
BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Primality Testing

RECAP

We seek a protocl where Alice and Bob do easy computations and
Eve has to do a hard one in order to crack the code.

1. Exponentiation mod p is easy.

2. Discrete Log is hard.

3. In order for Discrete Log to be used we need a prime p and a
generator g .

4. If p is a safe prime then it is easy to find a generator.

5. Goal One Primality Testing. Can easily use this to test if a
number is a prime and also if a number is a safe prime.

6. Goal Two Finding a Safe Prime: Given L we will want to
quickly generate a safe prime of bit-length L.

RECAP

We seek a protocl where Alice and Bob do easy computations and
Eve has to do a hard one in order to crack the code.

1. Exponentiation mod p is easy.

2. Discrete Log is hard.

3. In order for Discrete Log to be used we need a prime p and a
generator g .

4. If p is a safe prime then it is easy to find a generator.

5. Goal One Primality Testing. Can easily use this to test if a
number is a prime and also if a number is a safe prime.

6. Goal Two Finding a Safe Prime: Given L we will want to
quickly generate a safe prime of bit-length L.

RECAP

We seek a protocl where Alice and Bob do easy computations and
Eve has to do a hard one in order to crack the code.

1. Exponentiation mod p is easy.

2. Discrete Log is hard.

3. In order for Discrete Log to be used we need a prime p and a
generator g .

4. If p is a safe prime then it is easy to find a generator.

5. Goal One Primality Testing. Can easily use this to test if a
number is a prime and also if a number is a safe prime.

6. Goal Two Finding a Safe Prime: Given L we will want to
quickly generate a safe prime of bit-length L.

RECAP

We seek a protocl where Alice and Bob do easy computations and
Eve has to do a hard one in order to crack the code.

1. Exponentiation mod p is easy.

2. Discrete Log is hard.

3. In order for Discrete Log to be used we need a prime p and a
generator g .

4. If p is a safe prime then it is easy to find a generator.

5. Goal One Primality Testing. Can easily use this to test if a
number is a prime and also if a number is a safe prime.

6. Goal Two Finding a Safe Prime: Given L we will want to
quickly generate a safe prime of bit-length L.

RECAP

We seek a protocl where Alice and Bob do easy computations and
Eve has to do a hard one in order to crack the code.

1. Exponentiation mod p is easy.

2. Discrete Log is hard.

3. In order for Discrete Log to be used we need a prime p and a
generator g .

4. If p is a safe prime then it is easy to find a generator.

5. Goal One Primality Testing. Can easily use this to test if a
number is a prime and also if a number is a safe prime.

6. Goal Two Finding a Safe Prime: Given L we will want to
quickly generate a safe prime of bit-length L.

RECAP

We seek a protocl where Alice and Bob do easy computations and
Eve has to do a hard one in order to crack the code.

1. Exponentiation mod p is easy.

2. Discrete Log is hard.

3. In order for Discrete Log to be used we need a prime p and a
generator g .

4. If p is a safe prime then it is easy to find a generator.

5. Goal One Primality Testing. Can easily use this to test if a
number is a prime and also if a number is a safe prime.

6. Goal Two Finding a Safe Prime: Given L we will want to
quickly generate a safe prime of bit-length L.

RECAP

We seek a protocl where Alice and Bob do easy computations and
Eve has to do a hard one in order to crack the code.

1. Exponentiation mod p is easy.

2. Discrete Log is hard.

3. In order for Discrete Log to be used we need a prime p and a
generator g .

4. If p is a safe prime then it is easy to find a generator.

5. Goal One Primality Testing. Can easily use this to test if a
number is a prime and also if a number is a safe prime.

6. Goal Two Finding a Safe Prime: Given L we will want to
quickly generate a safe prime of bit-length L.

Primality Testing

Warning The next few slides will culminate in a test for primality
that may FAIL.

It is not used.

But the ideas are used in real algorithms.

Primality Testing

Warning The next few slides will culminate in a test for primality
that may FAIL.

It is not used.

But the ideas are used in real algorithms.

Primality Testing

Warning The next few slides will culminate in a test for primality
that may FAIL.

It is not used.

But the ideas are used in real algorithms.

Is This a Natural Number?

Is the following a natural number?

1002!

417!585!

Yes

Hard Proof Look at factors and stuff.

Easy Proof
The number of ways to pick 417 people out of 1002 is

1002!

417!585!
.

So 1002!
417!585! is the answer to a question that has a nat numb answer.

Yes that really is the proof.

Is This a Natural Number?

Is the following a natural number?

1002!

417!585!

Yes

Hard Proof Look at factors and stuff.

Easy Proof
The number of ways to pick 417 people out of 1002 is

1002!

417!585!
.

So 1002!
417!585! is the answer to a question that has a nat numb answer.

Yes that really is the proof.

Is This a Natural Number?

Is the following a natural number?

1002!

417!585!

Yes

Hard Proof Look at factors and stuff.

Easy Proof
The number of ways to pick 417 people out of 1002 is

1002!

417!585!
.

So 1002!
417!585! is the answer to a question that has a nat numb answer.

Yes that really is the proof.

Is This a Natural Number?

Is the following a natural number?

1002!

417!585!

Yes

Hard Proof Look at factors and stuff.

Easy Proof
The number of ways to pick 417 people out of 1002 is

1002!

417!585!
.

So 1002!
417!585! is the answer to a question that has a nat numb answer.

Yes that really is the proof.

Is This a Natural Number?

Is the following a natural number?

1002!

417!585!

Yes

Hard Proof Look at factors and stuff.

Easy Proof
The number of ways to pick 417 people out of 1002 is

1002!

417!585!
.

So 1002!
417!585! is the answer to a question that has a nat numb answer.

Yes that really is the proof.

Is This a Natural Number?

Is the following a natural number?

1002!

417!585!

Yes

Hard Proof Look at factors and stuff.

Easy Proof
The number of ways to pick 417 people out of 1002 is

1002!

417!585!
.

So 1002!
417!585! is the answer to a question that has a nat numb answer.

Yes that really is the proof.

