BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Low e Attacks on RSA

Scenario

Scenario

1. Zelda is sending messages to Alice using $N_{a}=377, e=3$.

Scenario

1. Zelda is sending messages to Alice using $N_{a}=377, e=3$.
2. Zelda is sending messages to Bob using $N_{b}=391, e=3$.

Scenario

1. Zelda is sending messages to Alice using $N_{a}=377, e=3$.
2. Zelda is sending messages to Bob using $N_{b}=391, e=3$. e is low. That will make the system crackable if ...

Scenario

1. Zelda is sending messages to Alice using $N_{a}=377, e=3$.
2. Zelda is sending messages to Bob using $N_{b}=391, e=3$. e is low. That will make the system crackable if ... Zelda sends same m to all three. Note $m<377$. Zelda does this:

Scenario

1. Zelda is sending messages to Alice using $N_{a}=377, e=3$.
2. Zelda is sending messages to Bob using $N_{b}=391, e=3$. e is low. That will make the system crackable if ... Zelda sends same m to all three. Note $m<377$. Zelda does this:
3. Zelda sends Alice 359 . So $m^{3} \equiv 359(\bmod 377)$.

Scenario

1. Zelda is sending messages to Alice using $N_{a}=377, e=3$.
2. Zelda is sending messages to Bob using $N_{b}=391, e=3$. e is low. That will make the system crackable if ... Zelda sends same m to all three. Note $m<377$. Zelda does this:
3. Zelda sends Alice 359. So $m^{3} \equiv 359(\bmod 377)$.
4. Zelda sends Bob 247 . So $m^{3} \equiv 247(\bmod 391)$.

Scenario

1. Zelda is sending messages to Alice using $N_{a}=377, e=3$.
2. Zelda is sending messages to Bob using $N_{b}=391, e=3$. e is low. That will make the system crackable if ... Zelda sends same m to all three. Note $m<377$. Zelda does this:
3. Zelda sends Alice 359 . So $m^{3} \equiv 359(\bmod 377)$.
4. Zelda sends Bob 247 . So $m^{3} \equiv 247(\bmod 391)$.

Eve can use this information to find m.

Scenario

1. Zelda is sending messages to Alice using $N_{a}=377, e=3$.
2. Zelda is sending messages to Bob using $N_{b}=391, e=3$. e is low. That will make the system crackable if ...
Zelda sends same m to all three. Note $m<377$. Zelda does this:
3. Zelda sends Alice 359. So $m^{3} \equiv 359(\bmod 377)$.
4. Zelda sends Bob 247. So $m^{3} \equiv 247(\bmod 391)$.

Eve can use this information to find m.
We will develop the math and the attack. Called a low-e attack.

Chinese Remainder Theorem: Example

Find x such that:
$x \equiv 17(\bmod 31)$
$x \equiv 20(\bmod 37)$

Chinese Remainder Theorem: Example

Find x such that:
$x \equiv 17(\bmod 31)$
$x \equiv 20(\bmod 37)$
a) The inverse of $31 \bmod 37$ is 6 .
b) The inverse of $37 \bmod 31$ is $\mathbf{2 6}$.

Chinese Remainder Theorem: Example

Find x such that:
$x \equiv 17(\bmod 31)$
$x \equiv 20(\bmod 37)$
a) The inverse of $31 \bmod 37$ is 6 .
b) The inverse of $37 \bmod 31$ is $\mathbf{2 6}$.

$$
x=20 \times 6 \times 31+17 \times 26 \times 37=20,074
$$

$x(\bmod 31): 1$ st $=0.2 \mathrm{nd}=17 \times 26 \times 26^{-1} \equiv 17$. Sum $=17$.

Chinese Remainder Theorem: Example

Find x such that:
$x \equiv 17(\bmod 31)$
$x \equiv 20(\bmod 37)$
a) The inverse of $31 \bmod 37$ is 6 .
b) The inverse of $37 \bmod 31$ is $\mathbf{2 6}$.

$$
x=20 \times 6 \times 31+17 \times 26 \times 37=20,074
$$

$x(\bmod 31): 1$ st $=0.2 \mathrm{nd}=17 \times 26 \times 26^{-1} \equiv 17$. Sum $=17$.
$x(\bmod 37): 1$ st $=20 \times 31^{-1} \times 31 \equiv 20.2 n d=0$. Sum=20.

Chinese Remainder Theorem: Example

Find x such that:
$x \equiv 17(\bmod 31)$
$x \equiv 20(\bmod 37)$
a) The inverse of $31 \bmod 37$ is 6 .
b) The inverse of $37 \bmod 31$ is $\mathbf{2 6}$.

$$
x=20 \times 6 \times 31+17 \times 26 \times 37=20,074
$$

$x(\bmod 31): 1$ st $=0.2 \mathrm{nd}=17 \times 26 \times 26^{-1} \equiv 17$. Sum $=17$.
$x(\bmod 37): 1$ st $=20 \times 31^{-1} \times 31 \equiv 20.2$ nd=0. Sum=20.
So $x=20,074$ is an answer.

Chinese Remainder Theorem: Example (cont)

Find x such that:

$$
x \equiv 17 \quad(\bmod 31) \quad \& \quad x \equiv 20 \quad(\bmod 37)
$$

Chinese Remainder Theorem: Example (cont)

Find x such that:

$$
x \equiv 17 \quad(\bmod 31) \quad \& \quad x \equiv 20 \quad(\bmod 37)
$$

From last slide: So $x=20,074$ works. Smaller x ?

