BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

The Same N Attack on RSA

RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes $N=p q$.
2. Alice computes $\phi(N)=\phi(p q)=(p-1)(q-1)$. Denote by R.
3. Alice picks an $e \in\left\{\frac{R}{3}, \ldots, \frac{2 R}{3}\right\}$ that is relatively prime to R. Alice finds d such that $e d \equiv 1(\bmod R)$.
4. Alice broadcasts (N, e). (Bob and Eve both see it.)
5. Bob: To send $m \in\{1, \ldots, N-1\}$, send $m^{e}(\bmod N)$.
6. If Alice gets $m^{e}(\bmod N)$ she computes

$$
\left(m^{e}\right)^{d} \equiv m^{e d} \equiv m^{e d \bmod R} \equiv m^{1 \bmod R} \equiv m \quad(\bmod N)
$$

Review of RSA Attacks

1. If same $e, e \leq L$. Low-e attack. Response Large e.
2. If same $e, m^{e}<N_{1} \cdots N_{L}$. Low-e attack. Response Pad m.
3. NY,NY problem. Leaks info. Response Rand Pad m
4. Timing Attacks. Response Rand Pad time.

Note items 1 and 2:
e same but N's Different
How about

$$
N \text { same but e's Different }
$$

Surely that can't be a problem!

Review of RSA Attacks

1. If same $e, e \leq L$. Low-e attack. Response Large e.
2. If same $e, m^{e}<N_{1} \cdots N_{L}$. Low-e attack. Response Pad m.
3. NY,NY problem. Leaks info. Response Rand Pad m
4. Timing Attacks. Response Rand Pad time.

Note items 1 and 2:
e same but N's Different
How about

$$
N \text { same but e's Different }
$$

Surely that can't be a problem!
Or can it!

Review of RSA Attacks

1. If same $e, e \leq L$. Low-e attack. Response Large e.
2. If same $e, m^{e}<N_{1} \cdots N_{L}$. Low-e attack. Response Pad m.
3. NY,NY problem. Leaks info. Response Rand Pad m
4. Timing Attacks. Response Rand Pad time.

Note items 1 and 2:
e same but N's Different

How about

$$
N \text { same but e's Different }
$$

Surely that can't be a problem!
Or can it!
Won't bother with a vote, onto the next slide.

For this Attack \equiv means $\equiv(\bmod N)$

For this Attack \equiv means $\equiv(\bmod N)$

Same N, Rel Prime e's, 2 People. Example

1. Zelda is sending messages to Alice using $(1147,341)$
2. Zelda is sending messages to Bob using $(1147,408)$
3. Note that 341 and 408 are relatively prime. Bad idea?

Same N, Rel Prime e's, 2 People. Example

1. Zelda is sending messages to Alice using $(1147,341)$
2. Zelda is sending messages to Bob using $(1147,408)$
3. Note that 341 and 408 are relatively prime. Bad idea?

Zelda sends m to both Alice and Bob. Eve sees

1. $m^{341}(\bmod 1147)$
2. $m^{408}(\bmod 1147)$

341 and 408 are Rel Prime

341,408 are relatively prime. Lets find combo that adds to 1 .

341 and 408 are Rel Prime

341, 408 are relatively prime. Lets find combo that adds to 1 .

$$
1=56 \times 408-67 \times 341
$$

Example Continued

1. Zelda \& Alice use: $(1147,341)$. Zelda \& Bob use $(1147,408)$.
2. Zelda sends m to Alice via $m^{341}(\bmod 1147)$.
3. Zelda sends m to Bob via $m^{408}(\bmod 1147)$.

Example Continued

1. Zelda \& Alice use: $(1147,341)$. Zelda \& Bob use $(1147,408)$.
2. Zelda sends m to Alice via $m^{341}(\bmod 1147)$.
3. Zelda sends m to Bob via $m^{408}(\bmod 1147)$.

