
BILL START
RECORDING

An Early Idea on
Factoring: Jevons’

Number

Jevons’ Number

In the 1870s William Stanley Jevons wrote of the difficulty of
factoring. We paraphrase Solomon Golomb’s paraphrase:

Jevons observed that there are many cases where
an operation is easy but it’s inverse is hard. He
mentioned encryption and decryption. He mentioned
multiplication and factoring. He anticipated RSA!

Jevons thought factoring was hard (prob correct!) and that a
certain number would never be factored (wrong!). Here is a
quote:

Can the reader say what two numbers multiplied to-
gether will produce

8, 616, 460, 799

I think it is unlikely that anyone aside from myself
will ever know.

Jevons’ Number

In the 1870s William Stanley Jevons wrote of the difficulty of
factoring. We paraphrase Solomon Golomb’s paraphrase:

Jevons observed that there are many cases where
an operation is easy but it’s inverse is hard. He
mentioned encryption and decryption. He mentioned
multiplication and factoring. He anticipated RSA!

Jevons thought factoring was hard (prob correct!) and that a
certain number would never be factored (wrong!). Here is a
quote:

Can the reader say what two numbers multiplied to-
gether will produce

8, 616, 460, 799

I think it is unlikely that anyone aside from myself
will ever know.

Jevons’ Number

In the 1870s William Stanley Jevons wrote of the difficulty of
factoring. We paraphrase Solomon Golomb’s paraphrase:

Jevons observed that there are many cases where
an operation is easy but it’s inverse is hard. He
mentioned encryption and decryption. He mentioned
multiplication and factoring. He anticipated RSA!

Jevons thought factoring was hard (prob correct!) and that a
certain number would never be factored (wrong!). Here is a
quote:

Can the reader say what two numbers multiplied to-
gether will produce

8, 616, 460, 799

I think it is unlikely that anyone aside from myself
will ever know.

Golomb’s Method to Factor Jevons’ Number

J = 8, 616, 460, 799

We apply a method of Fermat (in the 1600’s) to the problem of
factoring J.

To factor J find x , y such that

J = x2 − y2 = (x − y)(x + y)

So we must narrow our search for x , y .
For this Review I won’t get into how to do that.
The idea of finding x , y such that J = x2 = y2 will come up later
in the course.

Golomb’s Method to Factor Jevons’ Number

J = 8, 616, 460, 799

We apply a method of Fermat (in the 1600’s) to the problem of
factoring J.

To factor J find x , y such that

J = x2 − y2 = (x − y)(x + y)

So we must narrow our search for x , y .

For this Review I won’t get into how to do that.
The idea of finding x , y such that J = x2 = y2 will come up later
in the course.

Golomb’s Method to Factor Jevons’ Number

J = 8, 616, 460, 799

We apply a method of Fermat (in the 1600’s) to the problem of
factoring J.

To factor J find x , y such that

J = x2 − y2 = (x − y)(x + y)

So we must narrow our search for x , y .
For this Review I won’t get into how to do that.

The idea of finding x , y such that J = x2 = y2 will come up later
in the course.

Golomb’s Method to Factor Jevons’ Number

J = 8, 616, 460, 799

We apply a method of Fermat (in the 1600’s) to the problem of
factoring J.

To factor J find x , y such that

J = x2 − y2 = (x − y)(x + y)

So we must narrow our search for x , y .
For this Review I won’t get into how to do that.
The idea of finding x , y such that J = x2 = y2 will come up later
in the course.

My Opinion and a Counterpoint

Conjecture Jevons was arrogant. Likely true.

Conjecture We have the arrogance of hindsight.

I It’s easy for us to say
What a moron! He should have asked a Number Theorist

What was he going to do, Google Number Theorist ?

I It’s easy for us to say
What a moron! He should have asked a Babbage or Lovelace

We know about the role of computers to speed up
calculations, but it’s reasonable it never dawned on him.

I Conclusion
I His arrogance: assumed the world would not change much.
I Our arrogance: knowing how much the world did change.

My Opinion and a Counterpoint

Conjecture Jevons was arrogant. Likely true.
Conjecture We have the arrogance of hindsight.

I It’s easy for us to say
What a moron! He should have asked a Number Theorist

What was he going to do, Google Number Theorist ?

I It’s easy for us to say
What a moron! He should have asked a Babbage or Lovelace

We know about the role of computers to speed up
calculations, but it’s reasonable it never dawned on him.

I Conclusion
I His arrogance: assumed the world would not change much.
I Our arrogance: knowing how much the world did change.

My Opinion and a Counterpoint

Conjecture Jevons was arrogant. Likely true.
Conjecture We have the arrogance of hindsight.

I It’s easy for us to say
What a moron! He should have asked a Number Theorist

What was he going to do, Google Number Theorist ?

I It’s easy for us to say
What a moron! He should have asked a Babbage or Lovelace

We know about the role of computers to speed up
calculations, but it’s reasonable it never dawned on him.

I Conclusion
I His arrogance: assumed the world would not change much.
I Our arrogance: knowing how much the world did change.

My Opinion and a Counterpoint

Conjecture Jevons was arrogant. Likely true.
Conjecture We have the arrogance of hindsight.

I It’s easy for us to say
What a moron! He should have asked a Number Theorist

What was he going to do, Google Number Theorist ?

I It’s easy for us to say
What a moron! He should have asked a Babbage or Lovelace

We know about the role of computers to speed up
calculations, but it’s reasonable it never dawned on him.

I Conclusion
I His arrogance: assumed the world would not change much.
I Our arrogance: knowing how much the world did change.

My Opinion and a Counterpoint

Conjecture Jevons was arrogant. Likely true.
Conjecture We have the arrogance of hindsight.

I It’s easy for us to say
What a moron! He should have asked a Number Theorist

What was he going to do, Google Number Theorist ?

I It’s easy for us to say

What a moron! He should have asked a Babbage or Lovelace
We know about the role of computers to speed up
calculations, but it’s reasonable it never dawned on him.