More Generally: Yes, This is a Natural Number

Theorem NAT For all k , n ∈ N, k ≤ n, n!
k!(n−k)! ∈ N.

Proof
n!

k!(n−k)! is the number of ways to choose k objects out of n.
So it answers a question that has a nat numb answer.
So its a natural number.
End of Proof

Notation
(n
k

)
= n!

k!(n−k)! .

More Generally: Yes, This is a Natural Number

Theorem NAT For all k , n ∈ N, k ≤ n, n!
k!(n−k)! ∈ N.

Proof
n!

k!(n−k)! is the number of ways to choose k objects out of n.
So it answers a question that has a nat numb answer.
So its a natural number.
End of Proof
Notation

(n
k

)
= n!

k!(n−k)! .

The Binomial Theorem

Recall
The Binomial Theorem
For any n ∈ N,

(x + y)n =
n∑

i=0

(
n

i

)
x iyn−i .

Lemma on p!
i !(p−i)!

Lemma If a
b ∈ N, p is a prime, p divides a, but p does not divide b

then p divides a
b .

Proof Factor a and b into primes.

Let p1, . . . , pk be primes that divide either a or b or both. Let
p = p1.

a = pa11 pa22 · · · p
ak
k

b = p01p
b2
2 · · · p

bk
k

Since a
b ∈ N, we have a2 ≥ b2, . . ., ak ≥ bk .

a

b
= pa11 pa2−b2

2 · · · aak−bk
k

Since a1 ≥ 1 and all of the exponents are ≥ 0. p divides a
b .

End of Proof
Corollary If p prime, 1 ≤ i ≤ p − 1, then p!

i!(p−i)! ∈ N and is
divisible by p.

Lemma on p!
i !(p−i)!

Lemma If a
b ∈ N, p is a prime, p divides a, but p does not divide b

then p divides a
b .

Proof Factor a and b into primes.
Let p1, . . . , pk be primes that divide either a or b or both. Let
p = p1.

a = pa11 pa22 · · · p
ak
k

b = p01p
b2
2 · · · p

bk
k

Since a
b ∈ N, we have a2 ≥ b2, . . ., ak ≥ bk .

a

b
= pa11 pa2−b2

2 · · · aak−bk
k

Since a1 ≥ 1 and all of the exponents are ≥ 0. p divides a
b .

End of Proof
Corollary If p prime, 1 ≤ i ≤ p − 1, then p!

i!(p−i)! ∈ N and is
divisible by p.

Lemma on p!
i !(p−i)!

Lemma If a
b ∈ N, p is a prime, p divides a, but p does not divide b

then p divides a
b .

Proof Factor a and b into primes.
Let p1, . . . , pk be primes that divide either a or b or both. Let
p = p1.

a = pa11 pa22 · · · p
ak
k

b = p01p
b2
2 · · · p

bk
k

Since a
b ∈ N, we have a2 ≥ b2, . . ., ak ≥ bk .

a

b
= pa11 pa2−b2

2 · · · aak−bk
k

Since a1 ≥ 1 and all of the exponents are ≥ 0. p divides a
b .

End of Proof
Corollary If p prime, 1 ≤ i ≤ p − 1, then p!

i!(p−i)! ∈ N and is
divisible by p.

Lemma on p!
i !(p−i)!

Lemma If a
b ∈ N, p is a prime, p divides a, but p does not divide b

then p divides a
b .

Proof Factor a and b into primes.
Let p1, . . . , pk be primes that divide either a or b or both. Let
p = p1.

a = pa11 pa22 · · · p
ak
k

b = p01p
b2
2 · · · p

bk
k

Since a
b ∈ N, we have a2 ≥ b2, . . ., ak ≥ bk .

a

b
= pa11 pa2−b2

2 · · · aak−bk
k

Since a1 ≥ 1 and all of the exponents are ≥ 0. p divides a
b .

End of Proof
Corollary If p prime, 1 ≤ i ≤ p − 1, then p!

i!(p−i)! ∈ N and is
divisible by p.

Primality Testing

Fermat’s Little Thm
Lemma If p prime, a ∈ N then ap ≡ a (mod p).

Proof Fix prime p. By induction on a. Base Case 1p ≡ 1.
Ind Hyp ap ≡ a (mod p).

Ind Step (a + 1)p =
(p
p

)
ap +

(p
p−1

)
ap−1 + · · ·+

(p
1

)
a1 +

(p
0

)
a0.

By previous lemma
(p
1

)
≡
(p
2

)
≡ · · · ≡

(p
p−1

)
≡ 0. Hence

(a + 1)p ≡
(
p

p

)
ap +

(
p

0

)
a0 ≡ ap + 1 ≡ a + 1.

(Used ap ≡ a (mod p) which is from Ind Hyp.)
End of Proof

Primality Testing

Fermat’s Little Thm
Lemma If p prime, a ∈ N then ap ≡ a (mod p).
Proof Fix prime p. By induction on a. Base Case 1p ≡ 1.

Ind Hyp ap ≡ a (mod p).

Ind Step (a + 1)p =
(p
p

)
ap +

(p
p−1

)
ap−1 + · · ·+

(p
1

)
a1 +

(p
0

)
a0.

By previous lemma
(p
1

)
≡
(p
2

)
≡ · · · ≡

(p
p−1

)
≡ 0. Hence

(a + 1)p ≡
(
p

p

)
ap +

(
p

0

)
a0 ≡ ap + 1 ≡ a + 1.

(Used ap ≡ a (mod p) which is from Ind Hyp.)
End of Proof

Primality Testing

Fermat’s Little Thm
Lemma If p prime, a ∈ N then ap ≡ a (mod p).
Proof Fix prime p. By induction on a. Base Case 1p ≡ 1.
Ind Hyp ap ≡ a (mod p).

Ind Step (a + 1)p =
(p
p

)
ap +

(p
p−1

)
ap−1 + · · ·+

(p
1

)
a1 +

(p
0

)
a0.

By previous lemma
(p
1

)
≡
(p
2

)
≡ · · · ≡

(p
p−1

)
≡ 0. Hence

(a + 1)p ≡
(
p

p

)
ap +

(
p

0

)
a0 ≡ ap + 1 ≡ a + 1.

