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Public Key
Cryptography: RSA



From The Economist Sept 15, 2018, page 34

Article Title: Whack a Mole: The new president (of Colombia)
calls off talks with a lesser-known leftist insurgent group.

Context: In 2016 FARC, a left-wing insurgent group in Columbia,
signed a peace treaty that ended 50 years of conflict Yeah!

The former president of Columbia got the Nobel Peace Prize (the
leader of FARC did not – I do not know why).

However a more extreme insurgent group, ELN, is still active. Why
did FARC negotiate but ELN did not?:

Quote: . . . And the ELN’s strong encryption system has
prevented the army from extracting information from seized
computers, as it did with FARC.

Caveat: The article did not say what system they used. Oh Well.
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What does RSA Stand For?

RSA stands for

Rivest-Shamir-Adelman.
They are the ones who came up with this cryptosystem.
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Recall that DH was not · · ·

Diffie Hellman allowed Alice and Bob to share a secret string.

Diffie Hellman is not an encryption system.

El Gamal is an encryption system but hard to use since its a
1-shot. You need to keep on doing DH to use it.

RSA is an encryption system.
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Slight Variant on Fermat’s Little Theorem

Recall Fermat’s little Theorem
Thm If p is prime and a ∈ N then

ap ≡ a (mod p).

We want to divide both sides by a and get ap−1 ≡ 1 (mod p).

Not quite right: What if a ≡ 0 (mod p)? Then not true. Hence:

Thm If p is prime and a ∈ N and a 6≡ 0 (mod p) then

ap−1 ≡ 1 (mod p).

We will refer to both as Fermat’s Little Theorem.
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11999,999,999 (mod 107)
Repeated squaring would take ∼ lg(999, 999, 999) ∼ 30 mults.

By Fermat’s Little Thm 11106 ≡ 1 (mod 107).
Note
999, 999, 999 ≡ 27 (mod 106)
Hence

999, 999, 999 = 106k + 27 (don’t care what k is)

11999,999,999 = 11106k×1127 = (11106)k×1127 ≡ 1k1127 ≡ 1127 (mod 107)

11999,999,999 ≡ 11999,999,999 (mod 106) (mod 107) ≡ 1127 (mod 107)

Now do normal repeated squaring, 2 lg(27) = 10. Can do better.
Recall its really
lg(27)+ the number of 1’s in the binary rep of 27.
Can we generalize? Yes
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Exponentiation with Really Big Exponents

Generalize p prime, a 6≡ 0 (mod p), m ∈ N.

We want to compute am (mod p).

We know that ap−1 ≡ 1 (mod p). Divide m by p − 1:

m = k(p − 1) + r

Hence:

am ≡ ak(p−1)+r ≡ (ap−1)k × ar ≡ 1kar ≡ ar

Since r ≡ m (mod p − 1), am ≡ am mod p−1 (mod p)

This last equation is the important point
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Needed Mathematics- The φ Function (cont)

Recall If p is prime and 1 ≤ a ≤ p − 1 then ap−1 ≡ 1 (mod p).

Recall For all m, am ≡ am (mod p−1) (mod p).
So arithmetic in the exponents is mod p − 1.

We need to generalize this to when the mod is not a prime.

Definition φ(n) is the number of numbers in {1, . . . , n} that are
relatively prime to n.
Recall If p is prime then φ(p) = p − 1.
Recall If a, b rel prime then φ(ab) = φ(a)φ(b).
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Theorem for Primes, Theorem for n

We restate and generalize.

Fermat’s Little Theorem If p is prime and a 6≡ 0 (mod p) then

am ≡ am mod p−1 (mod p).

Restate:
Fermat’s Little Theorem If p is prime and a is rel prime to p then

am ≡ am mod φ(p) (mod p).

Generalize:
Fermat-Euler Theorem If n ∈ N and a is rel prime to n then

am ≡ am mod φ(n) (mod n).
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Examples

14999,999 (mod 393)

φ(393) = φ(3× 131) = φ(3)× φ(131) = 2× 130 = 260.

14999,999 = 14999,999 (mod 260) (mod 393) ≡ 1439 (mod 393)

Now just do repeated squaring.
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Bait and Switch

I got you interested in the theorem

am ≡ am mod φ(n) (mod n)

by telling you that it can be used to do things like

17191,992,194,299,292,777 (mod 150).

with much less than 2 lg(191, 992, 194, 299, 292, 777) mults.

This is true! There will be some HW using it.

You are thinking A&B will need to do am (mod n) for large m.