I Conclusion
I His arrogance: assumed the world would not change much.
I Our arrogance: knowing how much the world did change.

My Opinion and a Counterpoint

Conjecture Jevons was arrogant. Likely true.
Conjecture We have the arrogance of hindsight.

I It’s easy for us to say
What a moron! He should have asked a Number Theorist

What was he going to do, Google Number Theorist ?

I It’s easy for us to say
What a moron! He should have asked a Babbage or Lovelace

We know about the role of computers to speed up
calculations, but it’s reasonable it never dawned on him.

I Conclusion
I His arrogance: assumed the world would not change much.
I Our arrogance: knowing how much the world did change.

My Opinion and a Counterpoint

Conjecture Jevons was arrogant. Likely true.
Conjecture We have the arrogance of hindsight.

I It’s easy for us to say
What a moron! He should have asked a Number Theorist

What was he going to do, Google Number Theorist ?

I It’s easy for us to say
What a moron! He should have asked a Babbage or Lovelace

We know about the role of computers to speed up
calculations, but it’s reasonable it never dawned on him.

I Conclusion
I His arrogance: assumed the world would not change much.
I Our arrogance: knowing how much the world did change.

My Opinion and a Counterpoint

Conjecture Jevons was arrogant. Likely true.
Conjecture We have the arrogance of hindsight.

I It’s easy for us to say
What a moron! He should have asked a Number Theorist

What was he going to do, Google Number Theorist ?

I It’s easy for us to say
What a moron! He should have asked a Babbage or Lovelace

We know about the role of computers to speed up
calculations, but it’s reasonable it never dawned on him.

I Conclusion
I His arrogance: assumed the world would not change much.
I Our arrogance: knowing how much the world did change.

Factoring Algorithms

Recall Factoring Algorithm Ground Rules

I We only consider algorithms that, given N, find a non-trivial
factor of N.

I We measure the run time as a function of lgN which is the
length of the input. We may use L for this.

I We count +, −, ×, ÷ as ONE step. A more refined analysis
would count them as (lg x)2 steps where x is the largest
number you are dealing with.

I We leave out the O-of but always mean O-of

I We leave out the expected time but always mean it. Our
algorithms are randomized.

Recall Factoring Algorithm Ground Rules

I We only consider algorithms that, given N, find a non-trivial
factor of N.

I We measure the run time as a function of lgN which is the
length of the input. We may use L for this.

I We count +, −, ×, ÷ as ONE step. A more refined analysis
would count them as (lg x)2 steps where x is the largest
number you are dealing with.

I We leave out the O-of but always mean O-of

I We leave out the expected time but always mean it. Our
algorithms are randomized.

Recall Factoring Algorithm Ground Rules

I We only consider algorithms that, given N, find a non-trivial
factor of N.

I We measure the run time as a function of lgN which is the
length of the input. We may use L for this.

I We count +, −, ×, ÷ as ONE step. A more refined analysis
would count them as (lg x)2 steps where x is the largest
number you are dealing with.

I We leave out the O-of but always mean O-of

I We leave out the expected time but always mean it. Our
algorithms are randomized.

Recall Factoring Algorithm Ground Rules

I We only consider algorithms that, given N, find a non-trivial
factor of N.

I We measure the run time as a function of lgN which is the
length of the input. We may use L for this.

I We count +, −, ×, ÷ as ONE step. A more refined analysis
would count them as (lg x)2 steps where x is the largest
number you are dealing with.

I We leave out the O-of but always mean O-of

I We leave out the expected time but always mean it. Our
algorithms are randomized.

Recall Factoring Algorithm Ground Rules

I We only consider algorithms that, given N, find a non-trivial
factor of N.

I We measure the run time as a function of lgN which is the
length of the input. We may use L for this.

I We count +, −, ×, ÷ as ONE step. A more refined analysis
would count them as (lg x)2 steps where x is the largest
number you are dealing with.

I We leave out the O-of but always mean O-of

I We leave out the expected time but always mean it. Our
algorithms are randomized.

Recall Factoring Algorithm Ground Rules

I We only consider algorithms that, given N, find a non-trivial
factor of N.

I We measure the run time as a function of lgN which is the
length of the input. We may use L for this.

I We count +, −, ×, ÷ as ONE step. A more refined analysis
would count them as (lg x)2 steps where x is the largest
number you are dealing with.

I We leave out the O-of but always mean O-of

I We leave out the expected time but always mean it. Our
algorithms are randomized.

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.
How Much Better? Ignoring (1) constants, (2) the lack of
proofs of the runtimes, and (3) cheating a byte, we have:

I Easy: N1/2 = 2L/2.

I Pollard-Rho Algorithm: N1/4 = 2L/4.

I Quad Sieve: N1/L1/2 = 2L
1/2

.

I Number Field Sieve (best known): N1/L2/3 = 2L
1/3

.

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.
How Much Better? Ignoring (1) constants, (2) the lack of
proofs of the runtimes, and (3) cheating a byte, we have:

I Easy: N1/2 = 2L/2.

I Pollard-Rho Algorithm: N1/4 = 2L/4.

I Quad Sieve: N1/L1/2 = 2L
1/2

.

I Number Field Sieve (best known): N1/L2/3 = 2L
1/3

.

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.
How Much Better? Ignoring (1) constants, (2) the lack of
proofs of the runtimes, and (3) cheating a byte, we have:

I Easy: N1/2 = 2L/2.

I Pollard-Rho Algorithm: N1/4 = 2L/4.

I Quad Sieve: N1/L1/2 = 2L
1/2

.

I Number Field Sieve (best known): N1/L2/3 = 2L
1/3

.

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.
How Much Better? Ignoring (1) constants, (2) the lack of
proofs of the runtimes, and (3) cheating a byte, we have:

I Easy: N1/2 = 2L/2.

I Pollard-Rho Algorithm: N1/4 = 2L/4.