(Used ap ≡ a (mod p) which is from Ind Hyp.)
End of Proof

Primality Testing

Fermat’s Little Thm
Lemma If p prime, a ∈ N then ap ≡ a (mod p).
Proof Fix prime p. By induction on a. Base Case 1p ≡ 1.
Ind Hyp ap ≡ a (mod p).

Ind Step (a + 1)p =
(p
p

)
ap +

(p
p−1

)
ap−1 + · · ·+

(p
1

)
a1 +

(p
0

)
a0.

By previous lemma
(p
1

)
≡
(p
2

)
≡ · · · ≡

(p
p−1

)
≡ 0. Hence

(a + 1)p ≡
(
p

p

)
ap +

(
p

0

)
a0 ≡ ap + 1 ≡ a + 1.

(Used ap ≡ a (mod p) which is from Ind Hyp.)
End of Proof

Primality Testing

Fermat’s Little Thm
Lemma If p prime, a ∈ N then ap ≡ a (mod p).
Proof Fix prime p. By induction on a. Base Case 1p ≡ 1.
Ind Hyp ap ≡ a (mod p).

Ind Step (a + 1)p =
(p
p

)
ap +

(p
p−1

)
ap−1 + · · ·+

(p
1

)
a1 +

(p
0

)
a0.

By previous lemma
(p
1

)
≡
(p
2

)
≡ · · · ≡

(p
p−1

)
≡ 0. Hence

(a + 1)p ≡
(
p

p

)
ap +

(
p

0

)
a0 ≡ ap + 1 ≡ a + 1.

(Used ap ≡ a (mod p) which is from Ind Hyp.)
End of Proof

Primality Testing

Fermat’s Little Thm
Lemma If p prime, a ∈ N then ap ≡ a (mod p).
Proof Fix prime p. By induction on a. Base Case 1p ≡ 1.
Ind Hyp ap ≡ a (mod p).

Ind Step (a + 1)p =
(p
p

)
ap +

(p
p−1

)
ap−1 + · · ·+

(p
1

)
a1 +

(p
0

)
a0.

By previous lemma
(p
1

)
≡
(p
2

)
≡ · · · ≡

(p
p−1

)
≡ 0. Hence

(a + 1)p ≡
(
p

p

)
ap +

(
p

0

)
a0 ≡ ap + 1 ≡ a + 1.

(Used ap ≡ a (mod p) which is from Ind Hyp.)
End of Proof

A Primality Testing Algorithm

Prior Slides If p is prime and a ∈ N then ap ≡ a (mod p).

What has been observed If p is not prime then usually for most
a, ap 6≡ a (mod p).
Primality Algorithm

1. Input p. (In algorithm all arithmetic is mod p.)

2. Form rand R ⊆ {2, . . . , p − 1} of size ∼ lg p.

3. For each a ∈ R compute ap.

3.1 If ever get ap 6≡ a then p not prime(we are sure).
3.2 If for all a, ap ≡ a then PRIME (we are not sure).

Two reasons for our uncertainty:

I p is composite but we were unlucky with R.

I There are some composite p such that for all a, ap ≡ a.

A Primality Testing Algorithm

Prior Slides If p is prime and a ∈ N then ap ≡ a (mod p).
What has been observed If p is not prime then usually for most
a, ap 6≡ a (mod p).

Primality Algorithm

1. Input p. (In algorithm all arithmetic is mod p.)

2. Form rand R ⊆ {2, . . . , p − 1} of size ∼ lg p.

3. For each a ∈ R compute ap.

3.1 If ever get ap 6≡ a then p not prime(we are sure).
3.2 If for all a, ap ≡ a then PRIME (we are not sure).

Two reasons for our uncertainty:

I p is composite but we were unlucky with R.

I There are some composite p such that for all a, ap ≡ a.

A Primality Testing Algorithm

Prior Slides If p is prime and a ∈ N then ap ≡ a (mod p).
What has been observed If p is not prime then usually for most
a, ap 6≡ a (mod p).
Primality Algorithm

1. Input p. (In algorithm all arithmetic is mod p.)

2. Form rand R ⊆ {2, . . . , p − 1} of size ∼ lg p.

3. For each a ∈ R compute ap.

3.1 If ever get ap 6≡ a then p not prime(we are sure).
3.2 If for all a, ap ≡ a then PRIME (we are not sure).

Two reasons for our uncertainty:

I p is composite but we were unlucky with R.

I There are some composite p such that for all a, ap ≡ a.

A Primality Testing Algorithm

Prior Slides If p is prime and a ∈ N then ap ≡ a (mod p).
What has been observed If p is not prime then usually for most
a, ap 6≡ a (mod p).
Primality Algorithm

1. Input p. (In algorithm all arithmetic is mod p.)

2. Form rand R ⊆ {2, . . . , p − 1} of size ∼ lg p.

3. For each a ∈ R compute ap.

3.1 If ever get ap 6≡ a then p not prime(we are sure).
3.2 If for all a, ap ≡ a then PRIME (we are not sure).

Two reasons for our uncertainty:

I p is composite but we were unlucky with R.

I There are some composite p such that for all a, ap ≡ a.

A Primality Testing Algorithm

Prior Slides If p is prime and a ∈ N then ap ≡ a (mod p).
What has been observed If p is not prime then usually for most
a, ap 6≡ a (mod p).
Primality Algorithm

1. Input p. (In algorithm all arithmetic is mod p.)

2. Form rand R ⊆ {2, . . . , p − 1} of size ∼ lg p.

3. For each a ∈ R compute ap.

3.1 If ever get ap 6≡ a then p not prime(we are sure).
3.2 If for all a, ap ≡ a then PRIME (we are not sure).

Two reasons for our uncertainty:

I p is composite but we were unlucky with R.

I There are some composite p such that for all a, ap ≡ a.

