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Public Key Crypto: Math
Needed and

Diffie-Hellman



Private-Key Ciphers

What do the following all have in common?

1. Shift Cipher

2. Affine Cipher

3. Vig Cipher

4. General Sub

5. General 2-char sub

6. Matrix Cipher

7. One-time Pad

8. Other ciphers we studied

Alice and Bob need to meet! (Hence Private-Key.)
Can Alice and Bob establish a key without meeting?
Yes! And that is the key to public-key cryptography.
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General Philosophy

A good crypto system is such that:

1. The computational task to encrypt and decrypt is easy.

2. The computational task to crack is hard.

Caveats

1. Hard to achieve info-theoretic hardness (One-time pad).

2. Hard to achieve comp-hardness. Few problems provably hard.

3. Can use hardness assumptions (e.g. factoring is hard).
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Difficulty of Problems Based on Length of Input
Hardness of a problem is measured by time-to-solve as a function
of length of input.

Examples

1. Given a Boolean formula φ(x1, . . . , xn), is there a satisfying
assignment? Seems to require 2Ω(n) steps.

2. Polynomial vs Exp time is our notion of easy vs hard.
3. Factoring n can be done in O(

√
n) time: Discuss. Easy!

NO!!: n is of length lg n + O(1) (henceforth just lg n).√
n = 2(0.5) lg n. Exponential. Better (but still exp) algs

known.

Upshot For numeric problems length is lg n. Encryption requires:
I Alice and Bob can Enc and Dec in time ≤ (log n)O(1).
I Eve needs time ≥ cO(log n) to crack.

What Counts We count math operations as taking 1 step. This
could be an issue with enormous numbers. We will work with
mods so not a problem.
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Math Needed for Both
Diffie-Hellman and RSA



Notation

Let p be a prime.

1. Zp is the numbers {0, . . . , p − 1} with mod add and mult.

2. Z∗
p is the numbers {1, . . . , p − 1} with mod mult.

Convention By prime we will always mean a large prime, so in
particular, NOT 2. Hence we can assume p−1

2 is in N.



Exponentiation Mod p



Exponentiation Mod p

Problem Given a, n, p find an (mod p)

Even though we use p and p is always prime, our algorithm works
for any natural p.
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Exponentiation Mod p: First Attempt

Problem Given a, n, p find an (mod p)

1. x0 = a0 = 1

2. For i = 1 to n, xi = axi−1 (mod p)

3. Let x = xn

4. Output x

Is this a good idea?

I called it First Attempt, so no.
Discuss How many steps were used to compute an (mod p)?
Answer ∼ n.
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Exponentiation Mod p: Example of a Good Alg
Want 364 (mod 101). All math is mod 101.

x0 = 3
x1 = x2

0 ≡ 9. This is 32 (mod 101).
x2 = x2

1 ≡ 92 ≡ 81. This is 34 (mod 101).
x3 = x2

2 ≡ 812 ≡ 97. This is 38 (mod 101).
x4 = x2

3 ≡ 972 ≡ 16. This is 316 (mod 101).
x5 = x2

4 ≡ 162 ≡ 54. This is 332 (mod 101).
x6 = x2

5 ≡ 542 ≡ 88. This is 364 (mod 101).
So in 6 steps we got the answer!
Discuss How many steps are used to compute an (mod p)?
∼ lg n.
But the above algorithm only seems to work if n is a power of 2.
Discuss What if n is not a power of 2?
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A Review of Base 2

Say we want to do an (mod p).

Express n in binary.
7 = (111)2 = 1× 22 + 1× 21 + 1× 20. Note 2 = blg 7c
8 = (1000)2 = 1× 23 + 0× 22 + 0× 21 + 0× 20. Note 3 = blg 8c
9 = (1001)2 = 1× 23 + 0× 22 + 0× 21 + 1× 20. Note 3 = blg 9c
Upshot If write n as a sum of powers of 2 with 0,1 coefficients
then n is of the form

n = nL2L + · · ·+ n121 + n020 =
L∑

i=0

ni2
i

Where L = blg(n)c and ni ∈ {0, 1}.
Note that L is one less than the number of bits needed for n.
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Repeated Squaring Algorithm
All math is mod p.

1. Input (a, n, p).

2. Convert n to base 2: n =
∑L

i=0 ni2
i . (L is blg(n)c)

3. x0 = a.