Chinese Remainder Theorem: Example (cont)

Find x such that:

$$
x \equiv 17 \quad(\bmod 31) \quad \& \quad x \equiv 20 \quad(\bmod 37)
$$

From last slide: So $x=20,074$ works. Smaller x ?
We only care about $x(\bmod 31)$ and $x(\bmod 37)$.

Chinese Remainder Theorem: Example (cont)

Find x such that:

$$
x \equiv 17 \quad(\bmod 31) \quad \& \quad x \equiv 20 \quad(\bmod 37)
$$

From last slide: So $x=20,074$ works. Smaller x ?
We only care about $x(\bmod 31)$ and $x(\bmod 37)$.
So only care about $x(\bmod 31 \times 37)$

Chinese Remainder Theorem: Example (cont)

Find x such that:

$$
x \equiv 17 \quad(\bmod 31) \quad \& \quad x \equiv 20 \quad(\bmod 37)
$$

From last slide: So $x=20,074$ works. Smaller x ?
We only care about $x(\bmod 31)$ and $x(\bmod 37)$.
So only care about $x(\bmod 31 \times 37)$
If x works then $x \bmod 31 \times 37$ works. So just need

$$
20,074 \equiv 575 \quad(\bmod 31 \times 37)
$$

Chinese Remainder Theorem: Example (cont)

Find x such that:

$$
x \equiv 17 \quad(\bmod 31) \quad \& \quad x \equiv 20 \quad(\bmod 37)
$$

From last slide: So $x=20,074$ works. Smaller x ?
We only care about $x(\bmod 31)$ and $x(\bmod 37)$.
So only care about $x(\bmod 31 \times 37)$
If x works then $x \bmod 31 \times 37$ works. So just need

$$
20,074 \equiv 575 \quad(\bmod 31 \times 37)
$$

Upshot: Can take $x=575$.

What if $x=m^{2}$ is a Square?

Find m such that:

$$
m^{2} \equiv 8 \quad(\bmod 17) \quad \& \quad m^{2} \equiv 25 \quad(\bmod 37)
$$

a) The inverse of $17 \bmod 37$ is 24 .
b) The inverse of $37 \bmod 17$ is 6 .

What if $x=m^{2}$ is a Square?

Find m such that:

$$
m^{2} \equiv 8 \quad(\bmod 17) \quad \& \quad m^{2} \equiv 25 \quad(\bmod 37)
$$

a) The inverse of $17 \bmod 37$ is 24 .
b) The inverse of $37 \bmod 17$ is 6 .

$$
m^{2}=8 \times 37 \times 6+25 \times 17 \times 24=11976
$$

$11976 \equiv 25(\bmod 17 \times 37)$.

What if $x=m^{2}$ is a Square?

Find m such that:

$$
m^{2} \equiv 8 \quad(\bmod 17) \quad \& \quad m^{2} \equiv 25 \quad(\bmod 37)
$$

a) The inverse of $17 \bmod 37$ is 24 .
b) The inverse of $37 \bmod 17$ is 6 .

$$
m^{2}=8 \times 37 \times 6+25 \times 17 \times 24=11976
$$

$11976 \equiv 25(\bmod 17 \times 37)$.
$\mathrm{OH}, m^{2} \equiv 25$. This is a square in \mathbb{N}. So $m=5$.

What if $x=m^{3}$?

Find m such that:

$$
m^{3} \equiv 12 \quad(\bmod 17) \quad \& \quad m^{3} \equiv 16 \quad(\bmod 37)
$$

What if $x=m^{3}$?

Find m such that:

$$
m^{3} \equiv 12 \quad(\bmod 17) \quad \& \quad m^{3} \equiv 16 \quad(\bmod 37)
$$

a) The inverse of $17 \bmod 37$ is 24 .
b) The inverse of $37 \bmod 17$ is 6 .

What if $x=m^{3} ?$

Find m such that:

$$
m^{3} \equiv 12 \quad(\bmod 17) \quad \& \quad m^{3} \equiv 16 \quad(\bmod 37)
$$

a) The inverse of $17 \bmod 37$ is 24 .
b) The inverse of $37 \bmod 17$ is 6 .

$$
m^{3}=12 \times 37 \times 6+16 \times 17 \times 24=9192
$$

$9192 \equiv 386(\bmod 17 \times 37)$.

What if $x=m^{3} ?$

Find m such that:

$$
m^{3} \equiv 12 \quad(\bmod 17) \quad \& \quad m^{3} \equiv 16 \quad(\bmod 37)
$$

a) The inverse of $17 \bmod 37$ is 24 .
b) The inverse of $37 \bmod 17$ is 6 .

$$
m^{3}=12 \times 37 \times 6+16 \times 17 \times 24=9192
$$

$9192 \equiv 386(\bmod 17 \times 37)$.
$\mathrm{OH}, m^{3} \equiv 386$. This is NOT a cube :-(What was different?

Squares and Cubes

Find m such that:

$$
m^{2} \equiv 8 \quad(\bmod 17) \quad \& \quad m^{2} \equiv 25 \quad(\bmod 37)
$$

The message m is <17 and <37. So $m^{2}<17 \times 17$. So $m^{2}=m^{2}(\bmod 17 \times 37)$ (no reduce).

Squares and Cubes

Find m such that:

$$
m^{2} \equiv 8 \quad(\bmod 17) \quad \& \quad m^{2} \equiv 25 \quad(\bmod 37)
$$

The message m is <17 and <37. So $m^{2}<17 \times 17$. So $m^{2}=m^{2}(\bmod 17 \times 37)$ (no reduce).

