BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Low *e* Attacks on RSA

<ロト < 個 ト < 目 ト < 目 ト 目 の < @</p>

1. Zelda is sending messages to Alice using $N_a = 377$, e = 3.

Zelda is sending messages to Alice using N_a = 377, e = 3.
 Zelda is sending messages to Bob using N_b = 391, e = 3.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Zelda is sending messages to Alice using N_a = 377, e = 3.
 Zelda is sending messages to Bob using N_b = 391, e = 3.
 e is low. That will make the system crackable if ...

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Zelda is sending messages to Alice using N_a = 377, e = 3.
 Zelda is sending messages to Bob using N_b = 391, e = 3.
 e is low. That will make the system crackable if ...
 Zelda sends same m to all three. Note m < 377. Zelda does this:

Zelda is sending messages to Alice using N_a = 377, e = 3.
 Zelda is sending messages to Bob using N_b = 391, e = 3.
 e is low. That will make the system crackable if ...
 Zelda sends same m to all three. Note m < 377. Zelda does this:

ション ふゆ アメリア メリア しょうくしゃ

1. Zelda sends Alice 359. So $m^3 \equiv 359 \pmod{377}$.

Zelda is sending messages to Alice using N_a = 377, e = 3.
 Zelda is sending messages to Bob using N_b = 391, e = 3.
 e is low. That will make the system crackable if ...
 Zelda sends same m to all three. Note m < 377. Zelda does this:

ション ふゆ アメリア メリア しょうくしゃ

- 1. Zelda sends Alice 359. So $m^3 \equiv 359 \pmod{377}$.
- 2. Zelda sends Bob 247. So $m^3 \equiv 247 \pmod{391}$.

Zelda is sending messages to Alice using N_a = 377, e = 3.
 Zelda is sending messages to Bob using N_b = 391, e = 3.
 e is low. That will make the system crackable if ...
 Zelda sends same m to all three. Note m < 377. Zelda does this:

- 1. Zelda sends Alice 359. So $m^3 \equiv 359 \pmod{377}$.
- 2. Zelda sends Bob 247. So $m^3 \equiv 247 \pmod{391}$.

Eve can use this information to find m.

Zelda is sending messages to Alice using N_a = 377, e = 3.
 Zelda is sending messages to Bob using N_b = 391, e = 3.
 e is low. That will make the system crackable if ...
 Zelda sends same m to all three. Note m < 377. Zelda does this:

- 1. Zelda sends Alice 359. So $m^3 \equiv 359 \pmod{377}$.
- 2. Zelda sends Bob 247. So $m^3 \equiv 247 \pmod{391}$.

Eve can use this information to find m.

We will develop the math and the attack. Called a low-e attack.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Find x such that: $x \equiv 17 \pmod{31}$ $x \equiv 20 \pmod{37}$

Find x such that:

- $x \equiv 17 \pmod{31}$
- $x \equiv 20 \pmod{37}$
- a) The inverse of 31 mod 37 is 6.
- b) The inverse of 37 mod 31 is 26.

Find x such that: $x \equiv 17 \pmod{31}$ $x \equiv 20 \pmod{37}$ a) The inverse of 31 mod 37 is 6. b) The inverse of 37 mod 31 is 26.

 $x = 20 \times 6 \times 31 + 17 \times 26 \times 37 = 20,074$

ション ふゆ アメリア メリア しょうくしゃ

x (mod 31): 1st=0. 2nd= $17 \times 26 \times 26^{-1} \equiv 17$. Sum=17.

Find x such that: $x \equiv 17 \pmod{31}$ $x \equiv 20 \pmod{37}$ a) The inverse of 31 mod 37 is **6**. b) The inverse of 37 mod 31 is **26**.

 $x = 20 \times 6 \times 31 + 17 \times 26 \times 37 = 20,074$

ション ふゆ アメリア メリア しょうくしゃ

x (mod 31): 1st=0. 2nd= $17 \times 26 \times 26^{-1} \equiv 17$. Sum=17. x (mod 37): 1st= $20 \times 31^{-1} \times 31 \equiv 20$. 2nd=0. Sum=20.

Find x such that: $x \equiv 17 \pmod{31}$ $x \equiv 20 \pmod{37}$ a) The inverse of 31 mod 37 is **6**. b) The inverse of 37 mod 31 is **26**.

 $x = 20 \times 6 \times 31 + 17 \times 26 \times 37 = 20,074$

ション ふゆ アメリア メリア しょうくしゃ

x (mod 31): 1st=0. 2nd= $17 \times 26 \times 26^{-1} \equiv 17$. Sum=17. x (mod 37): 1st= $20 \times 31^{-1} \times 31 \equiv 20$. 2nd=0. Sum=20. So x = 20,074 is an answer.