I Quad Sieve: N1/L1/2 = 2L
1/2

.

I Number Field Sieve (best known): N1/L2/3 = 2L
1/3

.

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.

How Much Better? Ignoring (1) constants, (2) the lack of
proofs of the runtimes, and (3) cheating a byte, we have:

I Easy: N1/2 = 2L/2.

I Pollard-Rho Algorithm: N1/4 = 2L/4.

I Quad Sieve: N1/L1/2 = 2L
1/2

.

I Number Field Sieve (best known): N1/L2/3 = 2L
1/3

.

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.
How Much Better? Ignoring (1) constants, (2) the lack of
proofs of the runtimes, and (3) cheating a byte, we have:

I Easy: N1/2 = 2L/2.

I Pollard-Rho Algorithm: N1/4 = 2L/4.

I Quad Sieve: N1/L1/2 = 2L
1/2

.

I Number Field Sieve (best known): N1/L2/3 = 2L
1/3

.

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.
How Much Better? Ignoring (1) constants, (2) the lack of
proofs of the runtimes, and (3) cheating a byte, we have:

I Easy: N1/2 = 2L/2.

I Pollard-Rho Algorithm: N1/4 = 2L/4.

I Quad Sieve: N1/L1/2 = 2L
1/2

.

I Number Field Sieve (best known): N1/L2/3 = 2L
1/3

.

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.
How Much Better? Ignoring (1) constants, (2) the lack of
proofs of the runtimes, and (3) cheating a byte, we have:

I Easy: N1/2 = 2L/2.

I Pollard-Rho Algorithm: N1/4 = 2L/4.

I Quad Sieve: N1/L1/2 = 2L
1/2

.

I Number Field Sieve (best known): N1/L2/3 = 2L
1/3

.

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.
How Much Better? Ignoring (1) constants, (2) the lack of
proofs of the runtimes, and (3) cheating a byte, we have:

I Easy: N1/2 = 2L/2.

I Pollard-Rho Algorithm: N1/4 = 2L/4.

I Quad Sieve: N1/L1/2 = 2L
1/2

.

I Number Field Sieve (best known): N1/L2/3 = 2L
1/3

.

Easy Factoring Algorithm

1. Input(N)

2. For x = 2 to
⌊
N1/2

⌋
If x divides N then return x (and jump out of loop!).

This takes time N1/2 = 2L/2.

Goal Do much better than time N1/2.
How Much Better? Ignoring (1) constants, (2) the lack of
proofs of the runtimes, and (3) cheating a byte, we have:

I Easy: N1/2 = 2L/2.

I Pollard-Rho Algorithm: N1/4 = 2L/4.

I Quad Sieve: N1/L1/2 = 2L
1/2

.

I Number Field Sieve (best known): N1/L2/3 = 2L
1/3

.

Pollard ρ-Algorithm

Thought Experiment

We want to factor N.

p is a factor of N (we don’t know p). Note p ≤ N1/2.

We somehow find x , y such that x ≡ y (mod p). Useful?

gcd(x − y ,N) will likely yield a nontrivial factor of N since p
divides both.

Thought Experiment

We want to factor N.

p is a factor of N (we don’t know p). Note p ≤ N1/2.

We somehow find x , y such that x ≡ y (mod p). Useful?

gcd(x − y ,N) will likely yield a nontrivial factor of N since p
divides both.

Thought Experiment

We want to factor N.

p is a factor of N (we don’t know p). Note p ≤ N1/2.

We somehow find x , y such that x ≡ y (mod p). Useful?

gcd(x − y ,N) will likely yield a nontrivial factor of N since p
divides both.

Thought Experiment

We want to factor N.

p is a factor of N (we don’t know p). Note p ≤ N1/2.

We somehow find x , y such that x ≡ y (mod p). Useful?

gcd(x − y ,N) will likely yield a nontrivial factor of N since p
divides both.

What Do We Really Want?

We want to find i , j ≤ N1/4 such that xi ≡ xj (mod p).

Key xi computed via recurrence so xi = xj =⇒ xi+a = xj+a.

Lemma If exists i < j ≤ M with xi ≡ xj then exists k ≤ M such
that xk ≡ x2k .

What Do We Really Want?

We want to find i , j ≤ N1/4 such that xi ≡ xj (mod p).
Key xi computed via recurrence so xi = xj =⇒ xi+a = xj+a.

Lemma If exists i < j ≤ M with xi ≡ xj then exists k ≤ M such
that xk ≡ x2k .

What Do We Really Want?

We want to find i , j ≤ N1/4 such that xi ≡ xj (mod p).
Key xi computed via recurrence so xi = xj =⇒ xi+a = xj+a.

Lemma If exists i < j ≤ M with xi ≡ xj then exists k ≤ M such
that xk ≡ x2k .

Recap

Rand Looking Sequence x1, c chosen at random in {1, . . . ,N},
then xi = xi−1 ∗ xi−1 + c (mod N).

We want to find i , j such xi ≡ xj (mod p).

Don’t know p. Really want gcd(xi − xj ,N) 6= 1.

Trying all pairs is too much time.
Important If there is a pair then there is a pair of form xi , x2i .

Idea Only try pairs of form (xi , x2i).

Recap

Rand Looking Sequence x1, c chosen at random in {1, . . . ,N},
then xi = xi−1 ∗ xi−1 + c (mod N).

We want to find i , j such xi ≡ xj (mod p).

Don’t know p. Really want gcd(xi − xj ,N) 6= 1.

Trying all pairs is too much time.
Important If there is a pair then there is a pair of form xi , x2i .

Idea Only try pairs of form (xi , x2i).

Recap

Rand Looking Sequence x1, c chosen at random in {1, . . . ,N},
then xi = xi−1 ∗ xi−1 + c (mod N).

We want to find i , j such xi ≡ xj (mod p).

Don’t know p. Really want gcd(xi − xj ,N) 6= 1.