4. For i = 1 to L, xi = x2
i−1

5. (Now have an020
, . . . , anL2L) Answer is an020 × · · · × anL2L

Number of operations:
Number of MULTS in step 4: ≤ blg(n)c ≤ lg(n)
Number of MULTS in step 5: ≤ L = blg(n)c ≤ lg(n)
Total number of MULTS ≤ 2 lg(n).
More refined: lg(n) + (number of 1’s in binary rep of n) − 1
Example on next page
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Example of Exponentiation: 17265 (mod 101)

265 = 28 + 23 + 20 = (100001001)2

1720 ≡ 17 (0 steps)
1721 ≡ 172 ≡ 87 (1 step)
1722 ≡ 872 ≡ 95 (1 step)
1723 ≡ 952 ≡ 36 (1 step)
1724 ≡ 362 ≡ 84 (1 step)
1725 ≡ 842 ≡ 87 (1 step)
1726 ≡ 872 ≡ 95 (1 step)
1727 ≡ 952 ≡ 36 (1 step)
1728 ≡ 362 ≡ 84 (1 step)
This took 8 ∼ lg(265) multiplications so far.
The next step takes only two multiplications:

17265 ≡ 1728 × 1723 × 1720 ≡ 84× 36× 17 ≡ 100

Point: Step 2 took < lg(265) steps since base-2 rep had few 1’s.
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Generators and Discrete
Logarithms



Generators (mod p)

Let’s take powers of 3 mod 7. All math is mod 7.

31 ≡ 3
32 ≡ 3× 31 ≡ 9 ≡ 2
33 ≡ 3× 32 ≡ 3× 2 ≡ 6
34 ≡ 3× 33 ≡ 3× 6 ≡ 18 ≡ 4
35 ≡ 3× 34 ≡ 3× 4 ≡ 12 ≡ 5
36 ≡ 3× 35 ≡ 3× 5 ≡ 15 ≡ 1

{31, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6} Not in order.

3 is a generator for Z∗
7.

Definition: If p is a prime and {g1, . . . , gp−1} = {1, . . . , p − 1}
then g is a generator for Z∗

p.
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Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81.

x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.



Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.



Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.

Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.



Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.

Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.



Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps.

Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.



Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.



Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.

Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.



Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.

Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.



Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps.

Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.



Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.



Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?

VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.



Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.



Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.



Discrete Log-Example: 3x ≡ 92 (mod 101)

Fact: 3 is a generator mod 101. All math is mod 101.

Find x such that 3x ≡ 92. Easy!

1. 92 ≡ 101− 9 ≡ (−1)(9) ≡ (−1)32.

2. 350 ≡ −1 (WHAT! Really?)

3. 92 ≡ 350 × 32 ≡ 352. So x = 52 works.

Generalize:

1. If g is a generator of Z∗
p then g (p−1)/2 ≡ p − 1 ≡ −1.

2. So finding x such that g x ≡ p − ga ≡ −ga is as easy as ga.

x =
p − 1

2
+ a : g

p−1
2

+a = g
p−1

2 ga ≡ −ga
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Discrete Log-Example: 3x ≡ 93 (mod 101)

Fact: 3 is a generator mod 101. All math is mod 101.
Is there a trick for g x ≡ 93 (mod 101)? Not that I know of.



Formally Discrete Log is. . .

Def The Discrete Log (DL) problem is a follows:

1. Input g , a, p. With 1 ≤ g , a ≤ p − 1. g is a gen for Z∗
p.

2. Output x such that g x ≡ a (mod p).

Recall

I A good alg would be time (log p)O(1).

I A bad alg would be time pO(1).

I If an algorithm is in time (say) p1/10 still not efficient but will
force Alice and Bob to up their game.
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The Complexity of Discrete Log?

Input is (g , a, p).

1. Naive algorithm is O(p) time.

2. Exists an O(
√
p) time, O(

√
p) space alg. Time and Space

makes it NOT practical.

3. Exists an O(
√
p) time, (log p)O(1) space alg. Space fine, but

time still a problem.

4. Not much progress on theory front since 1985.

5. Discrete Log is in QuantumP.

Good Candidate for a hard problem for Eve.
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Bill’s Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.