Find m such that:

$$
m^{3} \equiv 12 \quad(\bmod 17) \quad \& \quad m^{3} \equiv 16 \quad(\bmod 37)
$$

Squares and Cubes

Find m such that:

$$
m^{2} \equiv 8 \quad(\bmod 17) \quad \& \quad m^{2} \equiv 25 \quad(\bmod 37)
$$

The message m is <17 and <37. So $m^{2}<17 \times 17$. So $m^{2}=m^{2}(\bmod 17 \times 37)$ (no reduce).

Find m such that:

$$
m^{3} \equiv 12 \quad(\bmod 17) \quad \& \quad m^{3} \equiv 16 \quad(\bmod 37)
$$

The message m is <17 and <37, so $m^{3}<17^{3}=4913$. So $m^{3}(\bmod 17 \times 37)$ CAN reduce. So DO NOT get that

$$
m^{3} \quad(\bmod 17 \times 37)=m^{3}
$$

Squares and Cubes

Find m such that:

$$
m^{2} \equiv 8 \quad(\bmod 17) \quad \& \quad m^{2} \equiv 25 \quad(\bmod 37)
$$

The message m is <17 and <37. So $m^{2}<17 \times 17$. So $m^{2}=m^{2}(\bmod 17 \times 37)$ (no reduce).

Find m such that:

$$
m^{3} \equiv 12 \quad(\bmod 17) \quad \& \quad m^{3} \equiv 16 \quad(\bmod 37)
$$

The message m is <17 and <37, so $m^{3}<17^{3}=4913$. So $m^{3}(\bmod 17 \times 37)$ CAN reduce. So DO NOT get that

$$
m^{3} \quad(\bmod 17 \times 37)=m^{3}
$$

We return to this point in a few slides.

Back to our Example

$$
\begin{aligned}
m^{3} & \equiv 359(\bmod 377) \\
m^{3} & \equiv 247(\bmod 391)
\end{aligned}
$$

Back to our Example

$$
\begin{aligned}
& m^{3} \equiv 359(\bmod 377) \\
& m^{3} \equiv 247(\bmod 391) \\
& m^{3}= \\
& 359 \times 391 \times\left(391^{-1}(\bmod 377)\right)+247 \times 377 \times\left(377^{-1}(\bmod 391)\right.
\end{aligned}
$$

Back to our Example

$$
\begin{aligned}
& m^{3} \equiv 359(\bmod 377) \\
& m^{3} \equiv 247(\bmod 391) \\
& m^{3}= \\
& 359 \times 391 \times\left(391^{-1}(\bmod 377)\right)+247 \times 377 \times\left(377^{-1}(\bmod 391)\right. \\
& 391^{-1}(\bmod 377)=27
\end{aligned}
$$

Back to our Example

$$
\begin{aligned}
& m^{3} \equiv 359(\bmod 377) \\
& m^{3} \equiv 247(\bmod 391) \\
& m^{3}= \\
& 359 \times 391 \times\left(391^{-1}(\bmod 377)\right)+247 \times 377 \times\left(377^{-1}(\bmod 391)\right. \\
& 391^{-1}(\bmod 377)=27 \\
& 377^{-1}(\bmod 391)=363
\end{aligned}
$$

Back to our Example

$$
\begin{aligned}
& m^{3} \equiv 359(\bmod 377) \\
& m^{3} \equiv 247(\bmod 391) \\
& m^{3}= \\
& 359 \times 391 \times\left(391^{-1}(\bmod 377)\right)+247 \times 377 \times\left(377^{-1}(\bmod 391)\right. \\
& 391^{-1}(\bmod 377)=27 \\
& 377^{-1}(\bmod 391)=363 \\
& m^{3}=359 \times 391 \times 27+247 \times 377 \times 363 \equiv 3375(\bmod 377 \times 391)
\end{aligned}
$$

Back to our Example

$$
\begin{aligned}
& m^{3} \equiv 359(\bmod 377) \\
& m^{3} \equiv 247(\bmod 391) \\
& m^{3}= \\
& 359 \times 391 \times\left(391^{-1}(\bmod 377)\right)+247 \times 377 \times\left(377^{-1}(\bmod 391)\right. \\
& 391^{-1}(\bmod 377)=27 \\
& 377^{-1}(\bmod 391)=363 \\
& m^{3}=359 \times 391 \times 27+247 \times 377 \times 363 \equiv 3375(\bmod 377 \times 391) \\
& \text { Does } 3375 \text { have an INTEGER cube root? }
\end{aligned}
$$

Back to our Example

$$
\begin{aligned}
& m^{3} \equiv 359(\bmod 377) \\
& m^{3} \equiv 247(\bmod 391) \\
& m^{3}= \\
& 359 \times 391 \times\left(391^{-1}(\bmod 377)\right)+247 \times 377 \times\left(377^{-1}(\bmod 391)\right. \\
& 391^{-1}(\bmod 377)=27 \\
& 377^{-1}(\bmod 391)=363 \\
& m^{3}=359 \times 391 \times 27+247 \times 377 \times 363 \equiv 3375(\bmod 377 \times 391) \\
& \text { Does } 3375 \text { have an INTEGER cube root? YES: } 15
\end{aligned}
$$

Back to our Example

$$
\begin{aligned}
& m^{3} \equiv 359(\bmod 377) \\
& m^{3} \equiv 247(\bmod 391) \\
& m^{3}= \\
& 359 \times 391 \times\left(391^{-1}(\bmod 377)\right)+247 \times 377 \times\left(377^{-1}(\bmod 391)\right. \\
& 391^{-1}(\bmod 377)=27 . \\
& 377^{-1}(\bmod 391)=363 . \\
& m^{3}=359 \times 391 \times 27+247 \times 377 \times 363 \equiv 3375(\bmod 377 \times 391) . \\
& \text { Does } 3375 \text { have an INTEGER cube root? YES: } 15 . \text { Can verify } \\
& m=15:
\end{aligned}
$$