Find x such that:

 $x \equiv 17 \pmod{31}$ & $x \equiv 20 \pmod{37}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Find x such that:

 $x \equiv 17 \pmod{31}$ & $x \equiv 20 \pmod{37}$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

From last slide: So x = 20,074 works. Smaller x?

Find x such that:

 $x \equiv 17 \pmod{31}$ & $x \equiv 20 \pmod{37}$

From last slide: So x = 20,074 works. Smaller x? We only care about x (mod 31) and x (mod 37).

Find x such that:

 $x \equiv 17 \pmod{31}$ & $x \equiv 20 \pmod{37}$

ション ふゆ アメリア メリア しょうくしゃ

From last slide: So x = 20,074 works. Smaller x? We only care about x (mod 31) and x (mod 37). So only care about x (mod 31 × 37)

Find x such that:

 $x \equiv 17 \pmod{31}$ & $x \equiv 20 \pmod{37}$

From last slide: So x = 20,074 works. Smaller x? We only care about $x \pmod{31}$ and $x \pmod{37}$. So only care about $x \pmod{31 \times 37}$ If x works then $x \mod 31 \times 37$ works. So just need

 $20,074 \equiv 575 \pmod{31 \times 37}$

ション ふぼう メリン メリン しょうくしゃ

Find x such that:

 $x \equiv 17 \pmod{31}$ & $x \equiv 20 \pmod{37}$

From last slide: So x = 20,074 works. Smaller x? We only care about x (mod 31) and x (mod 37). So only care about x (mod 31 × 37) If x works then x mod 31 × 37 works. So just need

 $20,074 \equiv 575 \pmod{31 \times 37}$

ション ふぼう メリン メリン しょうくしゃ

Upshot: Can take x = 575.

What if $x = m^2$ is a Square?

Find *m* such that:

$$m^2 \equiv 8 \pmod{17}$$
 & $m^2 \equiv 25 \pmod{37}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

a) The inverse of 17 mod 37 is 24.b) The inverse of 37 mod 17 is 6.

What if $x = m^2$ is a Square?

Find *m* such that:

 $m^2 \equiv 8 \pmod{17}$ & $m^2 \equiv 25 \pmod{37}$ a) The inverse of 17 mod 37 is 24. b) The inverse of 37 mod 17 is 6. $m^2 = 8 \times 37 \times 6 + 25 \times 17 \times 24 = 11976$

11976 \equiv 25 (mod 17 \times 37).

What if $x = m^2$ is a Square?

Find *m* such that:

 $m^2 \equiv 8 \pmod{17}$ & $m^2 \equiv 25 \pmod{37}$ a) The inverse of 17 mod 37 is 24. b) The inverse of 37 mod 17 is 6. $m^2 = 8 \times 37 \times 6 + 25 \times 17 \times 24 = 11976$ 11976 $\equiv 25 \pmod{17 \times 37}$.

ション ふゆ アメリア メリア しょうくしゃ

OH, $m^2 \equiv 25$. This is a square in \mathbb{N} . So m = 5.

What if $x = m^3$?

Find *m* such that:

$$m^3 \equiv 12 \pmod{17}$$
 & $m^3 \equiv 16 \pmod{37}$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

What if $x = m^3$?

Find *m* such that:

$$m^3 \equiv 12 \pmod{17}$$
 & $m^3 \equiv 16 \pmod{37}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

a) The inverse of 17 mod 37 is 24.b) The inverse of 37 mod 17 is 6.

What if
$$x = m^3$$
?

Find *m* such that:

 $m^3 \equiv 12 \pmod{17}$ & $m^3 \equiv 16 \pmod{37}$ a) The inverse of 17 mod 37 is 24. b) The inverse of 37 mod 17 is 6. $m^3 = 12 \times 37 \times 6 + 16 \times 17 \times 24 = 9192$

 $9192 \equiv 386 \pmod{17 \times 37}$.

What if
$$x = m^3$$
?

Find *m* such that:

 $m^3 \equiv 12 \pmod{17}$ & $m^3 \equiv 16 \pmod{37}$ a) The inverse of 17 mod 37 is 24. b) The inverse of 37 mod 17 is 6.

 $m^3 = 12 \times 37 \times 6 + 16 \times 17 \times 24 = 9192$

ション ふゆ アメリア メリア しょうくしゃ

9192 \equiv 386 (mod 17 \times 37). OH, $m^3 \equiv$ 386. This is NOT a cube :-(What was different?

Find *m* such that:

 $m^2 \equiv 8 \pmod{17}$ & $m^2 \equiv 25 \pmod{37}$

The message m is < 17 and < 37. So $m^2 < 17 \times 17$. So $m^2 = m^2 \pmod{17 \times 37}$ (no reduce).

Find *m* such that:

$$m^2 \equiv 8 \pmod{17}$$
 & $m^2 \equiv 25 \pmod{37}$
The message *m* is < 17 and < 37. So
 $m^2 < 17 \times 17$. So $m^2 = m^2 \pmod{17 \times 37}$ (no reduce).