Trying all pairs is too much time.
Important If there is a pair then there is a pair of form xi , x2i .

Idea Only try pairs of form (xi , x2i).

Recap

Rand Looking Sequence x1, c chosen at random in {1, . . . ,N},
then xi = xi−1 ∗ xi−1 + c (mod N).

We want to find i , j such xi ≡ xj (mod p).

Don’t know p. Really want gcd(xi − xj ,N) 6= 1.

Trying all pairs is too much time.
Important If there is a pair then there is a pair of form xi , x2i .

Idea Only try pairs of form (xi , x2i).

Recap

Rand Looking Sequence x1, c chosen at random in {1, . . . ,N},
then xi = xi−1 ∗ xi−1 + c (mod N).

We want to find i , j such xi ≡ xj (mod p).

Don’t know p. Really want gcd(xi − xj ,N) 6= 1.

Trying all pairs is too much time.
Important If there is a pair then there is a pair of form xi , x2i .

Idea Only try pairs of form (xi , x2i).

Pollard ρ Algorithm

Define fc(x)← x ∗ x + c (mod N)

x ← rand(1,N − 1), c ← rand(1,N − 1), y ← fc(x)
while TRUE

x ← fc(x)
y ← fc(fc(y))
d ← gcd(x − y ,N)
if d 6= 1 and d 6= N then break

output(d)

PRO By Bday Paradox will likely finish in N1/4 steps.
CON No real cons, but is N1/4 fast enough?

Pollard ρ Algorithm

Define fc(x)← x ∗ x + c (mod N)

x ← rand(1,N − 1), c ← rand(1,N − 1), y ← fc(x)
while TRUE

x ← fc(x)
y ← fc(fc(y))
d ← gcd(x − y ,N)
if d 6= 1 and d 6= N then break

output(d)
PRO By Bday Paradox will likely finish in N1/4 steps.

CON No real cons, but is N1/4 fast enough?

Pollard ρ Algorithm

Define fc(x)← x ∗ x + c (mod N)

x ← rand(1,N − 1), c ← rand(1,N − 1), y ← fc(x)
while TRUE

x ← fc(x)
y ← fc(fc(y))
d ← gcd(x − y ,N)
if d 6= 1 and d 6= N then break

output(d)
PRO By Bday Paradox will likely finish in N1/4 steps.
CON No real cons, but is N1/4 fast enough?

How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice. Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:
I Proving that a deterministic sequence is random enough is

hard to do or even define.
I Irene, Radhika, and Emily have not worked on it yet.

How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice. Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:
I Proving that a deterministic sequence is random enough is

hard to do or even define.
I Irene, Radhika, and Emily have not worked on it yet.

How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice. Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:
I Proving that a deterministic sequence is random enough is

hard to do or even define.
I Irene, Radhika, and Emily have not worked on it yet.

How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice.

Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:
I Proving that a deterministic sequence is random enough is

hard to do or even define.
I Irene, Radhika, and Emily have not worked on it yet.

How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice. Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:
I Proving that a deterministic sequence is random enough is

hard to do or even define.
I Irene, Radhika, and Emily have not worked on it yet.

How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice. Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:
I Proving that a deterministic sequence is random enough is

hard to do or even define.
I Irene, Radhika, and Emily have not worked on it yet.

How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice. Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:
I Proving that a deterministic sequence is random enough is

hard to do or even define.
I Irene, Radhika, and Emily have not worked on it yet.

How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice. Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:

I Proving that a deterministic sequence is random enough is
hard to do or even define.

I Irene, Radhika, and Emily have not worked on it yet.

How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice. Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:
I Proving that a deterministic sequence is random enough is

hard to do or even define.

I Irene, Radhika, and Emily have not worked on it yet.

How Good In Practice?

I The Algorithm is GOOD. Variations are GREAT.

I Was used to provide first factorization of 22
8

+ 1.

I In 1975 was fastest algorithm in practice. Not anymore.

I Called Pollard’s ρ Algorithm since he set ρ = j − i .

I Why we think N1/4: Sequence seems random enough for
Bday paradox to work.

I Why still unproven:
I Proving that a deterministic sequence is random enough is

hard to do or even define.
I Irene, Radhika, and Emily have not worked on it yet.

Pollard p − 1 Algorithms

Thought Experiment

Want to factor 11227.
If p is a prime factor of 11227:

1. p divides 11227.

2. p divides 2p−1− 1 (this is always true by Fermat’s little Thm).

3. So gcd(2p−1 − 1, 11227) divides 11227.

4. So gcd(2p−1 − 1 mod 11227, 11227) divides 11227.

Lets find gcd(2p−1 − 1 mod 11227, 11227). Good idea?

We do not know p :-(If we did know p we would be done.

Thought Experiment

Want to factor 11227.
If p is a prime factor of 11227:

1. p divides 11227.

2. p divides 2p−1− 1 (this is always true by Fermat’s little Thm).

3. So gcd(2p−1 − 1, 11227) divides 11227.

4. So gcd(2p−1 − 1 mod 11227, 11227) divides 11227.

Lets find gcd(2p−1 − 1 mod 11227, 11227). Good idea?

We do not know p :-(If we did know p we would be done.

Thought Experiment

Want to factor 11227.
If p is a prime factor of 11227:

1. p divides 11227.

2. p divides 2p−1− 1 (this is always true by Fermat’s little Thm).

3. So gcd(2p−1 − 1, 11227) divides 11227.

4. So gcd(2p−1 − 1 mod 11227, 11227) divides 11227.

Lets find gcd(2p−1 − 1 mod 11227, 11227). Good idea?

We do not know p :-(If we did know p we would be done.

Thought Experiment

Want to factor 11227.
If p is a prime factor of 11227:

1. p divides 11227.

2. p divides 2p−1− 1 (this is always true by Fermat’s little Thm).

3. So gcd(2p−1 − 1, 11227) divides 11227.

4. So gcd(2p−1 − 1 mod 11227, 11227) divides 11227.

Lets find gcd(2p−1 − 1 mod 11227, 11227). Good idea?