Eve does the following:

- Finds 1 as a combo of 341 and 408: $1=56 \times 408-67 \times 341$
- Find inverse of $m^{341} \bmod 1147$. We call this m^{-341}.

Example Continued

1. Zelda \& Alice use: $(1147,341)$. Zelda \& Bob use $(1147,408)$.
2. Zelda sends m to Alice via $m^{341}(\bmod 1147)$.
3. Zelda sends m to Bob via $m^{408}(\bmod 1147)$.

Eve does the following:

- Finds 1 as a combo of 341 and 408: $1=56 \times 408-67 \times 341$
- Find inverse of $m^{341} \bmod 1147$. We call this m^{-341}.
- Compute mod 1147:

$$
\left(m^{408}\right)^{56} \times\left(m^{-341}\right)^{67} \equiv m^{56 \times 408-67 \times 341} \equiv m^{1} \equiv m
$$

Example Continued

1. Zelda \& Alice use: $(1147,341)$. Zelda \& Bob use $(1147,408)$.
2. Zelda sends m to Alice via $m^{341}(\bmod 1147)$.
3. Zelda sends m to Bob via $m^{408}(\bmod 1147)$.

Eve does the following:

- Finds 1 as a combo of 341 and 408: $1=56 \times 408-67 \times 341$
- Find inverse of $m^{341} \bmod 1147$. We call this m^{-341}.
- Compute mod 1147:

$$
\left(m^{408}\right)^{56} \times\left(m^{-341}\right)^{67} \equiv m^{56 \times 408-67 \times 341} \equiv m^{1} \equiv m
$$

Wow Eve found m without factoring!

Same N, Rel Prime e's, 3 People. Example

1. Zelda is sending messages to Alice using $(1147,35)$
2. Zelda is sending messages to Bob using $(1147,100)$
3. Zelda is sending messages to Carol using $(1147,126)$

Same N, Rel Prime e's, 3 People. Example

1. Zelda is sending messages to Alice using $(1147,35)$
2. Zelda is sending messages to Bob using $(1147,100)$
3. Zelda is sending messages to Carol using $(1147,126)$

If some pair was rel prime then can use prior slide technique.

Same N, Rel Prime e's, 3 People. Example

1. Zelda is sending messages to Alice using $(1147,35)$
2. Zelda is sending messages to Bob using $(1147,100)$
3. Zelda is sending messages to Carol using $(1147,126)$ If some pair was rel prime then can use prior slide technique.

$$
35=5 \times 7 \quad 100=2^{2} \times 5^{2} \quad 126=2 \times 3^{2} \times 7
$$

Same N, Rel Prime e's, 3 People. Example

1. Zelda is sending messages to Alice using $(1147,35)$
2. Zelda is sending messages to Bob using $(1147,100)$
3. Zelda is sending messages to Carol using $(1147,126)$ If some pair was rel prime then can use prior slide technique.

$$
35=5 \times 7 \quad 100=2^{2} \times 5^{2} \quad 126=2 \times 3^{2} \times 7
$$

No pair is rel prime. Must be safe, right?

Same N, Rel Prime e's, 3 People. Example

1. Zelda is sending messages to Alice using $(1147,35)$
2. Zelda is sending messages to Bob using $(1147,100)$
3. Zelda is sending messages to Carol using $(1147,126)$ If some pair was rel prime then can use prior slide technique.

$$
35=5 \times 7 \quad 100=2^{2} \times 5^{2} \quad 126=2 \times 3^{2} \times 7
$$

No pair is rel prime. Must be safe, right? Wrong.

Same N, Rel Prime e's, 3 People. Example

1. Zelda is sending messages to Alice using $(1147,35)$
2. Zelda is sending messages to Bob using $(1147,100)$
3. Zelda is sending messages to Carol using $(1147,126)$

If some pair was rel prime then can use prior slide technique.

$$
35=5 \times 7 \quad 100=2^{2} \times 5^{2} \quad 126=2 \times 3^{2} \times 7
$$

No pair is rel prime. Must be safe, right? Wrong.
Definition A set of numbers is relatively prime if no number divides all of them. (We have so far just used sets of size 2.)