A Primality Testing Algorithm

Prior Slides If p is prime and a ∈ N then ap ≡ a (mod p).
What has been observed If p is not prime then usually for most
a, ap 6≡ a (mod p).
Primality Algorithm

1. Input p. (In algorithm all arithmetic is mod p.)

2. Form rand R ⊆ {2, . . . , p − 1} of size ∼ lg p.

3. For each a ∈ R compute ap.

3.1 If ever get ap 6≡ a then p not prime(we are sure).
3.2 If for all a, ap ≡ a then PRIME (we are not sure).

Two reasons for our uncertainty:

I p is composite but we were unlucky with R.

I There are some composite p such that for all a, ap ≡ a.

A Primality Testing Algorithm

Prior Slides If p is prime and a ∈ N then ap ≡ a (mod p).
What has been observed If p is not prime then usually for most
a, ap 6≡ a (mod p).
Primality Algorithm

1. Input p. (In algorithm all arithmetic is mod p.)

2. Form rand R ⊆ {2, . . . , p − 1} of size ∼ lg p.

3. For each a ∈ R compute ap.

3.1 If ever get ap 6≡ a then p not prime(we are sure).

3.2 If for all a, ap ≡ a then PRIME (we are not sure).

Two reasons for our uncertainty:

I p is composite but we were unlucky with R.

I There are some composite p such that for all a, ap ≡ a.

A Primality Testing Algorithm

Prior Slides If p is prime and a ∈ N then ap ≡ a (mod p).
What has been observed If p is not prime then usually for most
a, ap 6≡ a (mod p).
Primality Algorithm

1. Input p. (In algorithm all arithmetic is mod p.)

2. Form rand R ⊆ {2, . . . , p − 1} of size ∼ lg p.

3. For each a ∈ R compute ap.

3.1 If ever get ap 6≡ a then p not prime(we are sure).
3.2 If for all a, ap ≡ a then PRIME (we are not sure).

Two reasons for our uncertainty:

I p is composite but we were unlucky with R.

I There are some composite p such that for all a, ap ≡ a.

A Primality Testing Algorithm

Prior Slides If p is prime and a ∈ N then ap ≡ a (mod p).
What has been observed If p is not prime then usually for most
a, ap 6≡ a (mod p).
Primality Algorithm

1. Input p. (In algorithm all arithmetic is mod p.)

2. Form rand R ⊆ {2, . . . , p − 1} of size ∼ lg p.

3. For each a ∈ R compute ap.

3.1 If ever get ap 6≡ a then p not prime(we are sure).
3.2 If for all a, ap ≡ a then PRIME (we are not sure).

Two reasons for our uncertainty:

I p is composite but we were unlucky with R.

I There are some composite p such that for all a, ap ≡ a.

A Primality Testing Algorithm

Prior Slides If p is prime and a ∈ N then ap ≡ a (mod p).
What has been observed If p is not prime then usually for most
a, ap 6≡ a (mod p).
Primality Algorithm

1. Input p. (In algorithm all arithmetic is mod p.)

2. Form rand R ⊆ {2, . . . , p − 1} of size ∼ lg p.

3. For each a ∈ R compute ap.

3.1 If ever get ap 6≡ a then p not prime(we are sure).
3.2 If for all a, ap ≡ a then PRIME (we are not sure).

Two reasons for our uncertainty:

I p is composite but we were unlucky with R.

I There are some composite p such that for all a, ap ≡ a.

Primality Testing – What is Really True

1. Exists algorithm that only has first problem, possible bad luck.

2. That algorithm has prob of failure ≤ 1
2p . Good enough!

3. Exists deterministic poly time algorithm but is much slower.

4. n is a Carmichael Number if it is composite and, for all a,
an ≡ a. These are the numbers my algorithm FAILS on. The
first few are

561, 1105, 1729, 2465, 2821, 6601, 8911.
There are an infinite number of Carmichael numbers, but they
are rare.

Primality Testing – What is Really True

1. Exists algorithm that only has first problem, possible bad luck.

2. That algorithm has prob of failure ≤ 1
2p . Good enough!

3. Exists deterministic poly time algorithm but is much slower.

4. n is a Carmichael Number if it is composite and, for all a,
an ≡ a. These are the numbers my algorithm FAILS on. The
first few are

561, 1105, 1729, 2465, 2821, 6601, 8911.
There are an infinite number of Carmichael numbers, but they
are rare.

Primality Testing – What is Really True

1. Exists algorithm that only has first problem, possible bad luck.

2. That algorithm has prob of failure ≤ 1
2p . Good enough!

3. Exists deterministic poly time algorithm but is much slower.

4. n is a Carmichael Number if it is composite and, for all a,
an ≡ a. These are the numbers my algorithm FAILS on. The
first few are

561, 1105, 1729, 2465, 2821, 6601, 8911.
There are an infinite number of Carmichael numbers, but they
are rare.

Primality Testing – What is Really True

1. Exists algorithm that only has first problem, possible bad luck.

2. That algorithm has prob of failure ≤ 1
2p . Good enough!

3. Exists deterministic poly time algorithm but is much slower.

4. n is a Carmichael Number if it is composite and, for all a,
an ≡ a. These are the numbers my algorithm FAILS on. The
first few are

561, 1105, 1729, 2465, 2821, 6601, 8911.
There are an infinite number of Carmichael numbers, but they
are rare.

Primality Testing – What is Really True

1. Exists algorithm that only has first problem, possible bad luck.

2. That algorithm has prob of failure ≤ 1
2p . Good enough!

3. Exists deterministic poly time algorithm but is much slower.

4. n is a Carmichael Number if it is composite and, for all a,
an ≡ a. These are the numbers my algorithm FAILS on.

The
first few are

561, 1105, 1729, 2465, 2821, 6601, 8911.
There are an infinite number of Carmichael numbers, but they
are rare.

Primality Testing – What is Really True

1. Exists algorithm that only has first problem, possible bad luck.

2. That algorithm has prob of failure ≤ 1
2p . Good enough!

3. Exists deterministic poly time algorithm but is much slower.

4. n is a Carmichael Number if it is composite and, for all a,
an ≡ a. These are the numbers my algorithm FAILS on. The
first few are

561, 1105, 1729, 2465, 2821, 6601, 8911.
There are an infinite number of Carmichael numbers, but they
are rare.