We do not know p :-(If we did know p we would be done.

Thought Experiment

Want to factor 11227.
If p is a prime factor of 11227:

1. p divides 11227.

2. p divides 2p−1− 1 (this is always true by Fermat’s little Thm).

3. So gcd(2p−1 − 1, 11227) divides 11227.

4. So gcd(2p−1 − 1 mod 11227, 11227) divides 11227.

Lets find gcd(2p−1 − 1 mod 11227, 11227). Good idea?

We do not know p :-(If we did know p we would be done.

Thought Experiment

Want to factor 11227.
If p is a prime factor of 11227:

1. p divides 11227.

2. p divides 2p−1− 1 (this is always true by Fermat’s little Thm).

3. So gcd(2p−1 − 1, 11227) divides 11227.

4. So gcd(2p−1 − 1 mod 11227, 11227) divides 11227.

Lets find gcd(2p−1 − 1 mod 11227, 11227). Good idea?

We do not know p :-(If we did know p we would be done.

Thought Experiment

Want to factor 11227.
If p is a prime factor of 11227:

1. p divides 11227.

2. p divides 2p−1− 1 (this is always true by Fermat’s little Thm).

3. So gcd(2p−1 − 1, 11227) divides 11227.

4. So gcd(2p−1 − 1 mod 11227, 11227) divides 11227.

Lets find gcd(2p−1 − 1 mod 11227, 11227). Good idea?

We do not know p :-(If we did know p we would be done.

Making the Example Work

Want to factor 11227.
If p is a prime factor of 11227. We do not know p.

1. p divides 11227

2. p divides 2p−1 − 1 (this is always true by Fermat’s little Thm)

3. p divides 2k(p−1) − 1 mod 11227 for any k

4. Raise 2 to a power that we hope has p − 1 as a divisor.

gcd(22
3×33−1 mod 11227, 11227) = gcd(2216−1 mod 11227, 11227)

= gcd(1417, 11227) = 109

Great! We got a factor of 11227 without having to factor!
Why Worked 109 was a factor and 108 = 22 × 33, small factors.

Making the Example Work

Want to factor 11227.
If p is a prime factor of 11227. We do not know p.

1. p divides 11227

2. p divides 2p−1 − 1 (this is always true by Fermat’s little Thm)

3. p divides 2k(p−1) − 1 mod 11227 for any k

4. Raise 2 to a power that we hope has p − 1 as a divisor.

gcd(22
3×33−1 mod 11227, 11227) = gcd(2216−1 mod 11227, 11227)

= gcd(1417, 11227) = 109

Great! We got a factor of 11227 without having to factor!
Why Worked 109 was a factor and 108 = 22 × 33, small factors.

Making the Example Work

Want to factor 11227.
If p is a prime factor of 11227. We do not know p.

1. p divides 11227

2. p divides 2p−1 − 1 (this is always true by Fermat’s little Thm)

3. p divides 2k(p−1) − 1 mod 11227 for any k

4. Raise 2 to a power that we hope has p − 1 as a divisor.

gcd(22
3×33−1 mod 11227, 11227) = gcd(2216−1 mod 11227, 11227)

= gcd(1417, 11227) = 109

Great! We got a factor of 11227 without having to factor!
Why Worked 109 was a factor and 108 = 22 × 33, small factors.

Making the Example Work

Want to factor 11227.
If p is a prime factor of 11227. We do not know p.

1. p divides 11227

2. p divides 2p−1 − 1 (this is always true by Fermat’s little Thm)

3. p divides 2k(p−1) − 1 mod 11227 for any k

4. Raise 2 to a power that we hope has p − 1 as a divisor.

gcd(22
3×33−1 mod 11227, 11227) = gcd(2216−1 mod 11227, 11227)

= gcd(1417, 11227) = 109

Great! We got a factor of 11227 without having to factor!
Why Worked 109 was a factor and 108 = 22 × 33, small factors.

Making the Example Work

Want to factor 11227.
If p is a prime factor of 11227. We do not know p.

1. p divides 11227

2. p divides 2p−1 − 1 (this is always true by Fermat’s little Thm)

3. p divides 2k(p−1) − 1 mod 11227 for any k

4. Raise 2 to a power that we hope has p − 1 as a divisor.

gcd(22
3×33−1 mod 11227, 11227) = gcd(2216−1 mod 11227, 11227)

= gcd(1417, 11227) = 109

Great! We got a factor of 11227 without having to factor!
Why Worked 109 was a factor and 108 = 22 × 33, small factors.

Making the Example Work

Want to factor 11227.
If p is a prime factor of 11227. We do not know p.

1. p divides 11227

2. p divides 2p−1 − 1 (this is always true by Fermat’s little Thm)

3. p divides 2k(p−1) − 1 mod 11227 for any k

4. Raise 2 to a power that we hope has p − 1 as a divisor.

gcd(22
3×33−1 mod 11227, 11227) = gcd(2216−1 mod 11227, 11227)

= gcd(1417, 11227) = 109

Great! We got a factor of 11227 without having to factor!
Why Worked 109 was a factor and 108 = 22 × 33, small factors.

Making the Example Work

Want to factor 11227.
If p is a prime factor of 11227. We do not know p.

1. p divides 11227

2. p divides 2p−1 − 1 (this is always true by Fermat’s little Thm)

3. p divides 2k(p−1) − 1 mod 11227 for any k

4. Raise 2 to a power that we hope has p − 1 as a divisor.

gcd(22
3×33−1 mod 11227, 11227) = gcd(2216−1 mod 11227, 11227)

= gcd(1417, 11227) = 109

Great! We got a factor of 11227 without having to factor!

Why Worked 109 was a factor and 108 = 22 × 33, small factors.

Making the Example Work

Want to factor 11227.
If p is a prime factor of 11227. We do not know p.

