BILL RECORD THIS LECTURE

・ロト・日本・日本・日本・日本・日本・日本

Affine and Quadratic Ciphers

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

The Affine Ciphers

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Recall: Shift cipher with shift $s \in \{0, \ldots, 25\}$.

- 1. Encrypt via $x \rightarrow x + s \pmod{26}$.
- 2. Decrypt via $x \rightarrow x s \pmod{26}$.

We replace x + s with more elaborate functions.

Def The Affine cipher with $a, b \in \{0, \ldots, 25\}$:

- 1. Encrypt via $x \rightarrow ax + b \pmod{26}$.
- 2. Decrypt via $x \to a^{-1}(x-b) \pmod{26}$.

Recall: Shift cipher with shift $s \in \{0, \ldots, 25\}$.

- 1. Encrypt via $x \rightarrow x + s \pmod{26}$.
- 2. Decrypt via $x \rightarrow x s \pmod{26}$.

We replace x + s with more elaborate functions.

Def The Affine cipher with $a, b \in \{0, \ldots, 25\}$:

- 1. Encrypt via $x \rightarrow ax + b \pmod{26}$.
- 2. Decrypt via $x \to a^{-1}(x-b) \pmod{26}$.

Does this work? Vote YES or NO or OTHER.

Recall: Shift cipher with shift $s \in \{0, \ldots, 25\}$.

- 1. Encrypt via $x \rightarrow x + s \pmod{26}$.
- 2. Decrypt via $x \rightarrow x s \pmod{26}$.

We replace x + s with more elaborate functions.

Def The Affine cipher with $a, b \in \{0, \ldots, 25\}$:

- 1. Encrypt via $x \rightarrow ax + b \pmod{26}$.
- 2. Decrypt via $x \to a^{-1}(x-b) \pmod{26}$.

Does this work? Vote YES or NO or OTHER. Answer: OTHER

Recall: Shift cipher with shift $s \in \{0, \ldots, 25\}$.

- 1. Encrypt via $x \rightarrow x + s \pmod{26}$.
- 2. Decrypt via $x \rightarrow x s \pmod{26}$.

We replace x + s with more elaborate functions.

Def The Affine cipher with $a, b \in \{0, \ldots, 25\}$:

- 1. Encrypt via $x \rightarrow ax + b \pmod{26}$.
- 2. Decrypt via $x \to a^{-1}(x-b) \pmod{26}$.

Does this work? Vote YES or NO or OTHER. Answer: OTHER 2x + 1 does not work: 0 and 13 both map to 1.

Recall: Shift cipher with shift $s \in \{0, \ldots, 25\}$.

- 1. Encrypt via $x \rightarrow x + s \pmod{26}$.
- 2. Decrypt via $x \rightarrow x s \pmod{26}$.

We replace x + s with more elaborate functions.

Def The Affine cipher with $a, b \in \{0, \ldots, 25\}$:

- 1. Encrypt via $x \rightarrow ax + b \pmod{26}$.
- 2. Decrypt via $x \to a^{-1}(x-b) \pmod{26}$.

Does this work? Vote YES or NO or OTHER. Answer: OTHER 2x + 1 does not work: 0 and 13 both map to 1. Need the map to be a bijection so it will have an inverse.

Recall: Shift cipher with shift $s \in \{0, \ldots, 25\}$.

- 1. Encrypt via $x \rightarrow x + s \pmod{26}$.
- 2. Decrypt via $x \rightarrow x s \pmod{26}$.

We replace x + s with more elaborate functions.

Def The Affine cipher with $a, b \in \{0, \ldots, 25\}$:

- 1. Encrypt via $x \rightarrow ax + b \pmod{26}$.
- 2. Decrypt via $x \to a^{-1}(x-b) \pmod{26}$.

Does this work? Vote YES or NO or OTHER. Answer: OTHER 2x + 1 does not work: 0 and 13 both map to 1. Need the map to be a bijection so it will have an inverse.

Condition on a, b so that $x \to ax + b$ is a bij: a rel prime to 26. Condition on a, b so that a has an inv mod 26: a rel prime to 26.

Recall: Shift cipher with shift $s \in \{0, \ldots, 25\}$.

- 1. Encrypt via $x \rightarrow x + s \pmod{26}$.
- 2. Decrypt via $x \rightarrow x s \pmod{26}$.

We replace x + s with more elaborate functions.

Def The Affine cipher with $a, b \in \{0, \ldots, 25\}$:

- 1. Encrypt via $x \rightarrow ax + b \pmod{26}$.
- 2. Decrypt via $x \to a^{-1}(x-b) \pmod{26}$.