Find *m* such that:

$$m^3 \equiv 12 \pmod{17}$$
 & $m^3 \equiv 16 \pmod{37}$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Find *m* such that:

 $m^2 \equiv 8 \pmod{17}$ & $m^2 \equiv 25 \pmod{37}$ The message *m* is < 17 and < 37. So $m^2 < 17 \times 17$. So $m^2 = m^2 \pmod{17 \times 37}$ (no reduce).

Find *m* such that:

 $m^3 \equiv 12 \pmod{17}$ & $m^3 \equiv 16 \pmod{37}$ The message m is < 17 and < 37, so $m^3 < 17^3 = 4913$. So $m^3 \pmod{17 \times 37}$ CAN reduce. So DO NOT get that

$$m^3 \pmod{17 \times 37} = m^3$$

Find *m* such that:

0

$$m^2 \equiv 8 \pmod{17}$$
 & $m^2 \equiv 25 \pmod{37}$
The message *m* is < 17 and < 37. So
 $m^2 < 17 \times 17$. So $m^2 = m^2 \pmod{17 \times 37}$ (no reduce).

Find *m* such that:

Т n

 $m^3 \equiv 12 \pmod{17}$ & $m^3 \equiv 16 \pmod{37}$ The message *m* is < 17 and < 37, so $m^3 < 17^3 = 4913$. So $m^3 \pmod{17 \times 37}$ CAN reduce. So DO NOT get that

$$m^3 \pmod{17 \times 37} = m^3$$

We return to this point in a few slides.

Back to our Example

$$m^3 \equiv 359 \pmod{377}$$

 $m^3 \equiv 247 \pmod{391}$

Back to our Example

$$m^3 \equiv 359 \pmod{377}$$

 $m^3 \equiv 247 \pmod{391}$
 $m^3 =$
 $359 \times 391 \times (391^{-1} \pmod{377}) + 247 \times 377 \times (377^{-1} \pmod{391})$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Back to our Example

```
\begin{array}{l} m^3\equiv 359 \pmod{377} \\ m^3\equiv 247 \pmod{391} \\ m^3= \\ 359\times 391\times (391^{-1} \pmod{377}) + 247\times 377\times (377^{-1} \pmod{391}) \\ 391^{-1} \pmod{377} = 27. \end{array}
```

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○
```
\begin{array}{l} m^3\equiv 359 \pmod{377} \\ m^3\equiv 247 \pmod{391} \\ m^3= \\ 359\times 391\times (391^{-1} \pmod{377}) + 247\times 377\times (377^{-1} \pmod{391}) \\ 391^{-1} \pmod{377} = 27. \\ 377^{-1} \pmod{391} = 363. \end{array}
```

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$$\begin{array}{l} m^3\equiv 359 \pmod{377} \\ m^3\equiv 247 \pmod{391} \\ m^3\equiv \\ 359\times 391\times (391^{-1} \pmod{377}) + 247\times 377\times (377^{-1} \pmod{391}) \\ 391^{-1} \pmod{377} = 27. \\ 377^{-1} \pmod{391} = 363. \\ m^3= 359\times 391\times 27 + 247\times 377\times 363 \equiv 3375 \pmod{377\times 391}. \end{array}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

```
\begin{array}{l} m^3\equiv 359 \pmod{377} \\ m^3\equiv 247 \pmod{391} \\ m^3= \\ 359\times 391\times (391^{-1} \pmod{377}) + 247\times 377\times (377^{-1} \pmod{391}) \\ 391^{-1} \pmod{377} = 27. \\ 377^{-1} \pmod{391} = 363. \\ m^3= 359\times 391\times 27 + 247\times 377\times 363 \equiv 3375 \pmod{377\times 391}. \\ \text{Does } 3375 \text{ have an INTEGER cube root?} \end{array}
```

ション ふゆ アメビア メロア しょうくしゃ

```
\begin{array}{l} m^3\equiv 359 \pmod{377} \\ m^3\equiv 247 \pmod{391} \\ m^3= \\ 359\times 391\times (391^{-1} \pmod{377}) + 247\times 377\times (377^{-1} \pmod{391}) \\ 391^{-1} \pmod{377} = 27. \\ 377^{-1} \pmod{391} = 363. \\ m^3= 359\times 391\times 27 + 247\times 377\times 363 \equiv 3375 \pmod{377\times 391}. \\ \text{Does } 3375 \text{ have an INTEGER cube root? YES: 15.} \end{array}
```

ション ふゆ アメビア メロア しょうくしゃ

```
\begin{array}{l} m^3\equiv 359 \pmod{377} \\ m^3\equiv 247 \pmod{391} \\ m^3= \\ 359\times 391\times (391^{-1} \pmod{377}) + 247\times 377\times (377^{-1} \pmod{391}) \\ 391^{-1} \pmod{377} = 27. \\ 377^{-1} \pmod{391} = 363. \\ m^3= 359\times 391\times 27 + 247\times 377\times 363 \equiv 3375 \pmod{377\times 391}. \\ \text{Does } 3375 \text{ have an INTEGER cube root? YES: 15. Can verify} \\ m=15: \end{array}
```