1. p divides 11227

2. p divides 2p−1 − 1 (this is always true by Fermat’s little Thm)

3. p divides 2k(p−1) − 1 mod 11227 for any k

4. Raise 2 to a power that we hope has p − 1 as a divisor.

gcd(22
3×33−1 mod 11227, 11227) = gcd(2216−1 mod 11227, 11227)

= gcd(1417, 11227) = 109

Great! We got a factor of 11227 without having to factor!
Why Worked 109 was a factor and 108 = 22 × 33, small factors.

General Idea

Fermat’s Little Theorem If p is prime and a is coprime to p
then ap−1 ≡ 1 (mod p).

Idea ap−1 − 1 ≡ 0 (mod p). Pick an a at random. If p is a factor
of N then:

I p divides ap−1 − 1 (always).

I p divides N (our hypothesis).

I Hence gcd(ap−1 − 1 mod N,N) will be a factor of N.

Two problems:

I The GCD might be 1 or N. Thats okay- we can try another a.

I We don’t have p. If we did, we’d be done!

General Idea

Fermat’s Little Theorem If p is prime and a is coprime to p
then ap−1 ≡ 1 (mod p).

Idea ap−1 − 1 ≡ 0 (mod p). Pick an a at random. If p is a factor
of N then:

I p divides ap−1 − 1 (always).

I p divides N (our hypothesis).

I Hence gcd(ap−1 − 1 mod N,N) will be a factor of N.

Two problems:

I The GCD might be 1 or N. Thats okay- we can try another a.

I We don’t have p. If we did, we’d be done!

General Idea

Fermat’s Little Theorem If p is prime and a is coprime to p
then ap−1 ≡ 1 (mod p).

Idea ap−1 − 1 ≡ 0 (mod p). Pick an a at random. If p is a factor
of N then:

I p divides ap−1 − 1 (always).

I p divides N (our hypothesis).

I Hence gcd(ap−1 − 1 mod N,N) will be a factor of N.

Two problems:

I The GCD might be 1 or N. Thats okay- we can try another a.

I We don’t have p. If we did, we’d be done!

General Idea

Fermat’s Little Theorem If p is prime and a is coprime to p
then ap−1 ≡ 1 (mod p).

Idea ap−1 − 1 ≡ 0 (mod p). Pick an a at random. If p is a factor
of N then:

I p divides ap−1 − 1 (always).

I p divides N (our hypothesis).

I Hence gcd(ap−1 − 1 mod N,N) will be a factor of N.

Two problems:

I The GCD might be 1 or N. Thats okay- we can try another a.

I We don’t have p. If we did, we’d be done!

General Idea

Fermat’s Little Theorem If p is prime and a is coprime to p
then ap−1 ≡ 1 (mod p).

Idea ap−1 − 1 ≡ 0 (mod p). Pick an a at random. If p is a factor
of N then:

I p divides ap−1 − 1 (always).

I p divides N (our hypothesis).

I Hence gcd(ap−1 − 1 mod N,N) will be a factor of N.

Two problems:

I The GCD might be 1 or N. Thats okay- we can try another a.

I We don’t have p. If we did, we’d be done!

General Idea

Fermat’s Little Theorem If p is prime and a is coprime to p
then ap−1 ≡ 1 (mod p).

Idea ap−1 − 1 ≡ 0 (mod p). Pick an a at random. If p is a factor
of N then:

I p divides ap−1 − 1 (always).

I p divides N (our hypothesis).

I Hence gcd(ap−1 − 1 mod N,N) will be a factor of N.

Two problems:

I The GCD might be 1 or N. Thats okay- we can try another a.

I We don’t have p. If we did, we’d be done!

General Idea

Fermat’s Little Theorem If p is prime and a is coprime to p
then ap−1 ≡ 1 (mod p).

Idea ap−1 − 1 ≡ 0 (mod p). Pick an a at random. If p is a factor
of N then:

I p divides ap−1 − 1 (always).

I p divides N (our hypothesis).

I Hence gcd(ap−1 − 1 mod N,N) will be a factor of N.

Two problems:

I The GCD might be 1 or N. Thats okay- we can try another a.

I We don’t have p. If we did, we’d be done!

General Idea

Fermat’s Little Theorem If p is prime and a is coprime to p
then ap−1 ≡ 1 (mod p).

Idea ap−1 − 1 ≡ 0 (mod p). Pick an a at random. If p is a factor
of N then:

I p divides ap−1 − 1 (always).

I p divides N (our hypothesis).

I Hence gcd(ap−1 − 1 mod N,N) will be a factor of N.

Two problems:

I The GCD might be 1 or N. Thats okay- we can try another a.

I We don’t have p. If we did, we’d be done!

Do You Believe in Hope ?

ap−1 ≡ 1 (mod p). So for all k , ak(p−1) ≡ 1 (mod p).

Idea Let M be a number with LOTS of factors.
Hope p − 1 is a factor of M.

Do You Believe in Hope ?

ap−1 ≡ 1 (mod p). So for all k , ak(p−1) ≡ 1 (mod p).
Idea Let M be a number with LOTS of factors.

Hope p − 1 is a factor of M.

Do You Believe in Hope ?

ap−1 ≡ 1 (mod p). So for all k , ak(p−1) ≡ 1 (mod p).
Idea Let M be a number with LOTS of factors.
Hope p − 1 is a factor of M.

Example of B,M

Let B be a parameter.

M =
∏

q≤B,q prime

qdlogq(B)e.

If B = 10
q = 2, dlog2(10)e = 3. So 23.
q = 3, dlog3(10)e = 4. So 34.
q = 5, dlog5(10)e = 2. So 52.
q = 7, dlog7(10)e = 2. So 72.

M = 24 × 34 × 52 × 72

If p − 1 = 2w3x5y7z where 0 ≤ w , x ≤ 4, 0 ≤ y , z ≤ 2 then

gcd(aM − 1,N) will be a multiple of p.

Example of B,M

Let B be a parameter.

