will guess the 7 and 5, does not know f , a, b

xn+7 = xn+5 ⊕ f (xfirst a digs
n x last b digs

n+1 )

1509 = 9010⊕ f (0825first a digs, 2528last b digs)

1607 = 0403⊕ f (7648first a digs, 4808last b digs)
9010 = 9512⊕ f (1865first a digs, 6576last b digs)

Can use recurrences to find f , a, b.Will need more equations and
some guesswork, but crackable!



Mersenne Twister Example with Digits
Text-Letter P A K I S T A N B O
Text-Digits 16 01 11 09 19 20 01 14 02 15
Cipher-text 24 66 87 47 17 45 26 96 06 11
Key 18 65 76 48 08 25 25 82 04 04

Text-Letter R D E R S I N D I A
Text-Digits 18 04 05 18 19 09 14 04 09 01
Cipher-text 23 16 01 11 09 19 20 01 14 02
Key 95 12 04 03 90 10 16 07 15 09

Eve will guess the 7 and 5, does not know f , a, b

xn+7 = xn+5 ⊕ f (xfirst a digs
n x last b digs

n+1 )

1509 = 9010⊕ f (0825first a digs, 2528last b digs)
1607 = 0403⊕ f (7648first a digs, 4808last b digs)

9010 = 9512⊕ f (1865first a digs, 6576last b digs)

Can use recurrences to find f , a, b.Will need more equations and
some guesswork, but crackable!



Mersenne Twister Example with Digits
Text-Letter P A K I S T A N B O
Text-Digits 16 01 11 09 19 20 01 14 02 15
Cipher-text 24 66 87 47 17 45 26 96 06 11
Key 18 65 76 48 08 25 25 82 04 04

Text-Letter R D E R S I N D I A
Text-Digits 18 04 05 18 19 09 14 04 09 01
Cipher-text 23 16 01 11 09 19 20 01 14 02
Key 95 12 04 03 90 10 16 07 15 09

Eve will guess the 7 and 5, does not know f , a, b

xn+7 = xn+5 ⊕ f (xfirst a digs
n x last b digs

n+1 )

1509 = 9010⊕ f (0825first a digs, 2528last b digs)
1607 = 0403⊕ f (7648first a digs, 4808last b digs)
9010 = 9512⊕ f (1865first a digs, 6576last b digs)

Can use recurrences to find f , a, b.Will need more equations and
some guesswork, but crackable!



Mersenne Twister Example with Digits
Text-Letter P A K I S T A N B O
Text-Digits 16 01 11 09 19 20 01 14 02 15
Cipher-text 24 66 87 47 17 45 26 96 06 11
Key 18 65 76 48 08 25 25 82 04 04

Text-Letter R D E R S I N D I A
Text-Digits 18 04 05 18 19 09 14 04 09 01
Cipher-text 23 16 01 11 09 19 20 01 14 02
Key 95 12 04 03 90 10 16 07 15 09

Eve will guess the 7 and 5, does not know f , a, b

xn+7 = xn+5 ⊕ f (xfirst a digs
n x last b digs

n+1 )

1509 = 9010⊕ f (0825first a digs, 2528last b digs)
1607 = 0403⊕ f (7648first a digs, 4808last b digs)
9010 = 9512⊕ f (1865first a digs, 6576last b digs)

Can use recurrences to find f , a, b.

Will need more equations and
some guesswork, but crackable!



Mersenne Twister Example with Digits
Text-Letter P A K I S T A N B O
Text-Digits 16 01 11 09 19 20 01 14 02 15
Cipher-text 24 66 87 47 17 45 26 96 06 11
Key 18 65 76 48 08 25 25 82 04 04

Text-Letter R D E R S I N D I A
Text-Digits 18 04 05 18 19 09 14 04 09 01
Cipher-text 23 16 01 11 09 19 20 01 14 02
Key 95 12 04 03 90 10 16 07 15 09

Eve will guess the 7 and 5, does not know f , a, b

xn+7 = xn+5 ⊕ f (xfirst a digs
n x last b digs

n+1 )

1509 = 9010⊕ f (0825first a digs, 2528last b digs)
1607 = 0403⊕ f (7648first a digs, 4808last b digs)
9010 = 9512⊕ f (1865first a digs, 6576last b digs)

Can use recurrences to find f , a, b.Will need more equations and
some guesswork, but crackable!



Upshot

Any pseudo-random generator that is based on recurrences is
crackable.