Primality Testing – What is Really True

1. Exists algorithm that only has first problem, possible bad luck.

2. That algorithm has prob of failure ≤ 1
2p . Good enough!

3. Exists deterministic poly time algorithm but is much slower.

4. n is a Carmichael Number if it is composite and, for all a,
an ≡ a. These are the numbers my algorithm FAILS on. The
first few are

561, 1105, 1729, 2465, 2821, 6601, 8911.

There are an infinite number of Carmichael numbers, but they
are rare.

Primality Testing – What is Really True

1. Exists algorithm that only has first problem, possible bad luck.

2. That algorithm has prob of failure ≤ 1
2p . Good enough!

3. Exists deterministic poly time algorithm but is much slower.

4. n is a Carmichael Number if it is composite and, for all a,
an ≡ a. These are the numbers my algorithm FAILS on. The
first few are

561, 1105, 1729, 2465, 2821, 6601, 8911.
There are an infinite number of Carmichael numbers, but they
are rare.

Generating Primes

I We just gave a fast algorithm for testing if p is prime.

I We want to generate primes.

New Problem Given L, return an L-bit prime.
Clarification An L-bit prime has a 1 as left most bit.

Generating Primes

I We just gave a fast algorithm for testing if p is prime.

I We want to generate primes.

New Problem Given L, return an L-bit prime.
Clarification An L-bit prime has a 1 as left most bit.

Generating Primes

I We just gave a fast algorithm for testing if p is prime.

I We want to generate primes.

New Problem Given L, return an L-bit prime.

Clarification An L-bit prime has a 1 as left most bit.

Generating Primes

I We just gave a fast algorithm for testing if p is prime.

I We want to generate primes.

New Problem Given L, return an L-bit prime.
Clarification An L-bit prime has a 1 as left most bit.

Alg for Generating Primes

First Attempt at, given L, generating a prime of length L.

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a L-bit number).

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns a prime ∼ 3L2 tries with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.

Alg for Generating Primes

First Attempt at, given L, generating a prime of length L.

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a L-bit number).

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns a prime ∼ 3L2 tries with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.

Alg for Generating Primes

First Attempt at, given L, generating a prime of length L.

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a L-bit number).

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns a prime ∼ 3L2 tries with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.

Alg for Generating Primes

First Attempt at, given L, generating a prime of length L.

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a L-bit number).

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns a prime ∼ 3L2 tries with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.

Alg for Generating Primes

First Attempt at, given L, generating a prime of length L.

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a L-bit number).

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns a prime ∼ 3L2 tries with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.

Alg for Generating Primes

First Attempt at, given L, generating a prime of length L.

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a L-bit number).

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns a prime ∼ 3L2 tries with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.

Alg for Generating Primes

First Attempt at, given L, generating a prime of length L.

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a L-bit number).

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?

PRO Math: returns a prime ∼ 3L2 tries with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.

Alg for Generating Primes

First Attempt at, given L, generating a prime of length L.

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a L-bit number).

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns a prime ∼ 3L2 tries with high prob.

CON Tests lots of numbers that are obv not prime—e.g, evens.

Alg for Generating Primes

First Attempt at, given L, generating a prime of length L.

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a L-bit number).

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns a prime ∼ 3L2 tries with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.

Generating Safe Primes

Definition p is a safe prime if p is prime and p−1
2 is prime.

First Attempt at, given L, generating a safe prime of length L

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (note that x is a L-bit number).

4. Test if x and x−1
2 are prime.

5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns prime quickly with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.

Generating Safe Primes

Definition p is a safe prime if p is prime and p−1
2 is prime.

First Attempt at, given L, generating a safe prime of length L

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (note that x is a L-bit number).

4. Test if x and x−1
2 are prime.

5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns prime quickly with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.

Generating Safe Primes

Definition p is a safe prime if p is prime and p−1
2 is prime.

First Attempt at, given L, generating a safe prime of length L

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (note that x is a L-bit number).

4. Test if x and x−1
2 are prime.

5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns prime quickly with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.

Generating Safe Primes

Definition p is a safe prime if p is prime and p−1
2 is prime.

First Attempt at, given L, generating a safe prime of length L

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (note that x is a L-bit number).

4. Test if x and x−1
2 are prime.

5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns prime quickly with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.

Generating Safe Primes

Definition p is a safe prime if p is prime and p−1
2 is prime.

First Attempt at, given L, generating a safe prime of length L

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (note that x is a L-bit number).

4. Test if x and x−1
2 are prime.

5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns prime quickly with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.

Generating Safe Primes

Definition p is a safe prime if p is prime and p−1
2 is prime.

First Attempt at, given L, generating a safe prime of length L

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (note that x is a L-bit number).

4. Test if x and x−1
2 are prime.

5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns prime quickly with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.

Generating Safe Primes

Definition p is a safe prime if p is prime and p−1
2 is prime.

First Attempt at, given L, generating a safe prime of length L

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (note that x is a L-bit number).

4. Test if x and x−1
2 are prime.

5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?

PRO Math: returns prime quickly with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.

Generating Safe Primes

Definition p is a safe prime if p is prime and p−1
2 is prime.

First Attempt at, given L, generating a safe prime of length L

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (note that x is a L-bit number).

4. Test if x and x−1
2 are prime.

5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns prime quickly with high prob.

CON Tests lots of numbers that are obv not prime—e.g, evens.

Generating Safe Primes

Definition p is a safe prime if p is prime and p−1
2 is prime.

First Attempt at, given L, generating a safe prime of length L

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (note that x is a L-bit number).

4. Test if x and x−1
2 are prime.

5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns prime quickly with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.

Speed Prime-Finding: n 6≡ 0 (mod 2)

We use L− 1-bit strings, including ones that end in 0, which are
even.

IDEA Pick L− 2 bit string, put 1 on its right and on its left.
Is this a good idea? Vote.

PRO Do not waste time testing even numbers.
CON Does it really save that much time?
CAVEAT Extend so we don’t test numbers div by 3? Discuss.
Yes.