M =
∏

q≤B,q prime

qdlogq(B)e.

If B = 10
q = 2, dlog2(10)e = 3. So 23.
q = 3, dlog3(10)e = 4. So 34.
q = 5, dlog5(10)e = 2. So 52.
q = 7, dlog7(10)e = 2. So 72.

M = 24 × 34 × 52 × 72

If p − 1 = 2w3x5y7z where 0 ≤ w , x ≤ 4, 0 ≤ y , z ≤ 2 then

gcd(aM − 1,N) will be a multiple of p.

Example of B,M

Let B be a parameter.

M =
∏

q≤B,q prime

qdlogq(B)e.

If B = 10

q = 2, dlog2(10)e = 3. So 23.
q = 3, dlog3(10)e = 4. So 34.
q = 5, dlog5(10)e = 2. So 52.
q = 7, dlog7(10)e = 2. So 72.

M = 24 × 34 × 52 × 72

If p − 1 = 2w3x5y7z where 0 ≤ w , x ≤ 4, 0 ≤ y , z ≤ 2 then

gcd(aM − 1,N) will be a multiple of p.

Example of B,M

Let B be a parameter.

M =
∏

q≤B,q prime

qdlogq(B)e.

If B = 10
q = 2, dlog2(10)e = 3. So 23.

q = 3, dlog3(10)e = 4. So 34.
q = 5, dlog5(10)e = 2. So 52.
q = 7, dlog7(10)e = 2. So 72.

M = 24 × 34 × 52 × 72

If p − 1 = 2w3x5y7z where 0 ≤ w , x ≤ 4, 0 ≤ y , z ≤ 2 then

gcd(aM − 1,N) will be a multiple of p.

Example of B,M

Let B be a parameter.

M =
∏

q≤B,q prime

qdlogq(B)e.

If B = 10
q = 2, dlog2(10)e = 3. So 23.
q = 3, dlog3(10)e = 4. So 34.

q = 5, dlog5(10)e = 2. So 52.
q = 7, dlog7(10)e = 2. So 72.

M = 24 × 34 × 52 × 72

If p − 1 = 2w3x5y7z where 0 ≤ w , x ≤ 4, 0 ≤ y , z ≤ 2 then

gcd(aM − 1,N) will be a multiple of p.

Example of B,M

Let B be a parameter.

M =
∏

q≤B,q prime

qdlogq(B)e.

If B = 10
q = 2, dlog2(10)e = 3. So 23.
q = 3, dlog3(10)e = 4. So 34.
q = 5, dlog5(10)e = 2. So 52.

q = 7, dlog7(10)e = 2. So 72.

M = 24 × 34 × 52 × 72

If p − 1 = 2w3x5y7z where 0 ≤ w , x ≤ 4, 0 ≤ y , z ≤ 2 then

gcd(aM − 1,N) will be a multiple of p.

Example of B,M

Let B be a parameter.

M =
∏

q≤B,q prime

qdlogq(B)e.

If B = 10
q = 2, dlog2(10)e = 3. So 23.
q = 3, dlog3(10)e = 4. So 34.
q = 5, dlog5(10)e = 2. So 52.
q = 7, dlog7(10)e = 2. So 72.

M = 24 × 34 × 52 × 72

If p − 1 = 2w3x5y7z where 0 ≤ w , x ≤ 4, 0 ≤ y , z ≤ 2 then

gcd(aM − 1,N) will be a multiple of p.

Example of B,M

Let B be a parameter.

M =
∏

q≤B,q prime

qdlogq(B)e.

If B = 10
q = 2, dlog2(10)e = 3. So 23.
q = 3, dlog3(10)e = 4. So 34.
q = 5, dlog5(10)e = 2. So 52.
q = 7, dlog7(10)e = 2. So 72.

M = 24 × 34 × 52 × 72

If p − 1 = 2w3x5y7z where 0 ≤ w , x ≤ 4, 0 ≤ y , z ≤ 2 then

gcd(aM − 1,N) will be a multiple of p.

Example of B,M

Let B be a parameter.

M =
∏

q≤B,q prime

qdlogq(B)e.

If B = 10
q = 2, dlog2(10)e = 3. So 23.
q = 3, dlog3(10)e = 4. So 34.
q = 5, dlog5(10)e = 2. So 52.
q = 7, dlog7(10)e = 2. So 72.

M = 24 × 34 × 52 × 72

If p − 1 = 2w3x5y7z where 0 ≤ w , x ≤ 4, 0 ≤ y , z ≤ 2 then

gcd(aM − 1,N) will be a multiple of p.

Example of B,M

Let B be a parameter.

M =
∏

q≤B,q prime

qdlogq(B)e.

If B = 10
q = 2, dlog2(10)e = 3. So 23.
q = 3, dlog3(10)e = 4. So 34.
q = 5, dlog5(10)e = 2. So 52.
q = 7, dlog7(10)e = 2. So 72.

M = 24 × 34 × 52 × 72

If p − 1 = 2w3x5y7z where 0 ≤ w , x ≤ 4, 0 ≤ y , z ≤ 2 then

gcd(aM − 1,N) will be a multiple of p.

Do You Believe in Hope ? The Algorithm

Parameter B and hence also

M =
∏

q≤B,q prime

qdlogq(B)e.

FOUND = FALSE

while NOT FOUND

a=RAND(1,N-1)

d=GCD(a^M-1,N)

if d=1 then increase B

if d=N then decrease B

if (d NE 1) and (d NE N) then FOUND=TRUE

output(d)

FACT If p− 1 has all factors ≤ B then runtime is B logB(logN)2.
FACT B big then runtime Bad but prob works.
FACT Works well if p − 1 only has small factors.

Do You Believe in Hope ? The Algorithm

Parameter B and hence also

M =
∏

q≤B,q prime

qdlogq(B)e.