2. BILL Opinion: Quantum computers that can do DL fast
won’t happen in my lifetime. In your lifetime. Ever.

3. Fact: Good classical algorithms using hard number theory
exist and have been implemented. Still exponential but low
constants. Some are amenable to parallelism.

4. BILL Opinion: The biggest threat to crypto is from hard
math combined with special purpose parallel hardware.

5. Fact: If computers do DL much better (e.g., O(p1/10)) then
Alice and Bob can increase size of p and be fine. Still, Eve
has made them work harder.

6. BILL Opinion: When people really really need to up their
parameters they don’t.They say

It won’t happen to me Until it does.
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1. Quantum computing has the power to break modern crypto.
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https://en.wikipedia.org/wiki/Graphene for
information on graphene which seems to always be 5 years
away from applications.

So Kunal and Bill agree.
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Josh’s Opinion on DL. Also Applies to Factoring

1. PRO A lot of corporations and governments are putting a lot
of money into Quantum, so (unlike other alt-computing ideas)
this one really has a shot.

2. CON The error-correction problem still seems hard.

3. CONCLUSION The question When will quantum
computers be able to really do DL fast should be asked to
physicists, not to CMSC/ENEE/MATH TAs.

Bill Since lots of money is being put into it, if it does not work
they won’t have the excuse that other technologies have of not
having been tried.
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Sajjad Opinion on DL. Also Applies to Factoring

1. There has been huge progress in the last 10 years in
error-correction.

2. There are now real problems (sampling) that can be done by a
Quantum Computer much faster than a Classical Computer.
Yeah!

3. The sampling problem is not related to problems in number
theory like Discrete Log. Boo!

4. Prediction in ∼ 25 years we will have real quantum
computers that can do DL and factoring quickly. This is
based on what experimentalists say (see next slide).

Bill Its very hard to predict things especially about the future.
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Expert Opinion As a Paper

See also this paper: qtime.pdf

qtime.pdf


Discrete Log-General

Definition Let p be a prime and g be a generator mod p.
The Discrete Log Problem:
Given a ∈ {1, . . . , p}, find x such that g x ≡ a (mod p). We call
this DLp,g (a).

1. If g is small then DL(ga) might be easy: DL1009,7(49) = 2
since 72 ≡ 49 (mod 1009).

2. If g is small then DL(p − ga) might be easy:
DL1009,7(1009− 49) = 506 since 750472 ≡ −72 ≡ 1009− 49
(mod 1009).

3. If g , a ∈ {p3 , . . . ,
2p
3 } then problem suspected hard.

4. Tradeoff: By restricting a we are cutting down search space
for Eve. Even so, in this case we need to since she REALLY
can recognize when DL is easy.
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Consider What We Already Have Here

I Exponentiation mod p is Easy.

I Discrete Log is thought to be Hard.

We want a crypto system where:

I Alice and Bob do Exponentiation mod p to encrypt and
decrypt.

I Eve has to do Discrete Log to crack it.

Do we have this?

No. But we’ll come close.
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Convention

For the rest of the slides on Diffie-Hellman Key Exchange there
will always be a prime p that we are considering.

ALL math done from that point on is mod p.

ALL numbers are in {1, . . . , p − 1}.
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Finding Gens; How Many Gens Are There?

Problem Given p, find g such that

I g generates Z∗
p.

I g ∈ {p3 , . . . ,
2p
3 }. (We ignore floors and ceilings for notational

convenience.)

We could test p
3 , then p

3 + 1, etc. Will we hit a generator soon?

How many elts of {1, . . . ,p− 1} are gens? Θ( p
log log p )

Hence if you just look for a gen you will find one soon.
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Finding Gens: First Attempt

Given prime p, find a gen for Z∗
p

1. Input p.

2. For g = p
3 to 2p

3 :

Compute g1, g2, . . . , gp−1 until either hit a repeat or fin-
ish. If repeats then g is NOT a generator, so goto the next
g . If finishes then output g and stop.

PRO You will find a gen fairly soon.
CON Computing g1, . . . , gp−1 is O(p log p) operations.
Bad! Recall (log p)O(1) is fast, O(p) is slow.



Finding Gens: First Attempt

Given prime p, find a gen for Z∗
p

1. Input p.

2. For g = p
3 to 2p

3 :

Compute g1, g2, . . . , gp−1 until either hit a repeat or fin-
ish. If repeats then g is NOT a generator, so goto the next
g . If finishes then output g and stop.