Same N, Rel Prime e's, 3 People. Example

1. Zelda is sending messages to Alice using $(1147,35)$
2. Zelda is sending messages to Bob using $(1147,100)$
3. Zelda is sending messages to Carol using $(1147,126)$

If some pair was rel prime then can use prior slide technique.

$$
35=5 \times 7 \quad 100=2^{2} \times 5^{2} \quad 126=2 \times 3^{2} \times 7
$$

No pair is rel prime. Must be safe, right? Wrong.
Definition A set of numbers is relatively prime if no number divides all of them. (We have so far just used sets of size 2.)
Theorem If a, b, c are rel prime then there exists x_{1}, x_{2}, x_{3} such that $a x_{1}+b x_{2}+c x_{3}=1$.

Same N, Rel Prime e's, 3 People. Example

1. Zelda is sending messages to Alice using $(1147,35)$
2. Zelda is sending messages to Bob using $(1147,100)$
3. Zelda is sending messages to Carol using $(1147,126)$

If some pair was rel prime then can use prior slide technique.

$$
35=5 \times 7 \quad 100=2^{2} \times 5^{2} \quad 126=2 \times 3^{2} \times 7
$$

No pair is rel prime. Must be safe, right? Wrong.
Definition A set of numbers is relatively prime if no number divides all of them. (We have so far just used sets of size 2.)
Theorem If a, b, c are rel prime then there exists x_{1}, x_{2}, x_{3} such that $a x_{1}+b x_{2}+c x_{3}=1$.

$$
\text { Example } 27 \times 35-17 \times 100+6 \times 126=1
$$

Example Continued

Zelda sends m to Alice, Bob, and Carol. Eve sees

1. $m^{35}(\bmod 1147)$
2. $m^{100}(\bmod 1147)$
3. $m^{126}(\bmod 1147)$

Example Continued

Zelda sends m to Alice, Bob, and Carol. Eve sees

1. $m^{35}(\bmod 1147)$
2. $m^{100}(\bmod 1147)$
3. $m^{126}(\bmod 1147)$

Eve does the following:

- Finds 1 as combo of . . .: $27 \times 35-17 \times 100+6 \times 126=1$
- Find inverse of $m^{100} \bmod 1147$. We call this m^{-100}.

Example Continued

Zelda sends m to Alice, Bob, and Carol. Eve sees

```
1. m}\mp@subsup{m}{}{35}(\operatorname{mod}1147
2. m}\mp@subsup{m}{}{100}(\operatorname{mod}1147
3. m
```

Eve does the following:

- Finds 1 as combo of ...: $27 \times 35-17 \times 100+6 \times 126=1$
- Find inverse of $m^{100} \bmod 1147$. We call this m^{-100}.
- Compute mod 1147:

$$
\left(m^{35}\right)^{27} \times\left(m^{-100}\right)^{17} \times\left(m^{126}\right)^{6} \equiv m^{27 \times 35-17 \times 100+6 \times 126} \equiv m^{1} \equiv m
$$

Example Continued

Zelda sends m to Alice, Bob, and Carol. Eve sees

```
1. m}\mp@subsup{m}{}{35}(\operatorname{mod}1147
2. m}\mp@subsup{m}{}{100}(\operatorname{mod}1147
3. \(m^{126}(\bmod 1147)\)
```

Eve does the following:

- Finds 1 as combo of $\ldots: 27 \times 35-17 \times 100+6 \times 126=1$
- Find inverse of $m^{100} \bmod 1147$. We call this m^{-100}.
- Compute mod 1147:

$$
\left(m^{35}\right)^{27} \times\left(m^{-100}\right)^{17} \times\left(m^{126}\right)^{6} \equiv m^{27 \times 35-17 \times 100+6 \times 126} \equiv m^{1} \equiv m
$$

Wow Eve found m without factoring!