No. That is not what we will be doing, though I see why you
would think that.
We will just use the theorem:

am ≡ am mod φ(n) (mod n).
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RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes N = pq.

2. Alice computes R = φ(N) = φ(pq) = (p − 1)(q − 1).

3. Alice picks an e ∈ {R3 , . . . ,
2R
3 } that is relatively prime to R.

4. Alice finds d such that ed ≡ 1 (mod R).

5. Alice broadcasts (N, e). (Bob and Eve both see it.)

6. Bob To send m ∈ {1, . . . ,N − 1}, broadcast me (mod N).

7. If Alice gets me (mod N) she computes

(me)d ≡ med ≡ med mod R ≡ m1 mod R ≡ m (mod N).

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
PRO Bob can control the message.
Question Can Eve find out m?
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Convention for RSA

Alice sends (N, e) to get the process started.

Then Bob can send Alice messages.

We don’t have Alice sending Bob messages.

In examples we do in slides and HW we might not have
e ∈ {R3 , . . . ,

2R
3 } since we want to have easy computations for

educational purposes.
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Do RSA in Class

Pick out two students to be Alice and Bob.
Use primes:
p = 31, Prime.
q = 37, Prime.

N = pq = 31 ∗ 37 = 1147.
R = φ(N) = 30 ∗ 36 = 1080.
Use e = 77, e rel prime to R
Find d = 533 (ed ≡ 1 (mod R))
Check ed = 77 ∗ 533 = 41041 ≡ 1 (mod 1080).
Bob pick an m ∈ {1, . . . ,N − 1} = {1, . . . , 1146}. Do not tell us
what it is.
Bob compute c = me (mod 1147) and tell it to us.
Alice compute cd (mod 1147), should get back m.
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How well the Class does on RSA-in-Class

I have taught 456 4 times (including Fall 2021) and so far

3 out of the 4 times the students DID get the same answer!

The one time they did not, Bob did me mod 1080 instead of 1147.

In Fall 2021 Bob did this but caught her mistake before it lead to
an error.

Wars have been lost due to errors like that that do not get
detected.
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What Do We Really Know about RSA

If Eve can factor then she can crack RSA.

1. Input (N, e) where N = pq and e is rel prime to
R = (p − 1)(q − 1). (p, q,R are NOT part of the input.)

2. Eve factors N to find p, q. Eve computes R = (p − 1)(q − 1).

3. Eve finds d such that ed ≡ 1 (mod R).

If Factoring Easy then RSA is crackable

What about converse?

If RSA is crackable then Factoring is Easy

VOTE TRUE or FALSE or UNKNOWN TO SCIENCE
UNKNOWN TO SCIENCE.
Note In ugrad math classes rare to have a statement that is
UNKNOWN TO SCIENCE. Discuss.
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Hardness Assumption

Definition Let RSAF be the following function:
Input N, e,me (mod N) (know N = pq but don’t know p, q).

Outputs m.

Hardness assumption (HA) RSAF is hard to compute.

One can show, assuming HA that RSA is hard to crack. But this
proof will depend on a model of security. See caveats about this on
similar DH slides (bribery, timing attacks, Maginot Line).
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What Could be True?

The following are all possible:

1) Factoring easy. RSA is crackable.

2) Factoring hard, HA false. RSA crackable, Factoring hard!!

3) Factoring hard, HA true, but RSA is crackable by other means,
e.g., Timing Attacks. Must rethink our model of security.

4) Factoring hard, HA true, and RSA remains uncracked for years.
Increases our confidence but . . ..

Items 3 and 4 is current state with some caveats: Do Alice and
Bob use it properly? Do they have large enough parameters?
What is Eve’s computing power?
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Debate Between Bill and Student (Fall 2019)

Bill: Alice should not use the same value of e all the time. If she
does then that e becomes an object of study.

Sajjad finds a Ramsey-Theory-connection to that e!
Kunal finds an Automata-Theory-connection to that e!
Josh finds an Algebraic-Geometry-connection to that e! etc.

Student: I’ve read on the web that you should use e = 22
4

+ 1,
the fourth Fermat Prime. And the article 20 years of attacks on
RSA (on the course website now) says so. The article was written
by a theorist like you, Dan Boneh.

Bill: Dan Boneh is a much better theorist than me. Email me
the website and paper and I’ll see whats up.
Well pierce my ears and call me drafty! In practice you SHOULD
use e = 22

4
+ 1.
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Why is e = 224

+ 1 Good to Use?

Recall that in RSA Bob must compute me .