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()・

```
\begin{array}{l} m^{3} \equiv 359 \pmod{377} \\ m^{3} \equiv 247 \pmod{391} \\ m^{3} \equiv \\ 359 \times 391 \times (391^{-1} \pmod{377}) + 247 \times 377 \times (377^{-1} \pmod{391}) \\ 391^{-1} \pmod{377} = 27. \\ 377^{-1} \pmod{391} = 363. \\ m^{3} = 359 \times 391 \times 27 + 247 \times 377 \times 363 \equiv 3375 \pmod{377 \times 391}. \\ \text{Does } 3375 \text{ have an INTEGER cube root? YES: 15. Can verify} \\ m = 15: \\ 15^{3} \equiv 359 \pmod{377} \end{array}
```

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

```
m^3 \equiv 359 \pmod{377}
m^3 \equiv 247 \pmod{391}
m^3 \equiv
359 \times 391 \times (391^{-1} \pmod{377}) + 247 \times 377 \times (377^{-1} \pmod{391})
391^{-1} \pmod{377} = 27.
377^{-1} \pmod{391} = 363.
m^3 = 359 \times 391 \times 27 + 247 \times 377 \times 363 \equiv 3375 \pmod{377 \times 391}.
Does 3375 have an INTEGER cube root? YES: 15. Can verify
m = 15:
15^3 \equiv 359 \pmod{377}
15^3 \equiv 247 \pmod{391}
```

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

<ロト < 団 > < 臣 > < 臣 > 三 の < で</p>

1. Input a, b, N_1, N_2 , with N_1, N_2 , rel prime. Want $0 \le x < N_1 N_2$: $x \equiv a \pmod{N_1}$ $x \equiv b \pmod{N_2}$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

- 1. Input a, b, N_1 , N_2 , with N_1 , N_2 , rel prime. Want $0 \le x < N_1 N_2$: $x \equiv a \pmod{N_1}$ $x \equiv b \pmod{N_2}$
- 2. Find the inverse of N_1 mod N_2 and denote this N_1^{-1} .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 1. Input a, b, N_1, N_2 , with N_1, N_2 , rel prime. Want $0 \le x < N_1 N_2$: $x \equiv a \pmod{N_1}$ $x \equiv b \pmod{N_2}$
- 2. Find the inverse of N_1 mod N_2 and denote this N_1^{-1} .
- 3. Find the inverse of N_2 mod N_1 and denote this N_2^{-1} .

ション ふゆ アメリア メリア しょうくしゃ

- 1. Input a, b, N_1, N_2 , with N_1, N_2 , rel prime. Want $0 \le x < N_1 N_2$: $x \equiv a \pmod{N_1}$ $x \equiv b \pmod{N_2}$
- 2. Find the inverse of $N_1 \mod N_2$ and denote this N_1^{-1} .
- 3. Find the inverse of N_2 mod N_1 and denote this N_2^{-1} .

4.
$$y = bN_1^{-1}N_1 + aN_2^{-1}N_2$$

Mod N_1 : 1st term is 0, 2nd term is a. So $y \equiv a \pmod{N_1}$. Mod N_2 : 2nd term is 0, 1st term is b. So $y \equiv b \pmod{N_2}$.

- 1. Input a, b, N_1, N_2 , with N_1, N_2 , rel prime. Want $0 \le x < N_1 N_2$: $x \equiv a \pmod{N_1}$ $x \equiv b \pmod{N_2}$
- 2. Find the inverse of $N_1 \mod N_2$ and denote this N_1^{-1} .
- 3. Find the inverse of N_2 mod N_1 and denote this N_2^{-1} .

4.
$$y = bN_1^{-1}N_1 + aN_2^{-1}N_2$$

Mod N_1 : 1st term is 0, 2nd term is a. So $y \equiv a \pmod{N_1}$. Mod N_2 : 2nd term is 0, 1st term is b. So $y \equiv b \pmod{N_2}$.