Back to our Example

$$
\begin{aligned}
& m^{3} \equiv 359(\bmod 377) \\
& m^{3} \equiv 247(\bmod 391) \\
& m^{3}= \\
& 359 \times 391 \times\left(391^{-1}(\bmod 377)\right)+247 \times 377 \times\left(377^{-1}(\bmod 391)\right. \\
& 391^{-1}(\bmod 377)=27 \\
& 377^{-1}(\bmod 391)=363 . \\
& m^{3}=359 \times 391 \times 27+247 \times 377 \times 363 \equiv 3375(\bmod 377 \times 391) . \\
& \text { Does } 3375 \text { have an INTEGER cube root? YES: } 15 . \text { Can verify } \\
& m=15: \\
& 15^{3} \equiv 359(\bmod 377)
\end{aligned}
$$

Back to our Example

$$
\begin{aligned}
& m^{3} \equiv 359(\bmod 377) \\
& m^{3} \equiv 247(\bmod 391) \\
& m^{3}= \\
& 359 \times 391 \times\left(391^{-1}(\bmod 377)\right)+247 \times 377 \times\left(377^{-1}(\bmod 391)\right. \\
& 391^{-1}(\bmod 377)=27 \\
& 377^{-1}(\bmod 391)=363 . \\
& m^{3}=359 \times 391 \times 27+247 \times 377 \times 363 \equiv 3375(\bmod 377 \times 391) \\
& \text { Does } 3375 \text { have an INTEGER cube root? YES: } 15 . \text { Can verify } \\
& m=15: \\
& 15^{3} \equiv 359(\bmod 377) \\
& 15^{3} \equiv 247(\bmod 391)
\end{aligned}
$$

Chinese Remainder Theorem: N_{1}, N_{2} Case

Chinese Remainder Theorem: N_{1}, N_{2} Case

1. Input a, b, N_{1}, N_{2}, with N_{1}, N_{2}, rel prime. Want

$$
\begin{aligned}
& 0 \leq x<N_{1} N_{2}: \\
& x \equiv a\left(\bmod N_{1}\right) \\
& x \equiv b\left(\bmod N_{2}\right)
\end{aligned}
$$

Chinese Remainder Theorem: N_{1}, N_{2} Case

1. Input a, b, N_{1}, N_{2}, with N_{1}, N_{2}, rel prime. Want

$$
\begin{aligned}
& 0 \leq x<N_{1} N_{2}: \\
& x \equiv a\left(\bmod N_{1}\right) \\
& x \equiv b\left(\bmod N_{2}\right)
\end{aligned}
$$

2. Find the inverse of $N_{1} \bmod N_{2}$ and denote this N_{1}^{-1}.

Chinese Remainder Theorem: N_{1}, N_{2} Case

1. Input a, b, N_{1}, N_{2}, with N_{1}, N_{2}, rel prime. Want

$$
\begin{aligned}
& 0 \leq x<N_{1} N_{2}: \\
& x \equiv a\left(\bmod N_{1}\right) \\
& x \equiv b\left(\bmod N_{2}\right)
\end{aligned}
$$

2. Find the inverse of $N_{1} \bmod N_{2}$ and denote this N_{1}^{-1}.
3. Find the inverse of $N_{2} \bmod N_{1}$ and denote this N_{2}^{-1}.

Chinese Remainder Theorem: N_{1}, N_{2} Case

1. Input a, b, N_{1}, N_{2}, with N_{1}, N_{2}, rel prime. Want

$$
\begin{aligned}
& 0 \leq x<N_{1} N_{2}: \\
& x \equiv a\left(\bmod N_{1}\right) \\
& x \equiv b\left(\bmod N_{2}\right)
\end{aligned}
$$

2. Find the inverse of $N_{1} \bmod N_{2}$ and denote this N_{1}^{-1}.
3. Find the inverse of $N_{2} \bmod N_{1}$ and denote this N_{2}^{-1}.
4. $y=b N_{1}^{-1} N_{1}+a N_{2}^{-1} N_{2}$
$\operatorname{Mod} N_{1}: 1$ st term is 0,2 nd term is a. So $y \equiv a\left(\bmod N_{1}\right)$.
$\operatorname{Mod} N_{2}: 2$ nd term is 0,1 st term is b. So $y \equiv b\left(\bmod N_{2}\right)$.

Chinese Remainder Theorem: N_{1}, N_{2} Case

1. Input a, b, N_{1}, N_{2}, with N_{1}, N_{2}, rel prime. Want

$$
\begin{aligned}
& 0 \leq x<N_{1} N_{2}: \\
& x \equiv a\left(\bmod N_{1}\right) \\
& x \equiv b\left(\bmod N_{2}\right)
\end{aligned}
$$

2. Find the inverse of $N_{1} \bmod N_{2}$ and denote this N_{1}^{-1}.
3. Find the inverse of $N_{2} \bmod N_{1}$ and denote this N_{2}^{-1}.
4. $y=b N_{1}^{-1} N_{1}+a N_{2}^{-1} N_{2}$
$\operatorname{Mod} N_{1}: 1$ st term is $0,2 n d$ term is a. So $y \equiv a\left(\bmod N_{1}\right)$.
$\operatorname{Mod} N_{2}: 2$ nd term is 0,1 st term is b. So $y \equiv b\left(\bmod N_{2}\right)$.
5. $x \equiv y\left(\bmod N_{1} N_{2}\right)$. (Convention that $\left.0 \leq x<N_{1} N_{2}\right)$

The e Theorem, N_{1}, N_{2} case

Theorem: Assume N_{1}, N_{2} are rel prime, $e, m \in \mathbb{N}$. Let $0 \leq x<N_{1} N_{2}$ be the number from CRT such that $x \equiv m^{e}\left(\bmod N_{1}\right)$
$x \equiv m^{e}\left(\bmod N_{2}\right)$
Then $x \equiv m^{e}\left(\bmod N_{1} N_{2}\right)$. IF $m^{e}<N_{1} N_{2}$ then $x=m^{e}$.