Does this work? Vote YES or NO or OTHER. Answer: OTHER 2x + 1 does not work: 0 and 13 both map to 1. Need the map to be a bijection so it will have an inverse.

Condition on *a*, *b* so that $x \to ax + b$ is a bij: *a* rel prime to 26. Condition on *a*, *b* so that *a* has an inv mod 26: *a* rel prime to 26. This is achieved by making *a* relatively prime to 26. Note Also $a \in \{1, ..., 25\}$ and $b \in \{0, ..., 25\}$. We will not mention this again.

Shift vs Affine

Shift: Key space is size 26.

Affine: Key space is $\{1,3,5,7,9,11,15,17,19,21,23,25\}\times\{0,\ldots,25\}$ which has $12\times 26=312$ elements.

In an Earlier Era Affine would be harder to crack than Shift.

Shift vs Affine

Shift: Key space is size 26.

Affine: Key space is $\{1,3,5,7,9,11,15,17,19,21,23,25\} \times \{0,\ldots,25\}$ which has $12 \times 26 = 312$ elements.

In an Earlier Era Affine would be harder to crack than Shift.

ション ふゆ アメビア メロア しょうくり

Today They are both easy to crack.

Shift vs Affine

Shift: Key space is size 26.

Affine: Key space is $\{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\} \times \{0, \dots, 25\}$ which has $12 \times 26 = 312$ elements.

In an Earlier Era Affine would be harder to crack than Shift.

Today They are both easy to crack.

Both Need: The **Is-English** algorithm. Reading through 312 transcripts to see which one **looks like English** would take A LOT of time!

Key Length of Shift and Affine Ciphers

Let's look at the keys for Shift and Affine.

- 1. Shift cipher key in $\{0, \ldots, 25\}$. 5 bits.
- 2. Affine cipher Key in

 $\{1,3,5,7,9,11,15,17,19,21,23,25\}\times\{0,\ldots,25\}.$ 312 keys, need 9 bits.

ション ふゆ アメリア メリア しょうくしゃ

If Alice and Bob use the Affine Cipher with alphabet of size m:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

If Alice and Bob use the Affine Cipher with alphabet of size m:

1. Alice picks a, b and must make sure that a is rel prime to m.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If Alice and Bob use the Affine Cipher with alphabet of size m:

- 1. Alice picks a, b and must make sure that a is rel prime to m.
- 2. Bob must compute the inverse of $a \mod m$ in order to decode.

If Alice and Bob use the Affine Cipher with alphabet of size m:

- 1. Alice picks a, b and must make sure that a is rel prime to m.
- 2. Bob must compute the inverse of *a* mod *m* in order to decode.
- 3. If Alice wants to also get messages and decode them, she also has to compute the inverse of *a* mod *m* in order to decode.

If $\Sigma = \{a, \ldots, z\}$ (size 26) then, as we saw, the set is

 $\{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$ 12 possibilities

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If $\Sigma = \{a, \dots, z\}$ (size 26) then, as we saw, the set is $\{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$ 12 possibilities If $\Sigma = \{a, \dots, z, 0, \dots, 9\}$ (size 36) then, as we saw, the set is $\{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35\}$ 12 possibilities

If $\Sigma = \{a, \ldots, z\}$ (size 26) then, as we saw, the set is {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25} 12 possibilities If $\Sigma = \{a, \ldots, z, 0, \ldots, 9\}$ (size 36) then, as we saw, the set is {1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35} 12 possibilities If $\Sigma = \{a, \ldots, z, 0, \ldots, 9, \#\}$ (size 37) then, as we saw, the set is $\{1, \ldots, 36\}$ 36 possibilities

If
$$\Sigma = \{a, ..., z\}$$
 (size 26) then, as we saw, the set is
 $\{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$ 12 possibilities
If $\Sigma = \{a, ..., z, 0, ..., 9\}$ (size 36) then, as we saw, the set is
 $\{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35\}$ 12 possibilities
If $\Sigma = \{a, ..., z, 0, ..., 9, \#\}$ (size 37) then, as we saw, the set is
 $\{1, ..., 36\}$ 36 possibilities

If given *m*, want to know how many elements in $\{1, \ldots, m-1\}$ are relatively prime to *m*.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

If
$$\Sigma = \{a, ..., z\}$$
 (size 26) then, as we saw, the set is
 $\{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$ 12 possibilities
If $\Sigma = \{a, ..., z, 0, ..., 9\}$ (size 36) then, as we saw, the set is
 $\{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35\}$ 12 possibilities
If $\Sigma = \{a, ..., z, 0, ..., 9, \#\}$ (size 37) then, as we saw, the set is
 $\{1, ..., 36\}$ 36 possibilities

If given m, want to know how many elements in $\{1, \ldots, m-1\}$ are relatively prime to m. Will be on HW.