Speed Prime-Finding: n 6≡ 0 (mod 2)

We use L− 1-bit strings, including ones that end in 0, which are
even.
IDEA Pick L− 2 bit string, put 1 on its right and on its left.
Is this a good idea? Vote.

PRO Do not waste time testing even numbers.
CON Does it really save that much time?
CAVEAT Extend so we don’t test numbers div by 3? Discuss.
Yes.

Speed Prime-Finding: n 6≡ 0 (mod 2)

We use L− 1-bit strings, including ones that end in 0, which are
even.
IDEA Pick L− 2 bit string, put 1 on its right and on its left.
Is this a good idea? Vote.

PRO Do not waste time testing even numbers.

CON Does it really save that much time?
CAVEAT Extend so we don’t test numbers div by 3? Discuss.
Yes.

Speed Prime-Finding: n 6≡ 0 (mod 2)

We use L− 1-bit strings, including ones that end in 0, which are
even.
IDEA Pick L− 2 bit string, put 1 on its right and on its left.
Is this a good idea? Vote.

PRO Do not waste time testing even numbers.
CON Does it really save that much time?

CAVEAT Extend so we don’t test numbers div by 3? Discuss.
Yes.

Speed Prime-Finding: n 6≡ 0 (mod 2)

We use L− 1-bit strings, including ones that end in 0, which are
even.
IDEA Pick L− 2 bit string, put 1 on its right and on its left.
Is this a good idea? Vote.

PRO Do not waste time testing even numbers.
CON Does it really save that much time?
CAVEAT Extend so we don’t test numbers div by 3? Discuss.

Yes.

Speed Prime-Finding: n 6≡ 0 (mod 2)

We use L− 1-bit strings, including ones that end in 0, which are
even.
IDEA Pick L− 2 bit string, put 1 on its right and on its left.
Is this a good idea? Vote.

PRO Do not waste time testing even numbers.
CON Does it really save that much time?
CAVEAT Extend so we don’t test numbers div by 3? Discuss.
Yes.

Speed Up Prime-Finding: 6≡ 0 (mod 2, 3)

2 divides n iff (∃k)[n = 2k]
2 does not divide n iff (∃k)[n = 2k + 1]

3 divides n iff (∃k)[n = 3k]
3 does not divide n iff (∃k)(∃i ∈ {1, 2})[n = 3k + i]

How to get both?
Neither 2 nor 3 divides n iff (∃k)(∃i ∈ {1, 5})[n = 6k + i]

So need to generate numbers of the form 6k + 1 and 6k + 5.
Caveat Might get a prime of length L− 1. We ignore this.

Speed Up Prime-Finding: 6≡ 0 (mod 2, 3)

2 divides n iff (∃k)[n = 2k]
2 does not divide n iff (∃k)[n = 2k + 1]

3 divides n iff (∃k)[n = 3k]
3 does not divide n iff (∃k)(∃i ∈ {1, 2})[n = 3k + i]

How to get both?
Neither 2 nor 3 divides n iff (∃k)(∃i ∈ {1, 5})[n = 6k + i]

So need to generate numbers of the form 6k + 1 and 6k + 5.
Caveat Might get a prime of length L− 1. We ignore this.

Speed Up Prime-Finding: 6≡ 0 (mod 2, 3)

2 divides n iff (∃k)[n = 2k]
2 does not divide n iff (∃k)[n = 2k + 1]

3 divides n iff (∃k)[n = 3k]
3 does not divide n iff (∃k)(∃i ∈ {1, 2})[n = 3k + i]

How to get both?

Neither 2 nor 3 divides n iff (∃k)(∃i ∈ {1, 5})[n = 6k + i]

So need to generate numbers of the form 6k + 1 and 6k + 5.
Caveat Might get a prime of length L− 1. We ignore this.

Speed Up Prime-Finding: 6≡ 0 (mod 2, 3)

2 divides n iff (∃k)[n = 2k]
2 does not divide n iff (∃k)[n = 2k + 1]

3 divides n iff (∃k)[n = 3k]
3 does not divide n iff (∃k)(∃i ∈ {1, 2})[n = 3k + i]

How to get both?
Neither 2 nor 3 divides n iff (∃k)(∃i ∈ {1, 5})[n = 6k + i]

So need to generate numbers of the form 6k + 1 and 6k + 5.
Caveat Might get a prime of length L− 1. We ignore this.

Speed Up Prime-Finding: 6≡ 0 (mod 2, 3)

2 divides n iff (∃k)[n = 2k]
2 does not divide n iff (∃k)[n = 2k + 1]

3 divides n iff (∃k)[n = 3k]
3 does not divide n iff (∃k)(∃i ∈ {1, 2})[n = 3k + i]

How to get both?
Neither 2 nor 3 divides n iff (∃k)(∃i ∈ {1, 5})[n = 6k + i]

So need to generate numbers of the form 6k + 1 and 6k + 5.

Caveat Might get a prime of length L− 1. We ignore this.

Speed Up Prime-Finding: 6≡ 0 (mod 2, 3)

2 divides n iff (∃k)[n = 2k]
2 does not divide n iff (∃k)[n = 2k + 1]

3 divides n iff (∃k)[n = 3k]
3 does not divide n iff (∃k)(∃i ∈ {1, 2})[n = 3k + i]

How to get both?
Neither 2 nor 3 divides n iff (∃k)(∃i ∈ {1, 5})[n = 6k + i]

So need to generate numbers of the form 6k + 1 and 6k + 5.
Caveat Might get a prime of length L− 1. We ignore this.

Alg for Gen Primes that Ignores n ≡ 0 (mod 2, 3)

1. Input L, want L bit prime.

2. Pick y ∈ {0, 1}L−3 (an (L− 3)-bit number).

3. Let x = 1y (an L− 2 bit number).

4. Test if 6x + 1 is prime. ((L− 1)-bit or L-bit number). If yes
then output 6x + 1. If not then goto Step 2.

Is this a good idea? Vote

PRO Do not waste time testing numbers ≡ 0 mod 2 or 3.
CON Uses primes of form 6k + 1. Not random enough?
CAVEAT Can we modify to avoid this problem?
Yes.