Same N, Rel Prime e's, 2 People. General

1. Zelda is sending messages to Alice using (N, e_{1}).
2. Zelda is sending messages to Bob using (N, e_{2}).
3. e_{1}, e_{2} are rel prime (Bad idea!).

Same N, Rel Prime e's, 2 People. General

1. Zelda is sending messages to Alice using (N, e_{1}).
2. Zelda is sending messages to Bob using (N, e_{2}).
3. e_{1}, e_{2} are rel prime (Bad idea!).

Zelda sends m to both Alice and Bob. Eve sees

1. $m^{e_{1}}(\bmod N)$
2. $m^{e_{2}}(\bmod N)$

Same N, Rel Prime e's, 2 People. General

1. Zelda is sending messages to Alice using (N, e_{1}).
2. Zelda is sending messages to Bob using (N, e_{2}).
3. e_{1}, e_{2} are rel prime (Bad idea!).

Zelda sends m to both Alice and Bob. Eve sees

1. $m^{e_{1}}(\bmod N)$
2. $m^{e_{2}}(\bmod N)$
e_{1}, e_{2} rel prime, so find $x_{1}, x_{2} \in \mathbb{Z}: e_{1} x_{1}+e_{2} x_{2}=1$.

Same N, Rel Prime e's, 2 People. General

1. Zelda is sending messages to Alice using (N, e_{1}).
2. Zelda is sending messages to Bob using (N, e_{2}).
3. e_{1}, e_{2} are rel prime (Bad idea!).

Zelda sends m to both Alice and Bob. Eve sees

1. $m^{e_{1}}(\bmod N)$
2. $m^{e_{2}}(\bmod N)$
e_{1}, e_{2} rel prime, so find $x_{1}, x_{2} \in \mathbb{Z}: e_{1} x_{1}+e_{2} x_{2}=1$.

$$
\left(m^{e_{1}}\right)^{x_{1}} \times\left(m^{e_{2}}\right)^{x_{2}} \equiv m^{e_{1} x_{1}+e_{2} x_{2}} \equiv m^{1} \equiv m \quad(\bmod N)
$$

Same N, Rel Prime e's, 2 People. General

1. Zelda is sending messages to Alice using (N, e_{1}).
2. Zelda is sending messages to Bob using (N, e_{2}).
3. e_{1}, e_{2} are rel prime (Bad idea!).

Zelda sends m to both Alice and Bob. Eve sees

1. $m^{e_{1}}(\bmod N)$
2. $m^{e_{2}}(\bmod N)$
e_{1}, e_{2} rel prime, so find $x_{1}, x_{2} \in \mathbb{Z}: e_{1} x_{1}+e_{2} x_{2}=1$.

$$
\left(m^{e_{1}}\right)^{x_{1}} \times\left(m^{e_{2}}\right)^{x_{2}} \equiv m^{e_{1} x_{1}+e_{2} x_{2}} \equiv m^{1} \equiv m \quad(\bmod N)
$$

Caveat if $x_{i}<0$ need $m^{e_{i}}$ to have inverse $\bmod N$.

Same N, Rel Prime e's, 2 People. General

1. Zelda is sending messages to Alice using (N, e_{1}).
2. Zelda is sending messages to Bob using (N, e_{2}).
3. e_{1}, e_{2} are rel prime (Bad idea!).

Zelda sends m to both Alice and Bob. Eve sees

1. $m^{e_{1}}(\bmod N)$
2. $m^{e_{2}}(\bmod N)$
e_{1}, e_{2} rel prime, so find $x_{1}, x_{2} \in \mathbb{Z}: e_{1} x_{1}+e_{2} x_{2}=1$.

$$
\left(m^{e_{1}}\right)^{x_{1}} \times\left(m^{e_{2}}\right)^{x_{2}} \equiv m^{e_{1} x_{1}+e_{2} x_{2}} \equiv m^{1} \equiv m \quad(\bmod N)
$$

Caveat if $x_{i}<0$ need $m^{e_{i}}$ to have inverse $\bmod N$.
Wow Eve found m without factoring N !