The e Theorem, N_{1}, N_{2} case

Theorem: Assume N_{1}, N_{2} are rel prime, $e, m \in \mathbb{N}$. Let
$0 \leq x<N_{1} N_{2}$ be the number from CRT such that
$x \equiv m^{e}\left(\bmod N_{1}\right)$
$x \equiv m^{e}\left(\bmod N_{2}\right)$
Then $x \equiv m^{e}\left(\bmod N_{1} N_{2}\right)$. IF $m^{e}<N_{1} N_{2}$ then $x=m^{e}$.
Proof: There exists k_{1}, k_{2} such that
$x=m^{e}+k_{1} N_{1} \quad k_{1} \in \mathbb{Z}$, (Could be negative)
$x=m^{e}+k_{2} N_{2} \quad k_{2} \in \mathbb{Z}$, (Could be negative)

The e Theorem, N_{1}, N_{2} case

Theorem: Assume N_{1}, N_{2} are rel prime, $e, m \in \mathbb{N}$. Let
$0 \leq x<N_{1} N_{2}$ be the number from CRT such that
$x \equiv m^{e}\left(\bmod N_{1}\right)$
$x \equiv m^{e}\left(\bmod N_{2}\right)$
Then $x \equiv m^{e}\left(\bmod N_{1} N_{2}\right)$. IF $m^{e}<N_{1} N_{2}$ then $x=m^{e}$.
Proof: There exists k_{1}, k_{2} such that
$x=m^{e}+k_{1} N_{1} \quad k_{1} \in \mathbb{Z}$, (Could be negative)
$x=m^{e}+k_{2} N_{2} \quad k_{2} \in \mathbb{Z}$, (Could be negative)
$k_{1} N_{1}=k_{2} N_{2}$. Since N_{1}, N_{2} rel prime, N_{1} divides k_{2}, so $k_{2}=k N_{1}$.

The e Theorem, N_{1}, N_{2} case

Theorem: Assume N_{1}, N_{2} are rel prime, $e, m \in \mathbb{N}$. Let
$0 \leq x<N_{1} N_{2}$ be the number from CRT such that
$x \equiv m^{e}\left(\bmod N_{1}\right)$
$x \equiv m^{e}\left(\bmod N_{2}\right)$
Then $x \equiv m^{e}\left(\bmod N_{1} N_{2}\right)$. IF $m^{e}<N_{1} N_{2}$ then $x=m^{e}$.
Proof: There exists k_{1}, k_{2} such that
$x=m^{e}+k_{1} N_{1} \quad k_{1} \in \mathbb{Z}$, (Could be negative)
$x=m^{e}+k_{2} N_{2} \quad k_{2} \in \mathbb{Z}$, (Could be negative)
$k_{1} N_{1}=k_{2} N_{2}$. Since N_{1}, N_{2} rel prime, N_{1} divides k_{2}, so $k_{2}=k N_{1}$.
$x=m^{e}+k N_{1} N_{2}$. Hence $x \equiv m^{e}\left(\bmod N_{1} N_{2}\right)$.
If $m^{e}<N_{1} N_{2}$ then since $0 \leq x<N_{1} N_{2} \& x \equiv m^{e}, x=m^{e}$.

Using CRT to find $m: N_{1}, N_{2}$ Case

Theorem: Assume N_{1}, N_{2} are rel prime, $e, m \in \mathbb{N}$, $e=2$, and $m<N_{1}, N_{2}$. Assume you are given, x_{1}, x_{2} such that $m^{2} \equiv x_{1}\left(\bmod N_{1}\right)$ $m^{2} \equiv x_{2}\left(\bmod N_{2}\right)$.
(you are NOT given m). Then you can find m.

Using CRT to find $m: N_{1}, N_{2}$ Case

Theorem: Assume N_{1}, N_{2} are rel prime, $e, m \in \mathbb{N}, e=2$, and $m<N_{1}, N_{2}$. Assume you are given, x_{1}, x_{2} such that $m^{2} \equiv x_{1}\left(\bmod N_{1}\right)$
$m^{2} \equiv x_{2}\left(\bmod N_{2}\right)$.
(you are NOT given m). Then you can find m.
Proof: Use CRT to find x such that

$$
\begin{array}{ll}
x \equiv x_{1} & \left(\bmod N_{1}\right) \\
x \equiv x_{2} & \left(\bmod N_{2}\right)
\end{array}
$$

and $0 \leq x<N_{1} N_{2}$.
Since $m<N_{1}, N_{2}, m^{2}<N_{1} N_{2}$.
Hence x is a square root in \mathbb{N}. Take the square root to find m.
End of Proof
Note In $e=2, m<N_{1} N_{2}$ case can crack RSA without factoring!

Generalize this Attack

We cracked RSA if $e=2$ and $M<N_{1} N_{2}$.