FOUND = FALSE

while NOT FOUND

a=RAND(1,N-1)

d=GCD(a^M-1,N)

if d=1 then increase B

if d=N then decrease B

if (d NE 1) and (d NE N) then FOUND=TRUE

output(d)

FACT If p− 1 has all factors ≤ B then runtime is B logB(logN)2.
FACT B big then runtime Bad but prob works.
FACT Works well if p − 1 only has small factors.

Do You Believe in Hope ? The Algorithm

Parameter B and hence also

M =
∏

q≤B,q prime

qdlogq(B)e.

FOUND = FALSE

while NOT FOUND

a=RAND(1,N-1)

d=GCD(a^M-1,N)

if d=1 then increase B

if d=N then decrease B

if (d NE 1) and (d NE N) then FOUND=TRUE

output(d)

FACT If p− 1 has all factors ≤ B then runtime is B logB(logN)2.

FACT B big then runtime Bad but prob works.
FACT Works well if p − 1 only has small factors.

Do You Believe in Hope ? The Algorithm

Parameter B and hence also

M =
∏

q≤B,q prime

qdlogq(B)e.

FOUND = FALSE

while NOT FOUND

a=RAND(1,N-1)

d=GCD(a^M-1,N)

if d=1 then increase B

if d=N then decrease B

if (d NE 1) and (d NE N) then FOUND=TRUE

output(d)

FACT If p− 1 has all factors ≤ B then runtime is B logB(logN)2.
FACT B big then runtime Bad but prob works.

FACT Works well if p − 1 only has small factors.

Do You Believe in Hope ? The Algorithm

Parameter B and hence also

M =
∏

q≤B,q prime

qdlogq(B)e.

FOUND = FALSE

while NOT FOUND

a=RAND(1,N-1)

d=GCD(a^M-1,N)

if d=1 then increase B

if d=N then decrease B

if (d NE 1) and (d NE N) then FOUND=TRUE

output(d)

FACT If p− 1 has all factors ≤ B then runtime is B logB(logN)2.
FACT B big then runtime Bad but prob works.
FACT Works well if p − 1 only has small factors.

In Practice

A rule-of-thumb in practice is to take B ∼ N1/6.

1. Fairly big so the M will be big enough.

2. Run time N1/6(logN)3 pretty good, though still exp in logN.

3. Warning This does not mean we have an N1/6(logN)3

algorithm for factoring. It only means we have that if p − 1
has all factors ≤ N1/6.

In Practice

A rule-of-thumb in practice is to take B ∼ N1/6.

1. Fairly big so the M will be big enough.

2. Run time N1/6(logN)3 pretty good, though still exp in logN.

3. Warning This does not mean we have an N1/6(logN)3

algorithm for factoring. It only means we have that if p − 1
has all factors ≤ N1/6.

In Practice

A rule-of-thumb in practice is to take B ∼ N1/6.

1. Fairly big so the M will be big enough.

2. Run time N1/6(logN)3 pretty good, though still exp in logN.

3. Warning This does not mean we have an N1/6(logN)3

algorithm for factoring. It only means we have that if p − 1
has all factors ≤ N1/6.

In Practice

A rule-of-thumb in practice is to take B ∼ N1/6.

1. Fairly big so the M will be big enough.

2. Run time N1/6(logN)3 pretty good, though still exp in logN.

3. Warning This does not mean we have an N1/6(logN)3

algorithm for factoring. It only means we have that if p − 1
has all factors ≤ N1/6.

Advice for Alice and Bob

1. Want p, q primes such that p − 1 and q − 1 have some large
factors.

2. Do we know a way to make sure that p − 1 and q − 1 have
some large factors?

3. Make p, q safe primes . Then p − 1 = 2r where r is prime,
and q − 1 = 2s where s is prime.

The usual lesson, so I sound like a broken record, not that
your generation knows what a broken record sounds like or
even is Because of Pollard’s p − 1 algorithm, Alice and Bob need
to use safe primes. A new way to up their game .

Advice for Alice and Bob

1. Want p, q primes such that p − 1 and q − 1 have some large
factors.

2. Do we know a way to make sure that p − 1 and q − 1 have
some large factors?

3. Make p, q safe primes . Then p − 1 = 2r where r is prime,
and q − 1 = 2s where s is prime.

The usual lesson, so I sound like a broken record, not that
your generation knows what a broken record sounds like or
even is Because of Pollard’s p − 1 algorithm, Alice and Bob need
to use safe primes. A new way to up their game .

Advice for Alice and Bob

1. Want p, q primes such that p − 1 and q − 1 have some large
factors.

2. Do we know a way to make sure that p − 1 and q − 1 have
some large factors?

3. Make p, q safe primes . Then p − 1 = 2r where r is prime,
and q − 1 = 2s where s is prime.

The usual lesson, so I sound like a broken record, not that
your generation knows what a broken record sounds like or
even is Because of Pollard’s p − 1 algorithm, Alice and Bob need
to use safe primes. A new way to up their game .

Advice for Alice and Bob

1. Want p, q primes such that p − 1 and q − 1 have some large
factors.

2. Do we know a way to make sure that p − 1 and q − 1 have
some large factors?

3. Make p, q safe primes . Then p − 1 = 2r where r is prime,
and q − 1 = 2s where s is prime.

The usual lesson, so I sound like a broken record, not that
your generation knows what a broken record sounds like or
even is Because of Pollard’s p − 1 algorithm, Alice and Bob need
to use safe primes. A new way to up their game .

Advice for Alice and Bob

1. Want p, q primes such that p − 1 and q − 1 have some large
factors.

2. Do we know a way to make sure that p − 1 and q − 1 have
some large factors?

3. Make p, q safe primes . Then p − 1 = 2r where r is prime,
and q − 1 = 2s where s is prime.

The usual lesson, so I sound like a broken record, not that
your generation knows what a broken record sounds like or
even is Because of Pollard’s p − 1 algorithm, Alice and Bob need
to use safe primes. A new way to up their game .

BILL STOP
RECORDING