Alg for Gen Primes that Ignores n ≡ 0 (mod 2, 3)

1. Input L, want L bit prime.

2. Pick y ∈ {0, 1}L−3 (an (L− 3)-bit number).

3. Let x = 1y (an L− 2 bit number).

4. Test if 6x + 1 is prime. ((L− 1)-bit or L-bit number). If yes
then output 6x + 1. If not then goto Step 2.

Is this a good idea? Vote

PRO Do not waste time testing numbers ≡ 0 mod 2 or 3.
CON Uses primes of form 6k + 1. Not random enough?
CAVEAT Can we modify to avoid this problem?
Yes.

Alg for Gen Primes that Ignores n ≡ 0 (mod 2, 3)

1. Input L, want L bit prime.

2. Pick y ∈ {0, 1}L−3 (an (L− 3)-bit number).

3. Let x = 1y (an L− 2 bit number).

4. Test if 6x + 1 is prime. ((L− 1)-bit or L-bit number). If yes
then output 6x + 1. If not then goto Step 2.

Is this a good idea? Vote

PRO Do not waste time testing numbers ≡ 0 mod 2 or 3.
CON Uses primes of form 6k + 1. Not random enough?
CAVEAT Can we modify to avoid this problem?
Yes.

Alg for Gen Primes that Ignores n ≡ 0 (mod 2, 3)

1. Input L, want L bit prime.

2. Pick y ∈ {0, 1}L−3 (an (L− 3)-bit number).

3. Let x = 1y (an L− 2 bit number).

4. Test if 6x + 1 is prime. ((L− 1)-bit or L-bit number). If yes
then output 6x + 1. If not then goto Step 2.

Is this a good idea? Vote

PRO Do not waste time testing numbers ≡ 0 mod 2 or 3.
CON Uses primes of form 6k + 1. Not random enough?
CAVEAT Can we modify to avoid this problem?
Yes.

Alg for Gen Primes that Ignores n ≡ 0 (mod 2, 3)

1. Input L, want L bit prime.

2. Pick y ∈ {0, 1}L−3 (an (L− 3)-bit number).

3. Let x = 1y (an L− 2 bit number).

4. Test if 6x + 1 is prime. ((L− 1)-bit or L-bit number). If yes
then output 6x + 1. If not then goto Step 2.

Is this a good idea? Vote

PRO Do not waste time testing numbers ≡ 0 mod 2 or 3.
CON Uses primes of form 6k + 1. Not random enough?
CAVEAT Can we modify to avoid this problem?
Yes.

Alg for Gen Primes that Ignores n ≡ 0 (mod 2, 3)

1. Input L, want L bit prime.

2. Pick y ∈ {0, 1}L−3 (an (L− 3)-bit number).

3. Let x = 1y (an L− 2 bit number).

4. Test if 6x + 1 is prime. ((L− 1)-bit or L-bit number). If yes
then output 6x + 1. If not then goto Step 2.

Is this a good idea? Vote

PRO Do not waste time testing numbers ≡ 0 mod 2 or 3.
CON Uses primes of form 6k + 1. Not random enough?
CAVEAT Can we modify to avoid this problem?
Yes.

Alg for Gen Primes that Ignores n ≡ 0 (mod 2, 3)

1. Input L, want L bit prime.

2. Pick y ∈ {0, 1}L−3 (an (L− 3)-bit number).

3. Let x = 1y (an L− 2 bit number).

4. Test if 6x + 1 is prime. ((L− 1)-bit or L-bit number). If yes
then output 6x + 1. If not then goto Step 2.

Is this a good idea? Vote

PRO Do not waste time testing numbers ≡ 0 mod 2 or 3.

CON Uses primes of form 6k + 1. Not random enough?
CAVEAT Can we modify to avoid this problem?
Yes.

Alg for Gen Primes that Ignores n ≡ 0 (mod 2, 3)

1. Input L, want L bit prime.

2. Pick y ∈ {0, 1}L−3 (an (L− 3)-bit number).

3. Let x = 1y (an L− 2 bit number).

4. Test if 6x + 1 is prime. ((L− 1)-bit or L-bit number). If yes
then output 6x + 1. If not then goto Step 2.

Is this a good idea? Vote

PRO Do not waste time testing numbers ≡ 0 mod 2 or 3.
CON Uses primes of form 6k + 1. Not random enough?

CAVEAT Can we modify to avoid this problem?
Yes.

Alg for Gen Primes that Ignores n ≡ 0 (mod 2, 3)

1. Input L, want L bit prime.

2. Pick y ∈ {0, 1}L−3 (an (L− 3)-bit number).

3. Let x = 1y (an L− 2 bit number).

4. Test if 6x + 1 is prime. ((L− 1)-bit or L-bit number). If yes
then output 6x + 1. If not then goto Step 2.

Is this a good idea? Vote

PRO Do not waste time testing numbers ≡ 0 mod 2 or 3.
CON Uses primes of form 6k + 1. Not random enough?
CAVEAT Can we modify to avoid this problem?

Yes.

Alg for Gen Primes that Ignores n ≡ 0 (mod 2, 3)

1. Input L, want L bit prime.

2. Pick y ∈ {0, 1}L−3 (an (L− 3)-bit number).

3. Let x = 1y (an L− 2 bit number).

4. Test if 6x + 1 is prime. ((L− 1)-bit or L-bit number). If yes
then output 6x + 1. If not then goto Step 2.

Is this a good idea? Vote

PRO Do not waste time testing numbers ≡ 0 mod 2 or 3.
CON Uses primes of form 6k + 1. Not random enough?
CAVEAT Can we modify to avoid this problem?
Yes.

Speed Up Alg Prime-Finding: 6≡ 0 mod 2, 3

1. Input L.

2. Pick y ∈ {0, 1}L−3 (an L− 3-bit number).

3. Let x = 1y (an L− 2 bit number).

4. Pick i ∈ {1, 5} at random.

5. Test if 6x + i is prime ((L− 1)-bit or L-bit number). If yes
then done, if not then try goto step 2.

Is this a good idea? Vote.
PRO Do not waste time testing numbers ≡ 0 (mod 2, 3).
CON Getting more complicated. Is it worth it? Do not know.
CAVEAT Extend to 2,3,5? 2,3,5,7? etc.