5. $x \equiv y \pmod{N_1 N_2}$. (Convention that $0 \le x < N_1 N_2$)

Theorem: Assume N_1 , N_2 are rel prime, $e, m \in \mathbb{N}$. Let $0 \le x < N_1 N_2$ be the number from CRT such that $x \equiv m^e \pmod{N_1}$ $x \equiv m^e \pmod{N_2}$ Then $x \equiv m^e \pmod{N_1 N_2}$. IF $m^e < N_1 N_2$ then $x = m^e$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Theorem: Assume N_1, N_2 are rel prime, $e, m \in \mathbb{N}$. Let $0 \le x < N_1N_2$ be the number from CRT such that $x \equiv m^e \pmod{N_1}$ $x \equiv m^e \pmod{N_2}$ Then $x \equiv m^e \pmod{N_1N_2}$. **IF** $m^e < N_1N_2$ then $x = m^e$. **Proof:** There exists k_1, k_2 such that $x = m^e + k_1N_1$ $k_1 \in \mathbb{Z}$, (Could be negative) $x = m^e + k_2N_2$ $k_2 \in \mathbb{Z}$, (Could be negative)

- イロト 不同 ト イヨト - ヨ - シック

Theorem: Assume N_1 , N_2 are rel prime, $e, m \in \mathbb{N}$. Let $0 \le x < N_1 N_2$ be the number from CRT such that $x \equiv m^e \pmod{N_1}$ $x \equiv m^e \pmod{N_2}$ Then $x \equiv m^e \pmod{N_1 N_2}$. **IF** $m^e < N_1 N_2$ then $x = m^e$. **Proof:** There exists k_1, k_2 such that $x = m^e + k_1 N_1$ $k_1 \in \mathbb{Z}$, (Could be negative) $x = m^e + k_2 N_2$ $k_2 \in \mathbb{Z}$, (Could be negative)

 $k_1N_1 = k_2N_2$. Since N_1, N_2 rel prime, N_1 divides k_2 , so $k_2 = kN_1$.

Theorem: Assume N_1, N_2 are rel prime, $e, m \in \mathbb{N}$. Let $0 \le x < N_1 N_2$ be the number from CRT such that $x \equiv m^e \pmod{N_1}$ $x \equiv m^{e} \pmod{N_2}$ Then $x \equiv m^e \pmod{N_1 N_2}$. IF $m^e < N_1 N_2$ then $x = m^e$. **Proof:** There exists k_1, k_2 such that $x = m^e + k_1 N_1$ $k_1 \in \mathbb{Z}$, (Could be negative) $x = m^e + k_2 N_2$ $k_2 \in \mathbb{Z}$, (Could be negative) $k_1 N_1 = k_2 N_2$. Since N_1, N_2 rel prime, N_1 divides k_2 , so $k_2 = k N_1$. $x = m^e + kN_1N_2$. Hence $x \equiv m^e \pmod{N_1N_2}$. If $m^e < N_1 N_2$ then since $0 < x < N_1 N_2$ & $x \equiv m^e$, $x = m^e$.

Using CRT to find $m: N_1, N_2$ Case

Theorem: Assume N_1, N_2 are rel prime, $e, m \in \mathbb{N}$, e = 2, and $m < N_1, N_2$. Assume you are given, x_1, x_2 such that $m^2 \equiv x_1 \pmod{N_1}$ $m^2 \equiv x_2 \pmod{N_2}$. (you are NOT given m). Then you can find m.

Using CRT to find $m: N_1, N_2$ Case

Theorem: Assume N_1, N_2 are rel prime, $e, m \in \mathbb{N}$, e = 2, and $m < N_1, N_2$. Assume you are given, x_1, x_2 such that $m^2 \equiv x_1 \pmod{N_1}$ $m^2 \equiv x_2 \pmod{N_2}$. (you are NOT given m). Then you can find m. **Proof:** Use CRT to find x such that

 $\begin{array}{ll} x \equiv x_1 & \pmod{N_1} \\ x \equiv x_2 & \pmod{N_2} \end{array}$

and $0 \le x < N_1N_2$. Since $m < N_1, N_2, m^2 < N_1N_2$. Hence x is a square root in \mathbb{N} . Take the square root to find m. End of Proof

Note In e = 2, $m < N_1 N_2$ case can crack RSA without factoring!

We cracked RSA if e = 2 and $M < N_1 N_2$.

We cracked RSA if e = 2 and $M < N_1 N_2$. We will generalize:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We cracked RSA if e = 2 and $M < N_1N_2$. We will generalize:

1. We present general Chinese Remainder Remainder.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

We cracked RSA if e = 2 and $M < N_1 N_2$. We will generalize:

1. We present general Chinese Remainder Remainder.

2. We present general *e*-theorem.

We cracked RSA if e = 2 and $M < N_1 N_2$. We will generalize:

1. We present general Chinese Remainder Remainder.

- 2. We present general *e*-theorem.
- 3. We present full low-*e* attack.

```
Theorem: If N_1, \ldots, N_L are rel prime, x_1, \ldots, x_L are anything,
then there exists x with 0 \le x < N_1 \cdots N_L such that
x \equiv x_1 \pmod{N_1}
x \equiv x_2 \pmod{N_2}
\vdots
x \equiv x_L \pmod{N_L}
Proof: Omitted.
```

ション ふゆ アメリア メリア しょうくしゃ

Notation: CRT is Chinese Remainder Theorem.

The *e* Theorem, N_1, \ldots, N_L Case

Theorem: Assume N_1, \ldots, N_L are rel prime, $e, m \in \mathbb{N}$.