Generalize this Attack

We cracked RSA if $e=2$ and $M<N_{1} N_{2}$.
We will generalize:

Generalize this Attack

We cracked RSA if $e=2$ and $M<N_{1} N_{2}$.
We will generalize:

1. We present general Chinese Remainder Remainder.

Generalize this Attack

We cracked RSA if $e=2$ and $M<N_{1} N_{2}$.
We will generalize:

1. We present general Chinese Remainder Remainder.
2. We present general e-theorem.

Generalize this Attack

We cracked RSA if $e=2$ and $M<N_{1} N_{2}$.
We will generalize:

1. We present general Chinese Remainder Remainder.
2. We present general e-theorem.
3. We present full low-e attack.

The Chinese Remainder Theorem: N_{1}, \ldots, N_{L} Case

Theorem: If N_{1}, \ldots, N_{L} are rel prime, x_{1}, \ldots, x_{L} are anything, then there exists x with $0 \leq x<N_{1} \cdots N_{L}$ such that
$x \equiv x_{1}\left(\bmod N_{1}\right)$
$x \equiv x_{2}\left(\bmod N_{2}\right)$
$x \equiv x_{L}\left(\bmod N_{L}\right)$
Proof: Omitted.
Notation: CRT is Chinese Remainder Theorem.

The e Theorem, N_{1}, \ldots, N_{L} Case

Theorem: Assume N_{1}, \ldots, N_{L} are rel prime, $e, m \in \mathbb{N}$.

$$
\begin{array}{cc}
x \equiv m^{e} & \left(\bmod N_{1}\right) \\
\vdots & \vdots \\
x \equiv m^{e} & \left(\bmod N_{L}\right)
\end{array}
$$

Then $x \equiv m^{e}\left(\bmod N_{1} \cdots N_{L}\right)$. If $m^{e}<N_{1} \cdots N_{L}$ then $x=m^{e}$. Proof: Omitted.

Using CRT to find m

Theorem: Assume N_{1}, \ldots, N_{L} are rel prime, $e, m \in \mathbb{N}$, $e \leq L$, and for all $i, m<N_{i}$. Assume you are given, for all i, x_{i} such that $m^{e} \equiv x_{i}\left(\bmod N_{i}\right)($ you are NOT given $m)$. Then you can find m.

Using CRT to find m

Theorem: Assume N_{1}, \ldots, N_{L} are rel prime, $e, m \in \mathbb{N}, e \leq L$, and for all $i, m<N_{i}$. Assume you are given, for all i, x_{i} such that $m^{e} \equiv x_{i}\left(\bmod N_{i}\right)($ you are NOT given $m)$. Then you can find m. Proof: Use CRT to find x such that

$$
\begin{array}{cc}
x \equiv x_{1} & \left(\bmod N_{1}\right) \\
\vdots & \vdots \\
x \equiv x_{L} & \left(\bmod N_{L}\right)
\end{array}
$$

and $0 \leq x<N_{1} \cdots N_{L}$.
Since $m<N_{i}$ and $e \leq L, m^{e}<N_{1} \cdots N_{L}$.
Hence x is an eth power in \mathbb{N}. Take the eth root to find m.
End of Proof

Low Exponent Attack: Example

Low Exponent Attack: Example

1) $N_{a}=377, N_{b}=391, N_{c}=589$. For Alice, Bob, Carol.

Low Exponent Attack: Example

1) $N_{a}=377, N_{b}=391, N_{c}=589$. For Alice, Bob, Carol.
2) $e=3$.

Low Exponent Attack: Example

1) $N_{a}=377, N_{b}=391, N_{c}=589$. For Alice, Bob, Carol.
2) $e=3$.
3) Zelda sends m to all three. Eve will find m. Note $m<377$.
1. Zelda sends Alice 330 . So $m^{3} \equiv 330(\bmod 377)$.
2. Zelda sends Bob 34 . So $m^{3} \equiv 34(\bmod 391)$.
3. Zelda sends Carol 419. So $m^{3} \equiv 419(\bmod 589)$.

Low Exponent Attack: Example

1) $N_{a}=377, N_{b}=391, N_{c}=589$. For Alice, Bob, Carol.
2) $e=3$.
3) Zelda sends m to all three. Eve will find m. Note $m<377$.
1. Zelda sends Alice 330 . So $m^{3} \equiv 330(\bmod 377)$.
2. Zelda sends Bob 34 . So $m^{3} \equiv 34(\bmod 391)$.
3. Zelda sends Carol 419. So $m^{3} \equiv 419(\bmod 589)$.

Eve sees all of this. Eve uses CRT to find $0 \leq x<377 \times 391 \times 589$.
$x \equiv 330 \equiv m^{3}(\bmod 377)$
$x \equiv 34 \equiv m^{3}(\bmod 391)$
$x \equiv 419 \equiv m^{3}(\bmod 589)$

Low Exponent Attack: Example

1) $N_{a}=377, N_{b}=391, N_{c}=589$. For Alice, Bob, Carol.
2) $e=3$.
3) Zelda sends m to all three. Eve will find m. Note $m<377$.
1. Zelda sends Alice 330 . So $m^{3} \equiv 330(\bmod 377)$.
2. Zelda sends Bob 34 . So $m^{3} \equiv 34(\bmod 391)$.
3. Zelda sends Carol 419. So $m^{3} \equiv 419(\bmod 589)$.

Eve sees all of this. Eve uses CRT to find $0 \leq x<377 \times 391 \times 589$.
$x \equiv 330 \equiv m^{3}(\bmod 377)$
$x \equiv 34 \equiv m^{3}(\bmod 391)$
$x \equiv 419 \equiv m^{3}(\bmod 589)$
Eve finds such a number: $x=1,061,208$. (SEE NEXT SLIDE FOR HOW I GOT THAT)
By e-Theorem

$$
1,061,208 \equiv m^{3} \quad(\bmod 377 \times 391 \times 589)
$$

Since $1,061,208<377 \times 391 \times 589,1,061,208=m^{3}$.