PRO You will find a gen fairly soon.
CON Computing g1, . . . , gp−1 is O(p log p) operations.
Bad! Recall (log p)O(1) is fast, O(p) is slow.



Finding Gens: First Attempt

Given prime p, find a gen for Z∗
p

1. Input p.

2. For g = p
3 to 2p

3 :

Compute g1, g2, . . . , gp−1 until either hit a repeat or fin-
ish. If repeats then g is NOT a generator, so goto the next
g . If finishes then output g and stop.

PRO You will find a gen fairly soon.

CON Computing g1, . . . , gp−1 is O(p log p) operations.
Bad! Recall (log p)O(1) is fast, O(p) is slow.



Finding Gens: First Attempt

Given prime p, find a gen for Z∗
p

1. Input p.

2. For g = p
3 to 2p

3 :

Compute g1, g2, . . . , gp−1 until either hit a repeat or fin-
ish. If repeats then g is NOT a generator, so goto the next
g . If finishes then output g and stop.

PRO You will find a gen fairly soon.
CON Computing g1, . . . , gp−1 is O(p log p) operations.

Bad! Recall (log p)O(1) is fast, O(p) is slow.



Finding Gens: First Attempt

Given prime p, find a gen for Z∗
p

1. Input p.

2. For g = p
3 to 2p

3 :

Compute g1, g2, . . . , gp−1 until either hit a repeat or fin-
ish. If repeats then g is NOT a generator, so goto the next
g . If finishes then output g and stop.

PRO You will find a gen fairly soon.
CON Computing g1, . . . , gp−1 is O(p log p) operations.
Bad! Recall (log p)O(1) is fast, O(p) is slow.



Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x ≡ 1.

Given prime p, find a gen for Z∗
p

1. Input p.

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?
Time Every iteration takes O(|F |(log p)) ops. |F | might be huge!
So no good. But wait for next slide. . ..
BIG CON: Factoring p − 1? Really?
Borrow Sajjad’s Quantum Computer?
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Borrow Sajjad’s Quantum Computer?



Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x ≡ 1.

Given prime p, find a gen for Z∗
p

1. Input p.

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?

Time Every iteration takes O(|F |(log p)) ops. |F | might be huge!
So no good. But wait for next slide. . ..
BIG CON: Factoring p − 1? Really?
Borrow Sajjad’s Quantum Computer?



Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x ≡ 1.

Given prime p, find a gen for Z∗
p

1. Input p.

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?
Time Every iteration takes O(|F |(log p)) ops. |F | might be huge!
So no good. But wait for next slide. . ..

BIG CON: Factoring p − 1? Really?
Borrow Sajjad’s Quantum Computer?



Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x ≡ 1.

Given prime p, find a gen for Z∗
p

1. Input p.

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?
Time Every iteration takes O(|F |(log p)) ops. |F | might be huge!
So no good. But wait for next slide. . ..
BIG CON: Factoring p − 1?

Really?
Borrow Sajjad’s Quantum Computer?



Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x ≡ 1.

Given prime p, find a gen for Z∗
p

1. Input p.

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?
Time Every iteration takes O(|F |(log p)) ops. |F | might be huge!
So no good. But wait for next slide. . ..
BIG CON: Factoring p − 1? Really?

Borrow Sajjad’s Quantum Computer?



Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x ≡ 1.

Given prime p, find a gen for Z∗
p

1. Input p.

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?
Time Every iteration takes O(|F |(log p)) ops. |F | might be huge!
So no good. But wait for next slide. . ..
BIG CON: Factoring p − 1? Really?
Borrow Sajjad’s Quantum Computer?



Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.

2. p − 1 may have many factors.

We want p − 1 to be easy to factor and have few factors.

There are three kinds of people in the world:

1. Those who make things happen.

2. Those who watch things happen.

3. Those who wonder what happened.

We will make things happen.
We will make p− 1 easy to factor.
We will make p− 1 have few factors.
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Finding Gens: Third Attempt

Idea: Pick p such that p − 1 = 2q where q is prime.

Given prime p, find a gen for Z∗
p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO Every iteration does O(log p) operations.
CON: Need both p and p−1

2 are primes.
CAVEAT We need to pick certain kinds of primes. Can do that!
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