Then $x \equiv m^e \pmod{N_1 \cdots N_L}$. If $m^e < N_1 \cdots N_L$ then $x = m^e$. **Proof:** Omitted.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Using CRT to find m

Theorem: Assume N_1, \ldots, N_L are rel prime, $e, m \in \mathbb{N}$, $e \leq L$, and for all $i, m < N_i$. Assume you are given, for all i, x_i such that $m^e \equiv x_i \pmod{N_i}$ (you are NOT given m). Then you can find m.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Using CRT to find m

Theorem: Assume N_1, \ldots, N_L are rel prime, $e, m \in \mathbb{N}$, $e \leq L$, and for all $i, m < N_i$. Assume you are given, for all i, x_i such that $m^e \equiv x_i \pmod{N_i}$ (you are NOT given m). Then you can find m. **Proof:** Use CRT to find x such that

 $x \equiv x_1 \qquad (\mod N_1)$ $\vdots \qquad \vdots$ $x \equiv x_L \qquad (\mod N_L)$

and $0 \le x < N_1 \cdots N_L$. Since $m < N_i$ and $e \le L$, $m^e < N_1 \cdots N_L$. Hence x is an eth power in \mathbb{N} . Take the eth root to find m. End of Proof

1) $N_a = 377$, $N_b = 391$, $N_c = 589$. For Alice, Bob, Carol.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

1)
$$N_a = 377$$
, $N_b = 391$, $N_c = 589$. For Alice, Bob, Carol.
2) $e = 3$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

- 1) $N_a = 377$, $N_b = 391$, $N_c = 589$. For Alice, Bob, Carol. 2) e = 3.
- 3) Zelda sends *m* to all three. Eve will find *m*. Note m < 377.

- 1. Zelda sends Alice 330. So $m^3 \equiv 330 \pmod{377}$.
- 2. Zelda sends Bob 34. So $m^3 \equiv 34 \pmod{391}$.
- 3. Zelda sends Carol 419. So $m^3 \equiv 419 \pmod{589}$.

- 1) $N_a = 377$, $N_b = 391$, $N_c = 589$. For Alice, Bob, Carol. 2) e = 3.
- 3) Zelda sends m to all three. Eve will find m. Note m < 377.
 - 1. Zelda sends Alice 330. So $m^3 \equiv 330 \pmod{377}$.
 - 2. Zelda sends Bob 34. So $m^3 \equiv 34 \pmod{391}$.
 - 3. Zelda sends Carol 419. So $m^3 \equiv 419 \pmod{589}$.

Eve sees all of this. Eve uses CRT to find $0 \le x < 377 \times 391 \times 589$. $x \equiv 330 \equiv m^3 \pmod{377}$ $x \equiv 34 \equiv m^3 \pmod{391}$ $x \equiv 419 \equiv m^3 \pmod{589}$

- 1) $N_a = 377$, $N_b = 391$, $N_c = 589$. For Alice, Bob, Carol.
- 2) *e* = 3.
- 3) Zelda sends m to all three. Eve will find m. Note m < 377.
 - 1. Zelda sends Alice 330. So $m^3 \equiv 330 \pmod{377}$.
 - 2. Zelda sends Bob 34. So $m^3 \equiv 34 \pmod{391}$.
 - 3. Zelda sends Carol 419. So $m^3 \equiv 419 \pmod{589}$.

Eve sees all of this. Eve uses CRT to find $0 \le x < 377 \times 391 \times 589$. $x \equiv 330 \equiv m^3 \pmod{377}$ $x \equiv 34 \equiv m^3 \pmod{391}$ $x \equiv 419 \equiv m^3 \pmod{589}$ Eve finds such a number: x = 1,061,208. (SEE NEXT SLIDE FOR HOW I GOT THAT) By *e*-Theorem

 $1,061,208 \equiv m^3 \pmod{377 \times 391 \times 589}.$

Since $1,061,208 < 377 \times 391 \times 589$, $1,061,208 = m^3$.

HOW I GOT 1,061,208: Part One

We want an x such that $x \equiv 330 \equiv m^3 \pmod{377}$ $x \equiv 34 \equiv m^3 \pmod{391}$ $x \equiv 419 \equiv m^3 \pmod{589}$

HOW I GOT 1,061,208: Part One

We want an x such that $x \equiv 330 \equiv m^3 \pmod{377}$ $x \equiv 34 \equiv m^3 \pmod{391}$ $x \equiv 419 \equiv m^3 \pmod{589}$ We want a term that: Mod 377 gives 330, Mod 391 gives 0, Mod 589 gives 0.