HOW I GOT 1,061,208: Part One

We want an x such that
$x \equiv 330 \equiv m^{3}(\bmod 377)$
$x \equiv 34 \equiv m^{3}(\bmod 391)$
$x \equiv 419 \equiv m^{3}(\bmod 589)$

HOW I GOT 1,061,208: Part One

We want an x such that
$x \equiv 330 \equiv m^{3}(\bmod 377)$
$x \equiv 34 \equiv m^{3}(\bmod 391)$
$x \equiv 419 \equiv m^{3}(\bmod 589)$
We want a term that:
Mod 377 gives 330, Mod 391 gives 0, Mod 589 gives 0.

$$
330 \times 391 \times 589
$$

is indeed $0 \bmod 391$ and $0 \bmod 589$. But it's NOT $330 \bmod 377$.
So we need x such that $391 \times 589 \times x \equiv 1(\bmod 377)$.
$391 \times 589 \equiv 329(\bmod 377)$

HOW I GOT 1,061,208: Part One

We want an x such that
$x \equiv 330 \equiv m^{3}(\bmod 377)$
$x \equiv 34 \equiv m^{3}(\bmod 391)$
$x \equiv 419 \equiv m^{3}(\bmod 589)$
We want a term that:
Mod 377 gives 330, Mod 391 gives 0, Mod 589 gives 0.

$$
330 \times 391 \times 589
$$

is indeed $0 \bmod 391$ and $0 \bmod 589$. But it's NOT $330 \bmod 377$.
So we need x such that $391 \times 589 \times x \equiv 1(\bmod 377)$.
$391 \times 589 \equiv 329(\bmod 377)$
So we need the inverse of 329 mod 377 . That's 322 . So the term we need is

$$
330 \times 391 \times 589 \times 322=24471571740
$$

For the next two terms, the next two slides.

HOW I GOT 1,061,208: Part Two

We want an x such that
$x \equiv 330 \equiv m^{3}(\bmod 377)$
$x \equiv 34 \equiv m^{3}(\bmod 391)$
$x \equiv 419 \equiv m^{3}(\bmod 589)$

HOW I GOT 1,061,208: Part Two

We want an x such that
$x \equiv 330 \equiv m^{3}(\bmod 377)$
$x \equiv 34 \equiv m^{3}(\bmod 391)$
$x \equiv 419 \equiv m^{3}(\bmod 589)$
We want a term that:
Mod 391 gives 34, Mod 377 gives 0, Mod 589 gives 0.

$$
34 \times 377 \times 589
$$

is indeed $0 \bmod 377$ and $0 \bmod 589$. But it's NOT $34 \bmod 391$.

HOW I GOT 1,061,208: Part Two

We want an x such that
$x \equiv 330 \equiv m^{3}(\bmod 377)$
$x \equiv 34 \equiv m^{3}(\bmod 391)$
$x \equiv 419 \equiv m^{3}(\bmod 589)$
We want a term that:
Mod 391 gives 34, Mod 377 gives 0, Mod 589 gives 0.

$$
34 \times 377 \times 589
$$

is indeed $0 \bmod 377$ and $0 \bmod 589$. But it's NOT $34 \bmod 391$.
So we need x such that $377 \times 589 \times x \equiv 1(\bmod 391)$.
$377 \times 589 \equiv 356(\bmod 391)$
So we need the inverse of $356 \bmod 391$. That's 67 . So the term we need is

$$
34 \times 377 \times 589 \times 67=505836734
$$

HOW I GOT 1,061,208: Part Two

We want an x such that
$x \equiv 330 \equiv m^{3}(\bmod 377)$
$x \equiv 34 \equiv m^{3}(\bmod 391)$
$x \equiv 419 \equiv m^{3}(\bmod 589)$
We want a term that:
Mod 391 gives 34, Mod 377 gives 0, Mod 589 gives 0.

$$
34 \times 377 \times 589
$$

is indeed $0 \bmod 377$ and $0 \bmod 589$. But it's NOT $34 \bmod 391$.
So we need x such that $377 \times 589 \times x \equiv 1(\bmod 391)$.
$377 \times 589 \equiv 356(\bmod 391)$
So we need the inverse of $356 \bmod 391$. That's 67 . So the term we need is

$$
34 \times 377 \times 589 \times 67=505836734
$$

For the third term, the next slides.

HOW I GOT 1,061,208: Part Three

We want an x such that

$$
\begin{aligned}
& x \equiv 330 \equiv m^{3}(\bmod 377) \\
& x \equiv 34 \equiv m^{3}(\bmod 391) \\
& x \equiv 419 \equiv m^{3}(\bmod 589)
\end{aligned}
$$

HOW I GOT 1,061,208: Part Three

We want an x such that
$x \equiv 330 \equiv m^{3}(\bmod 377)$
$x \equiv 34 \equiv m^{3}(\bmod 391)$
$x \equiv 419 \equiv m^{3}(\bmod 589)$
We want a term that:
Mod 589 gives 419, Mod 377 gives 0, Mod 391 gives 0.

$$
419 \times 377 \times 391
$$

is indeed $0 \bmod 377$ and $0 \bmod 391$. But it's NOT $419 \bmod 589$.