Recap of What We've Done So Far

We did

1. Concrete example with Zelda sending to 2 people.
2. Concrete example with Zelda sending to 3 people.
3. General case with Zelda sending to 2 people.

We did not do

1. General case with Zelda Sending to 3 people.
2. General case with Zelda Sending to L people.

Work on the L-case is with your neighbor.

Same N, Rel Prime e's, L People. General

1. Zelda is sending messages to A_{i} using (N, e_{i}).
2. e_{1}, \ldots, e_{L} are rel prime (Bad idea!).

Zelda sends m to A_{1}, \ldots, A_{L}. Eve sees, for $1 \leq i \leq L, m^{e_{i}}$ $(\bmod N)$.

Same N, Rel Prime e's, L People. General

1. Zelda is sending messages to A_{i} using (N, e_{i}).
2. e_{1}, \ldots, e_{L} are rel prime (Bad idea!).

Zelda sends m to A_{1}, \ldots, A_{L}. Eve sees, for $1 \leq i \leq L, m^{e_{i}}$ $(\bmod N)$.
e_{1}, \ldots, e_{L} rel prime, so $\exists x_{1}, \ldots, x_{L} \in \mathbb{Z}, \sum_{i=1}^{L} e_{i} x_{i}=1$.

Same N, Rel Prime e's, L People. General

1. Zelda is sending messages to A_{i} using (N, e_{i}).
2. e_{1}, \ldots, e_{L} are rel prime (Bad idea!).

Zelda sends m to A_{1}, \ldots, A_{L}. Eve sees, for $1 \leq i \leq L, m^{e_{i}}$ $(\bmod N)$. e_{1}, \ldots, e_{L} rel prime, so $\exists x_{1}, \ldots, x_{L} \in \mathbb{Z}, \sum_{i=1}^{L} e_{i} x_{i}=1$. Eve finds x_{1}, \ldots, x_{L} and then computes

$$
\left(m^{e_{1}}\right)^{x_{1}} \times \cdots \times\left(m^{e_{L}}\right)^{x_{L}} \equiv m^{\sum_{i=1}^{L} e_{i} x_{i}} \equiv m^{1} \equiv m \quad(\bmod N)
$$

Same N, Rel Prime e's, L People. General

1. Zelda is sending messages to A_{i} using (N, e_{i}).
2. e_{1}, \ldots, e_{L} are rel prime (Bad idea!).

Zelda sends m to A_{1}, \ldots, A_{L}. Eve sees, for $1 \leq i \leq L, m^{e_{i}}$ $(\bmod N)$.
e_{1}, \ldots, e_{L} rel prime, so $\exists x_{1}, \ldots, x_{L} \in \mathbb{Z}, \sum_{i=1}^{L} e_{i} x_{i}=1$. Eve finds x_{1}, \ldots, x_{L} and then computes

$$
\left(m^{e_{1}}\right)^{x_{1}} \times \cdots \times\left(m^{e_{L}}\right)^{x_{L}} \equiv m^{\sum_{i=1}^{L} e_{i} x_{i}} \equiv m^{1} \equiv m \quad(\bmod N)
$$

Caveat if $x_{i}<0$ need $m^{e_{i}}$ to have inverse $\bmod N$.