 $330\times 391\times 589$

is indeed 0 mod 391 and 0 mod 589. But it's NOT 330 mod 377. So we need x such that $391 \times 589 \times x \equiv 1 \pmod{377}$. $391 \times 589 \equiv 329 \pmod{377}$

ション ふゆ アメリア メリア しょうくしゃ
HOW I GOT 1,061,208: Part One

```
We want an x such that

x \equiv 330 \equiv m^3 \pmod{377}

x \equiv 34 \equiv m^3 \pmod{391}

x \equiv 419 \equiv m^3 \pmod{589}

We want a term that:

Mod 377 gives 330, Mod 391 gives 0, Mod 589 gives 0.
```

```
330\times 391\times 589
```

is indeed 0 mod 391 and 0 mod 589. But it's NOT 330 mod 377. So we need x such that $391 \times 589 \times x \equiv 1 \pmod{377}$. $391 \times 589 \equiv 329 \pmod{377}$ So we need the inverse of 329 mod 377. That's 322. So the term we need is

 $330 \times 391 \times 589 \times 322 = 24471571740$

ション ふゆ アメビアメロア しょうくしゃ

For the next two terms, the next two slides.

We want an x such that $x \equiv 330 \equiv m^3 \pmod{377}$ $x \equiv 34 \equiv m^3 \pmod{391}$ $x \equiv 419 \equiv m^3 \pmod{589}$

```
We want an x such that

x \equiv 330 \equiv m^3 \pmod{377}

x \equiv 34 \equiv m^3 \pmod{391}

x \equiv 419 \equiv m^3 \pmod{589}

We want a term that:

Mod 391 gives 34, Mod 377 gives 0, Mod 589 gives 0.
```

$34\times377\times589$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

is indeed 0 mod 377 and 0 mod 589. But it's NOT 34 mod 391.

```
We want an x such that

x \equiv 330 \equiv m^3 \pmod{377}

x \equiv 34 \equiv m^3 \pmod{391}

x \equiv 419 \equiv m^3 \pmod{589}

We want a term that:

Mod 391 gives 34, Mod 377 gives 0, Mod 589 gives 0.
```

```
34\times377\times589
```

is indeed 0 mod 377 and 0 mod 589. But it's NOT 34 mod 391. So we need x such that $377 \times 589 \times x \equiv 1 \pmod{391}$. $377 \times 589 \equiv 356 \pmod{391}$ So we need the inverse of 356 mod 391. That's 67. So the term we need is

$$34 \times 377 \times 589 \times 67 = 505836734$$

ション ふぼう メリン メリン しょうくしゃ

```
We want an x such that

x \equiv 330 \equiv m^3 \pmod{377}

x \equiv 34 \equiv m^3 \pmod{391}

x \equiv 419 \equiv m^3 \pmod{589}

We want a term that:

Mod 391 gives 34, Mod 377 gives 0, Mod 589 gives 0.
```

 $34\times377\times589$

is indeed 0 mod 377 and 0 mod 589. But it's NOT 34 mod 391. So we need x such that $377 \times 589 \times x \equiv 1 \pmod{391}$. $377 \times 589 \equiv 356 \pmod{391}$ So we need the inverse of 356 mod 391. That's 67. So the term we need is

$$34 \times 377 \times 589 \times 67 = 505836734$$

ション ふぼう メリン メリン しょうくしゃ

For the third term, the next slides.

We want an x such that $x \equiv 330 \equiv m^3 \pmod{377}$ $x \equiv 34 \equiv m^3 \pmod{391}$ $x \equiv 419 \equiv m^3 \pmod{589}$

We want an x such that $x \equiv 330 \equiv m^3 \pmod{377}$ $x \equiv 34 \equiv m^3 \pmod{391}$ $x \equiv 419 \equiv m^3 \pmod{589}$ We want a term that: Mod 589 gives 419, Mod 377 gives 0, Mod 391 gives 0.

$419\times377\times391$

is indeed 0 mod 377 and 0 mod 391. But it's NOT 419 mod 589.

ション ふぼう メリン メリン しょうくしゃ

We want an x such that $x \equiv 330 \equiv m^3 \pmod{377}$ $x \equiv 34 \equiv m^3 \pmod{391}$ $x \equiv 419 \equiv m^3 \pmod{589}$ We want a term that: Mod 589 gives 419, Mod 377 gives 0, Mod 391 gives 0.

 $419\times377\times391$

is indeed 0 mod 377 and 0 mod 391. But it's NOT 419 mod 589. So we need x such that $377 \times 391 \times x \equiv 1 \pmod{589}$. $377 \times 391 \equiv 157 \pmod{589}$ So we need the inverse of 157 mod 589. That's 574 So the term we need is

 $419 \times 377 \times 391 \times 574 = 35452267942$

ション ふぼう メリン メリン しょうくしゃ

We want an x such that $x \equiv 330 \equiv m^3 \pmod{377}$ $x \equiv 34 \equiv m^3 \pmod{391}$ $x \equiv 419 \equiv m^3 \pmod{589}$ We want a term that: Mod 589 gives 419, Mod 377 gives 0, Mod 391 gives 0.