HOW I GOT 1,061,208: Part Three

We want an x such that
$x \equiv 330 \equiv m^{3}(\bmod 377)$
$x \equiv 34 \equiv m^{3}(\bmod 391)$
$x \equiv 419 \equiv m^{3}(\bmod 589)$
We want a term that:
Mod 589 gives 419, Mod 377 gives 0, Mod 391 gives 0.

$$
419 \times 377 \times 391
$$

is indeed $0 \bmod 377$ and $0 \bmod 391$. But it's NOT $419 \bmod 589$.
So we need x such that $377 \times 391 \times x \equiv 1(\bmod 589)$.
$377 \times 391 \equiv 157(\bmod 589)$
So we need the inverse of $157 \bmod 589$. That's 574
So the term we need is

$$
419 \times 377 \times 391 \times 574=35452267942
$$

HOW I GOT 1,061,208: Part Three

We want an x such that
$x \equiv 330 \equiv m^{3}(\bmod 377)$
$x \equiv 34 \equiv m^{3}(\bmod 391)$
$x \equiv 419 \equiv m^{3}(\bmod 589)$
We want a term that:
Mod 589 gives 419, Mod 377 gives 0, Mod 391 gives 0.

$$
419 \times 377 \times 391
$$

is indeed $0 \bmod 377$ and $0 \bmod 391$. But it's NOT $419 \bmod 589$.
So we need x such that $377 \times 391 \times x \equiv 1(\bmod 589)$.
$377 \times 391 \equiv 157(\bmod 589)$
So we need the inverse of $157 \bmod 589$. That's 574
So the term we need is

$$
419 \times 377 \times 391 \times 574=35452267942
$$

On the next slide we add up the terms!

HOW I GOT 1,061,208: The Finale!

We want an x such that
$x \equiv 330 \equiv m^{3}(\bmod 377)$
$x \equiv 34 \equiv m^{3}(\bmod 391)$
$x \equiv 419 \equiv m^{3}(\bmod 589)$

HOW I GOT 1,061,208: The Finale!

We want an x such that
$x \equiv 330 \equiv m^{3}(\bmod 377)$
$x \equiv 34 \equiv m^{3}(\bmod 391)$
$x \equiv 419 \equiv m^{3}(\bmod 589)$
We have deduced that it is the following sum
$24471571740+505836734+35452267942=60429676416$

HOW I GOT 1,061,208: The Finale!

We want an x such that
$x \equiv 330 \equiv m^{3}(\bmod 377)$
$x \equiv 34 \equiv m^{3}(\bmod 391)$
$x \equiv 419 \equiv m^{3}(\bmod 589)$
We have deduced that it is the following sum

$$
24471571740+505836734+35452267942=60429676416
$$

This number works. Now we take it $\bmod 377 * 391 * 589$ to get
1, 061, 208

Low Exponent Attack: Example Continued

By e-Theorem

$$
1,061,208 \equiv m^{3} \quad(\bmod 377 \times 391 \times 589)
$$

Low Exponent Attack: Example Continued

By e-Theorem

$$
1,061,208 \equiv m^{3} \quad(\bmod 377 \times 391 \times 589)
$$

Most Important Fact Recall that $m<377$. Hence note that:

$$
\begin{aligned}
& m^{3}<377 \times 377 \times 377<377 \times 391 \times 589 \\
& m^{3} \equiv 1,061,208 \quad(\bmod 377 \times 391 \times 589)
\end{aligned}
$$

Therefore the m^{3} calculation cannot have wrap-around. Hence m can be gotten from the ordinary cube root operation. We find

$$
(1,061,208)^{1 / 3}=102
$$

So $m=102$.

Low Exponent Attack: Example Continued

By e-Theorem

$$
1,061,208 \equiv m^{3} \quad(\bmod 377 \times 391 \times 589)
$$

Most Important Fact Recall that $m<377$. Hence note that:

$$
\begin{aligned}
& m^{3}<377 \times 377 \times 377<377 \times 391 \times 589 \\
& m^{3} \equiv 1,061,208 \quad(\bmod 377 \times 391 \times 589)
\end{aligned}
$$

Therefore the m^{3} calculation cannot have wrap-around. Hence m can be gotten from the ordinary cube root operation. We find

$$
(1,061,208)^{1 / 3}=102
$$

So $m=102$.
Note Cracked RSA without factoring.

Where Did $e=3$ Come Into This?

Since $m<377$ we had:

$$
m^{3}<377 \times 377 \times 377<377 \times 391 \times 589
$$

Where Did $e=3$ Come Into This?

Since $m<377$ we had:

$$
m^{3}<377 \times 377 \times 377<377 \times 391 \times 589
$$

What if $e=4$? Then everything goes through until we get to:

$$
m^{4}<377 \times 377 \times 377 \times 377
$$

We need this to be $<377 \times 391 \times 589$.

Where Did $e=3$ Come Into This?

Since $m<377$ we had:

$$
m^{3}<377 \times 377 \times 377<377 \times 391 \times 589
$$

What if $e=4$? Then everything goes through until we get to:

$$
m^{4}<377 \times 377 \times 377 \times 377
$$

We need this to be $<377 \times 391 \times 589$.
But it's not. So we needed
$e \leq$ The number of people

Low Exponent Attack: Generalized

1) L people. Use $N_{1}<\cdots<N_{L}$. All Rel Prime.
2) $e \leq L$
3) Zelda sends m to L people. Note $m<N_{1}$.

Low Exponent Attack: Generalized

1) L people. Use $N_{1}<\cdots<N_{L}$. All Rel Prime.
2) $e \leq L$
3) Zelda sends m to L people. Note $m<N_{1}$.

Can you run the algorithm even if e is not small? Discuss

Low Exponent Attack: Generalized

1) L people. Use $N_{1}<\cdots<N_{L}$. All Rel Prime.
2) $e \leq L$
3) Zelda sends m to L people. Note $m<N_{1}$.

Can you run the algorithm even if e is not small? Discuss Yes Run it and if $m^{e}<N_{1} \cdots N_{L}$ then will still work. You will know it doesn't work if when you need to find an eth root (in \mathbb{N}) there is none (in \mathbb{N}).

BILL, STOP RECORDING LECTURE!!!!

BILL RECORD LECTURE!!!