Same N, Rel Prime e's, L People. General

1. Zelda is sending messages to A_{i} using (N, e_{i}).
2. e_{1}, \ldots, e_{L} are rel prime (Bad idea!).

Zelda sends m to A_{1}, \ldots, A_{L}. Eve sees, for $1 \leq i \leq L, m^{e_{i}}$ $(\bmod N)$.
e_{1}, \ldots, e_{L} rel prime, so $\exists x_{1}, \ldots, x_{L} \in \mathbb{Z}, \sum_{i=1}^{L} e_{i} x_{i}=1$. Eve finds x_{1}, \ldots, x_{L} and then computes

$$
\left(m^{e_{1}}\right)^{x_{1}} \times \cdots \times\left(m^{e_{L}}\right)^{x_{L}} \equiv m^{\sum_{i=1}^{L} e_{i} x_{i}} \equiv m^{1} \equiv m \quad(\bmod N)
$$

Caveat if $x_{i}<0$ need $m^{e_{i}}$ to have inverse $\bmod N$. Big Caveat How to find x_{1}, \ldots, x_{L} ? (Next Slide)

Same N, Rel Prime e's, L People. General

1. Zelda is sending messages to A_{i} using (N, e_{i}).
2. e_{1}, \ldots, e_{L} are rel prime (Bad idea!).

Zelda sends m to A_{1}, \ldots, A_{L}. Eve sees, for $1 \leq i \leq L, m^{e_{i}}$ $(\bmod N)$.
e_{1}, \ldots, e_{L} rel prime, so $\exists x_{1}, \ldots, x_{L} \in \mathbb{Z}, \sum_{i=1}^{L} e_{i} x_{i}=1$. Eve finds x_{1}, \ldots, x_{L} and then computes

$$
\left(m^{e_{1}}\right)^{x_{1}} \times \cdots \times\left(m^{e_{L}}\right)^{x_{L}} \equiv m^{\sum_{i=1}^{L} e_{i} x_{i}} \equiv m^{1} \equiv m \quad(\bmod N)
$$

Caveat if $x_{i}<0$ need $m^{e_{i}}$ to have inverse $\bmod N$. Big Caveat How to find x_{1}, \ldots, x_{L} ? (Next Slide)
Wow Eve found m without factoring N.

Finding x_{1}, \ldots, x_{L}

Problem Given e_{1}, \ldots, e_{L} rel prime, find $x_{1}, \ldots, x_{L} \in \mathbb{Z}$ such that $\sum_{i=1}^{L} x_{i} e_{i}=1$.

Finding x_{1}, \ldots, x_{L}

Problem Given e_{1}, \ldots, e_{L} rel prime, find $x_{1}, \ldots, x_{L} \in \mathbb{Z}$ such that $\sum_{i=1}^{L} x_{i} e_{i}=1$.

Your thoughts on this?

Finding x_{1}, \ldots, x_{L}

Problem Given e_{1}, \ldots, e_{L} rel prime, find $x_{1}, \ldots, x_{L} \in \mathbb{Z}$ such that $\sum_{i=1}^{L} x_{i} e_{i}=1$.

Your thoughts on this?
What you should be thinking Bill, do an example!

An Example

Recall If a, b rel prime then exists $x_{1}, x_{2}, a x_{1}+b x_{2}=1$. Generalization ONE Let $d=\operatorname{GCD}(a, b)$.

Then exists x_{1}, x_{2} such that $a x_{1}+b x_{2}=d$.
Good News Euclidean Alg finds d, x_{1}, x_{2}.

An Example

Recall If a, b rel prime then exists $x_{1}, x_{2}, a x_{1}+b x_{2}=1$.
Generalization ONE Let $d=\operatorname{GCD}(a, b)$.
Then exists x_{1}, x_{2} such that $a x_{1}+b x_{2}=d$.
Good News Euclidean Alg finds d, x_{1}, x_{2}.
What About $\operatorname{GCD}(a, b, c)$?

An Example

Recall If a, b rel prime then exists $x_{1}, x_{2}, a x_{1}+b x_{2}=1$.
Generalization ONE Let $d=\operatorname{GCD}(a, b)$.
Then exists x_{1}, x_{2} such that $a x_{1}+b x_{2}=d$.
Good News Euclidean Alg finds d, x_{1}, x_{2}.
What About $\operatorname{GCD}(a, b, c)$?
Generalization TWO Let $d=\operatorname{GCD}(a, b, c)$.
Then exists x_{1}, x_{2}, x_{3} such that $a x_{1}+b x_{2}+c x_{3}=d$.