Speed Up Alg Prime-Finding: 6≡ 0 mod 2, 3

1. Input L.

2. Pick y ∈ {0, 1}L−3 (an L− 3-bit number).

3. Let x = 1y (an L− 2 bit number).

4. Pick i ∈ {1, 5} at random.

5. Test if 6x + i is prime ((L− 1)-bit or L-bit number). If yes
then done, if not then try goto step 2.

Is this a good idea? Vote.
PRO Do not waste time testing numbers ≡ 0 (mod 2, 3).
CON Getting more complicated. Is it worth it? Do not know.
CAVEAT Extend to 2,3,5? 2,3,5,7? etc.

Speed Up Alg Prime-Finding: 6≡ 0 mod 2, 3

1. Input L.

2. Pick y ∈ {0, 1}L−3 (an L− 3-bit number).

3. Let x = 1y (an L− 2 bit number).

4. Pick i ∈ {1, 5} at random.

5. Test if 6x + i is prime ((L− 1)-bit or L-bit number). If yes
then done, if not then try goto step 2.

Is this a good idea? Vote.
PRO Do not waste time testing numbers ≡ 0 (mod 2, 3).
CON Getting more complicated. Is it worth it? Do not know.
CAVEAT Extend to 2,3,5? 2,3,5,7? etc.

Speed Up Alg Prime-Finding: 6≡ 0 mod 2, 3

1. Input L.

2. Pick y ∈ {0, 1}L−3 (an L− 3-bit number).

3. Let x = 1y (an L− 2 bit number).

4. Pick i ∈ {1, 5} at random.

5. Test if 6x + i is prime ((L− 1)-bit or L-bit number). If yes
then done, if not then try goto step 2.

Is this a good idea? Vote.
PRO Do not waste time testing numbers ≡ 0 (mod 2, 3).
CON Getting more complicated. Is it worth it? Do not know.
CAVEAT Extend to 2,3,5? 2,3,5,7? etc.

Speed Up Alg Prime-Finding: 6≡ 0 mod 2, 3

1. Input L.

2. Pick y ∈ {0, 1}L−3 (an L− 3-bit number).

3. Let x = 1y (an L− 2 bit number).

4. Pick i ∈ {1, 5} at random.

5. Test if 6x + i is prime ((L− 1)-bit or L-bit number). If yes
then done, if not then try goto step 2.

Is this a good idea? Vote.
PRO Do not waste time testing numbers ≡ 0 (mod 2, 3).
CON Getting more complicated. Is it worth it? Do not know.
CAVEAT Extend to 2,3,5? 2,3,5,7? etc.

Speed Up Alg Prime-Finding: 6≡ 0 mod 2, 3

1. Input L.

2. Pick y ∈ {0, 1}L−3 (an L− 3-bit number).

3. Let x = 1y (an L− 2 bit number).

4. Pick i ∈ {1, 5} at random.

5. Test if 6x + i is prime ((L− 1)-bit or L-bit number). If yes
then done, if not then try goto step 2.

Is this a good idea? Vote.
PRO Do not waste time testing numbers ≡ 0 (mod 2, 3).
CON Getting more complicated. Is it worth it? Do not know.
CAVEAT Extend to 2,3,5? 2,3,5,7? etc.

Speed Up Alg Prime-Finding: 6≡ 0 mod 2, 3

1. Input L.

2. Pick y ∈ {0, 1}L−3 (an L− 3-bit number).

3. Let x = 1y (an L− 2 bit number).

4. Pick i ∈ {1, 5} at random.

5. Test if 6x + i is prime ((L− 1)-bit or L-bit number). If yes
then done, if not then try goto step 2.

Is this a good idea? Vote.

PRO Do not waste time testing numbers ≡ 0 (mod 2, 3).
CON Getting more complicated. Is it worth it? Do not know.
CAVEAT Extend to 2,3,5? 2,3,5,7? etc.

Speed Up Alg Prime-Finding: 6≡ 0 mod 2, 3

1. Input L.

2. Pick y ∈ {0, 1}L−3 (an L− 3-bit number).

3. Let x = 1y (an L− 2 bit number).

4. Pick i ∈ {1, 5} at random.

5. Test if 6x + i is prime ((L− 1)-bit or L-bit number). If yes
then done, if not then try goto step 2.

Is this a good idea? Vote.
PRO Do not waste time testing numbers ≡ 0 (mod 2, 3).

CON Getting more complicated. Is it worth it? Do not know.
CAVEAT Extend to 2,3,5? 2,3,5,7? etc.

Speed Up Alg Prime-Finding: 6≡ 0 mod 2, 3

1. Input L.

2. Pick y ∈ {0, 1}L−3 (an L− 3-bit number).

3. Let x = 1y (an L− 2 bit number).

4. Pick i ∈ {1, 5} at random.

5. Test if 6x + i is prime ((L− 1)-bit or L-bit number). If yes
then done, if not then try goto step 2.

Is this a good idea? Vote.
PRO Do not waste time testing numbers ≡ 0 (mod 2, 3).
CON Getting more complicated. Is it worth it? Do not know.

CAVEAT Extend to 2,3,5? 2,3,5,7? etc.

Speed Up Alg Prime-Finding: 6≡ 0 mod 2, 3

1. Input L.

2. Pick y ∈ {0, 1}L−3 (an L− 3-bit number).

3. Let x = 1y (an L− 2 bit number).

4. Pick i ∈ {1, 5} at random.

5. Test if 6x + i is prime ((L− 1)-bit or L-bit number). If yes
then done, if not then try goto step 2.

Is this a good idea? Vote.
PRO Do not waste time testing numbers ≡ 0 (mod 2, 3).
CON Getting more complicated. Is it worth it? Do not know.
CAVEAT Extend to 2,3,5? 2,3,5,7? etc.

BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!