 $419\times377\times391$

is indeed 0 mod 377 and 0 mod 391. But it's NOT 419 mod 589. So we need x such that $377 \times 391 \times x \equiv 1 \pmod{589}$. $377 \times 391 \equiv 157 \pmod{589}$ So we need the inverse of 157 mod 589. That's 574 So the term we need is

 $419 \times 377 \times 391 \times 574 = 35452267942$

ション ふゆ アメリア メリア しょうくしゃ

On the next slide we add up the terms!

HOW I GOT 1,061,208: The Finale!

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

We want an x such that $x \equiv 330 \equiv m^3 \pmod{377}$ $x \equiv 34 \equiv m^3 \pmod{391}$ $x \equiv 419 \equiv m^3 \pmod{589}$

HOW I GOT 1,061,208: The Finale!

```
We want an x such that

x \equiv 330 \equiv m^3 \pmod{377}

x \equiv 34 \equiv m^3 \pmod{391}

x \equiv 419 \equiv m^3 \pmod{589}

We have deduced that it is the following sum
```

24471571740 + 505836734 + 35452267942 = 60429676416

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

HOW I GOT 1,061,208: The Finale!

We want an x such that $x \equiv 330 \equiv m^3 \pmod{377}$ $x \equiv 34 \equiv m^3 \pmod{391}$ $x \equiv 419 \equiv m^3 \pmod{589}$ We have deduced that it is the following sum

24471571740 + 505836734 + 35452267942 = 60429676416

This number works. Now we take it mod 377 * 391 * 589 to get

1,061,208

ション ふゆ アメリア メリア しょうくしゃ

Low Exponent Attack: Example Continued

By *e*-Theorem

$$1,061,208 \equiv m^3 \pmod{377 \times 391 \times 589}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Low Exponent Attack: Example Continued

By *e*-Theorem

 $1,061,208 \equiv m^3 \pmod{377 \times 391 \times 589}.$

Most Important Fact Recall that m < 377. Hence note that:

$$m^3 < 377 \times 377 \times 377 < 377 \times 391 \times 589$$

 $m^3 \equiv 1,061,208 \pmod{377 \times 391 \times 589}$

Therefore the m^3 calculation cannot have wrap-around. Hence m can be gotten from the ordinary cube root operation. We find

$$(1,061,208)^{1/3} = 102$$

So *m* = 102.

Low Exponent Attack: Example Continued

By *e*-Theorem

 $1,061,208 \equiv m^3 \pmod{377 \times 391 \times 589}.$

Most Important Fact Recall that m < 377. Hence note that:

$$m^3 < 377 \times 377 \times 377 < 377 \times 391 \times 589$$

 $m^3 \equiv 1,061,208 \pmod{377 \times 391 \times 589}$

Therefore the m^3 calculation cannot have wrap-around. Hence m can be gotten from the ordinary cube root operation. We find

$$(1,061,208)^{1/3} = 102$$

ション ふゆ アメリア メリア しょうくしゃ

So m = 102. **Note** Cracked RSA without factoring.

Where Did e = 3 Come Into This?

Since m < 377 we had:

 $m^3 < 377 \times 377 \times 377 < 377 \times 391 \times 589$

Where Did e = 3 Come Into This?

Since m < 377 we had:

$$m^3 < 377 \times 377 \times 377 < 377 \times 391 \times 589$$

What if e = 4? Then everything goes through until we get to:

 $m^4 < 377 \times 377 \times 377 \times 377$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

We need this to be $< 377 \times 391 \times 589$.

Where Did e = 3 Come Into This?

Since m < 377 we had:

$$m^3 < 377 \times 377 \times 377 < 377 \times 391 \times 589$$

What if e = 4? Then everything goes through until we get to:

 $m^4 < 377 \times 377 \times 377 \times 377$

We need this to be $<377\times391\times589.$ But it's not. So we needed

 $e \leq$ The number of people

Low Exponent Attack: Generalized

1) L people. Use $N_1 < \cdots < N_L$. All Rel Prime.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

- 2) e ≤ L
- 3) Zelda sends *m* to *L* people. Note $m < N_1$.

Low Exponent Attack: Generalized

- 1) *L* people. Use $N_1 < \cdots < N_L$. All Rel Prime. 2) e < L
- 3) Zelda sends m to L people. Note $m < N_1$.

Can you run the algorithm even if e is not small? Discuss

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Low Exponent Attack: Generalized

- 1) L people. Use $N_1 < \cdots < N_L$. All Rel Prime. 2) $e \le L$
- 3) Zelda sends *m* to *L* people. Note $m < N_1$.

Can you run the algorithm even if e is not small? **Discuss** Yes Run it and if $m^e < N_1 \cdots N_L$ then will still work. You will know it doesn't work if when you need to find an *e*th root (in \mathbb{N}) there is none (in \mathbb{N}).

BILL, STOP RECORDING LECTURE!!!!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

BILL RECORD LECTURE!!!