An Example

Recall If a, b rel prime then exists $x_{1}, x_{2}, a x_{1}+b x_{2}=1$.
Generalization ONE Let $d=\operatorname{GCD}(a, b)$.
Then exists x_{1}, x_{2} such that $a x_{1}+b x_{2}=d$.
Good News Euclidean Alg finds d, x_{1}, x_{2}.
What About $\operatorname{GCD}(a, b, c)$?
Generalization TWO Let $d=\operatorname{GCD}(a, b, c)$.
Then exists x_{1}, x_{2}, x_{3} such that $a x_{1}+b x_{2}+c x_{3}=d$.
Example We find a combination of $35,100,126$ that sums to 1 .

Want $x, y, z \in \mathbb{Z}$ Such That $35 x+100 y+126 z=1$

Want $x, y, z \in \mathbb{Z}$ Such That $35 x+100 y+126 z=1$

1. Find x_{1}, x_{2} such that $35 x_{1}+100 x_{2}=5(5=\operatorname{GCD}(35,100))$

$$
35 \times 3-100=5
$$

Want $x, y, z \in \mathbb{Z}$ Such That $35 x+100 y+126 z=1$

1. Find x_{1}, x_{2} such that $35 x_{1}+100 x_{2}=5(5=\operatorname{GCD}(35,100))$

$$
35 \times 3-100=5
$$

2. Find y_{1}, y_{2} such that $5 y_{1}+126 y_{2}=1$

$$
-25 \times 5+126=1
$$

Want $x, y, z \in \mathbb{Z}$ Such That $35 x+100 y+126 z=1$

1. Find x_{1}, x_{2} such that $35 x_{1}+100 x_{2}=5(5=\operatorname{GCD}(35,100))$

$$
35 \times 3-100=5
$$

2. Find y_{1}, y_{2} such that $5 y_{1}+126 y_{2}=1$

$$
-25 \times 5+126=1
$$

3.

$$
\begin{gathered}
-25 \times(35 \times 3-100)+126=1 \\
-75 \times 35+25 \times 100+1 \times 126=1
\end{gathered}
$$

Note This is diff sol than got earlier. There are many solutions.

Algorithm for x_{1}, x_{2}, x_{3}

This will be on a HW

Advice for Zelda When She Uses RSA

Zelda will use RSA with people A_{1}, \ldots, A_{L}.
Zelda is sending messages to A_{i} using ($N_{i}=p_{i} q_{i}, e_{i}$)

Advice for Zelda When She Uses RSA

Zelda will use RSA with people A_{1}, \ldots, A_{L}.
Zelda is sending messages to A_{i} using ($N_{i}=p_{i} q_{i}, e_{i}$)

1. Make all of the e_{i} 's different

Advice for Zelda When She Uses RSA

Zelda will use RSA with people A_{1}, \ldots, A_{L}.
Zelda is sending messages to A_{i} using ($N_{i}=p_{i} q_{i}, e_{i}$)

1. Make all of the e_{i} 's different
2. Make all of the N_{i} 's different.

Advice for Zelda When She Uses RSA

Zelda will use RSA with people A_{1}, \ldots, A_{L}.
Zelda is sending messages to A_{i} using ($N_{i}=p_{i} q_{i}, e_{i}$)

1. Make all of the e_{i} 's different
2. Make all of the N_{i} 's different.
3. Randomly pad m for NY,NY problem.

Advice for Zelda When She Uses RSA

Zelda will use RSA with people A_{1}, \ldots, A_{L}.
Zelda is sending messages to A_{i} using ($N_{i}=p_{i} q_{i}, e_{i}$)

1. Make all of the e_{i} 's different
2. Make all of the N_{i} 's different.
3. Randomly pad m for NY,NY problem.
4. Randomly pad time to ward off timing attacks.

BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!