Bill Can do me with repeated squaring in roughly lg2(m) steps.

Practitioner roughly lg2(m) steps? Don’t give me BS words like
roughly. Are you one of those big-O people where the constant is,
like, a gazillion?

Bill I’ve been called worse. Irene recently emailed me a slide
correction and called me a donut-brained Squid. I think that’s an
insult.

Practitioner Let compare using e = 22
4

+ 1 to using e = 22
4 − 1.
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e = 224

+ 1 vs e = 224 − 1

m22
4
+1 = m22

4
+1 = m22

4

×m.

Repeated Squaring: m20 ,m2, m22 , m23 , . . ., m22
4

. 16 steps.

Then (m22
4

)×m = m22
4
+1. 17 steps total.

22
4 − 1 = m22

4−1 = m20 ×m21 × · · ·m22
4−1

Repeated Squaring: m2, m22 , m23 , . . ., m22
4−1

. 15 steps.

Then m2 ×m22 ×m23 × . . .×m22
4−1

. 15 more steps. 30 steps.

Bill: Does 17 vs 30 steps matter?

Practitioner: Yes, duh. It’s almost twice as fast!
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e = 224

+ 1 vs My Fears

In Practice: Want to use e = 22
4

+ 1 since:

1. Only 15 mults.

2. 22
4

+ 1 Big enough to ward off the low-e attacks (we will
study those later).

3. 22
4

+ 1 is prime, so only way it fails to be rel prime to
R = (p − 1)(q − 1). is if it divides R. Unlikely and easily
tested.

In Theory: Do not want to use the same e over and over again
for fear of this being exploited.

Who is Right: e = 216 + 1 is used a lot. Should it be?

I Nobody in academia has cracked RSA just using that
e = 22

4 − 1.

I Nobody in the real world has cracked RSA just using that
e = 22

4 − 1.

I Do we really know that?
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RSA has NY,NY
Problem. Will Fix



Plain RSA Bytes!

The RSA given above is referred to as Plain RSA.
Insecure!

Scenario
Eve sees Bob send Alice c1 (message is m1).
Later Eve sees Bob send Alice c2 (message is m2).

What can Eve easily deduce?

Eve can know if c1 = c2 or not. So what?
Eve knows if m1 = m2 or not. Its the NY,NY problem!

That alone makes it insecure.
Plain RSA is never used and should never be used!
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PKCS-1.5 RSA

How can we fix RSA to make it work? Discuss

Need randomness.

We need to change how Bob sends a message;
BAD To send m ∈ {1, . . . ,N − 1}, send me (mod N).

FIX To send m ∈ {1, . . . ,N − 1}, pick rand r , send (rm)e .
(NOTE- rm means r CONCAT with m here and elsewhere.) Alice
and Bob agree on length of r ahead of time.

Alice and Bob pick L1 and L2 such that lgN = L1 + L2.
To send m ∈ {0, 1}L2 pick random r ∈ {0, 1}L1 .
When Alice gets rm she will know that m is the last L2 bits.
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Example

p = 31, q = 37, N = pq = 31× 37 = 1147.

R = φ(N) = 30 ∗ 36 = 1080
e = 77 (e rel prime to R), d = 533 (ed ≡ 1 (mod R)).
L1 = 3.
Bob wants to send 1100100 (note- L2 = 7 bits).

1. Bob generates L1 = 3 random bits. 100.

2. Bob sends 1001100100 which is 612 in base 10 by sending
61277 (mod 1147) which is 277.

3. Alice decodes by doing 277533 (mod 1147) = 612.

4. Alice puts 612 into binary to get 1001100100. She knows to
only read the last 7 bits 1100100.

Important If later Bob wants to send 100100 again he will choose
a DIFFERENT random 3 bits so Eve won’t know he sent the same
message.
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RSA has Another
Problem



Is PKCS-1.5 RSA Secure?

Is PKCS-1.5 RSA Secure? VOTE

I YES (under hardness assumptions and large n)

I NO (there is yet another weird security thing we overlooked)

NO (there is yet another weird security thing we overlooked)
Scenario N and e are public. Bob sends (rm)e (mod N).
Eve cannot determine what m is.
What can Eve do that is still obnoxious?
Eve can compute 2e(rm)e ≡ (2(rm))e (mod N). So what?

Eve can later pretend she is Bob and send (2(rm))e (mod N).

Why bad? Discuss
(1) will confuse Alice (2) Sealed Bid Scenario.
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Malleability

An encryption system is malleable if when Eve sees a message she
can figure out a way to send a similar one, where she knows the
similarity (she still does not know the message).

1. The definition above is informal.

2. Can modify RSA so that it’s probably not malleable.

3. That way is called PKCS-2.0-RSA.

4. Name BLAH-1.5 is hint that it’s not final version.

5. There are other issues that RSA needs to deal with and does,
so the real RSA that is used adds more to what I’ve said here.
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Other Public Key
Systems



Better Hardness Assumptions

We really want to say
Cracking RSA is Exactly as Hard as Factoring
but we do not know this, and it’s probably false.

Are there other Public Key Cryptosystems that are equivalent to
factoring?

Yes. On Next Slide.



Better Hardness Assumptions

We really want to say
Cracking RSA is Exactly as Hard as Factoring
but we do not know this, and it’s probably false.

Are there other Public Key Cryptosystems that are equivalent to
factoring?

Yes. On Next Slide.



Better Hardness Assumptions

We really want to say
Cracking RSA is Exactly as Hard as Factoring
but we do not know this, and it’s probably false.

Are there other Public Key Cryptosystems that are equivalent to
factoring?

Yes. On Next Slide.



Rabin’s Encryption System and its Variants

1. Rabin’s enc equivalent to factoring pq.

2. Rabin’s enc is hard to use: messages do not decode uniquely.

3. Blum-Williams modified Rabin’s Enc so that messages decode
uniquely; but the set of messages you can send is small.

4. Hard to combine Blum-Williams modification with the
padding needed to solve NY,NY problem.

5. Cracking Rabin Enc EQUIV factoring: but this is only if Eve
has no other information.

6. If Eve can trick Alice into sending a chosen message, she can
crack Rabin. So Chosen Plaintext Attack-insecure.

Why is RSA used and not Rabin? either

1. The problems above make it not practical.

2. The problems above could have been gotten around but RSA
just got to the market faster.
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Summary of RSA

1. PKCS-2.0-RSA is REALLY used!

2. There are many variants of RSA but all use the ideas above.

3. Factoring easy implies RSA crackable. TRUE.

4. RSA crackable implies Factoring easy: UNKNOWN.

5. RSA crackable implies Factoring easy: Often stated in
expositions of crypto. They are wrong!
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How Important Is Public
Key?



Used Everywhere

Public key is mostly used for giving out keys to be used for
classical systems.
This makes the following work:

1. Amazon – Credit Cards

2. Ebay – Paypal

3. Facebook privacy – just kidding, Facebook has no privacy.
see: https://www.youtube.com/watch?v=cqggW08BWO0

4. Every financial institution in the world.

5. Military – though less is publicly known about this.

https://www.youtube.com/watch?v=cqggW08BWO0
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Public Key Not Based on Factoring

What if Factoring can be done fast (quantum, fancy number
theory, better hardware)?

1. Since 1960:

1.1 Math-advances have sped up factoring by 1000 times.
1.2 Hardware-advances have sped up factoring by 1000 times.
1.3 So Factoring has been sped up 1,000,000 times.

2. Factoring is in Quantum P, though making that practical
seems a ways off.

3. There are now several Public Key Systems based on other
hardness assumptions. See next slide.
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Public Key Not Based on Factoring (cont)

Non-factoring based crypto systems:

1. Elliptic Curve Cryto Based on elliptic curves (duh).
Classically this is better than RSA since is secure with smaller
parameters. However, a quantum computer can crack it. Has
been around since 1985 but hard math made it hard to use.

2. Lattice-based Crypto Based on certain lattice problems
being hard to solve. Has been around since 1995.

3. Learning-With Errors (LWE) Based on the difficulty of
learning a function from just a few points. Has been around
since 2000. We will cover this later.

4. McElice Public Key Based on error-correcting codes.
Hardness assumption is that its hard to error-correct without
the parity matrix. Has been around since 1978 but large keys
made it a problem.

None of these are widely used Why?
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Why Aren’t The NON-RSA Systems Used?

1. Chicken-and-egg problem: since they have not been out there
and attacked, and fixed (like RSA) they are not considered
secure.

2. Inertia.

3. Changing over would be expensive and a company has to ask
itself, is it worth it?

4. There are other security issues that are more
pressing.However, they are also not being dealt with.
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Will These Systems be Used?

NIST (National Institute of Standards and Technology) solicited
Quantum-Resistant Crypto Systems.

Lattice-Based, LWE, and Code based all made it into the 2nd
round:

https://www.scribd.com/document/474476570/

PQC-Overview-Aug-2020-NIST
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