Finding Inverse Mod n

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Finding Inverses Given *a*, find $a^{-1} \pmod{n}$.

Finding Inverses Given *a*, find $a^{-1} \pmod{n}$. There is a fast algorithm for this problem.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Finding Inverses Given *a*, find $a^{-1} \pmod{n}$. There is a fast algorithm for this problem. This algorithm is used a lot:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Finding Inverses Given *a*, find $a^{-1} \pmod{n}$. There is a fast algorithm for this problem. This algorithm is used a lot:

1. Affine cipher over alphabet of size *n*, need to know if *a* has an inverse, and if so, what it is.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Finding Inverses Given *a*, find $a^{-1} \pmod{n}$. There is a fast algorithm for this problem. This algorithm is used a lot:

1. Affine cipher over alphabet of size *n*, need to know if *a* has an inverse, and if so, what it is.

2. (Later) Cracking psuedo-random ciphers.

Finding Inverses Given *a*, find $a^{-1} \pmod{n}$. There is a fast algorithm for this problem. This algorithm is used a lot:

1. Affine cipher over alphabet of size *n*, need to know if *a* has an inverse, and if so, what it is.

- 2. (Later) Cracking psuedo-random ciphers.
- 3. (Later) Implementing RSA.

Finding Inverses Given *a*, find $a^{-1} \pmod{n}$. There is a fast algorithm for this problem. This algorithm is used a lot:

1. Affine cipher over alphabet of size *n*, need to know if *a* has an inverse, and if so, what it is.

- 2. (Later) Cracking psuedo-random ciphers.
- 3. (Later) Implementing RSA.
- 4. (Later) Cracking RSA.

Finding Inverses Given *a*, find $a^{-1} \pmod{n}$. There is a fast algorithm for this problem. This algorithm is used a lot:

1. Affine cipher over alphabet of size *n*, need to know if *a* has an inverse, and if so, what it is.

- 2. (Later) Cracking psuedo-random ciphers.
- 3. (Later) Implementing RSA.
- 4. (Later) Cracking RSA.
- 5. (Later) Factoring Algorithms.

Finding Inverses Given *a*, find $a^{-1} \pmod{n}$. There is a fast algorithm for this problem. This algorithm is used a lot:

1. Affine cipher over alphabet of size *n*, need to know if *a* has an inverse, and if so, what it is.

- 2. (Later) Cracking psuedo-random ciphers.
- 3. (Later) Implementing RSA.
- 4. (Later) Cracking RSA.
- 5. (Later) Factoring Algorithms.
- 6. Many Many Others!

Greatest Common Divisor (GCD)

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n. **Examples** GCD(10, 15) =

Greatest Common Divisor (GCD)

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n. **Examples** GCD(10, 15) = 5

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n. **Examples** GCD(10, 15) = 5GCD(11, 15) =

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n. **Examples** GCD(10, 15) = 5GCD(11, 15) = 1

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n. **Examples** GCD(10, 15) = 5 GCD(11, 15) = 1GCD(12, 15) =

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n. **Examples** GCD(10, 15) = 5 GCD(11, 15) = 1GCD(12, 15) = 3

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n. **Examples** GCD(10, 15) = 5 GCD(11, 15) = 1 GCD(12, 15) = 3GCD(13, 15) =

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n. **Examples** GCD(10, 15) = 5 GCD(11, 15) = 1GCD(12, 15) = 3

GCD(13, 15) =1

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n. **Examples** GCD(10, 15) = 5 GCD(11, 15) = 1 GCD(12, 15) = 3GCD(13, 15) = 1

 $\operatorname{GCD}(14,15) =$

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n. **Examples** GCD(10, 15) = 5 GCD(11, 15) = 1 GCD(12, 15) = 3GCD(13, 15) = 1

GCD(14, 15) = 1

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n. **Examples** GCD(10, 15) = 5 GCD(11, 15) = 1 GCD(12, 15) = 3 GCD(13, 15) = 1 GCD(14, 15) = 1GCD(15, 15) =

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n. **Examples** GCD(10, 15) = 5 GCD(11, 15) = 1 GCD(12, 15) = 3 GCD(13, 15) = 1 GCD(14, 15) = 1GCD(15, 15) = 15

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n. **Examples** GCD(10, 15) = 5 GCD(11, 15) = 1 GCD(12, 15) = 3 GCD(13, 15) = 1 GCD(14, 15) = 1 GCD(15, 15) = 15GCD(15, 24) =

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n. **Examples** GCD(10, 15) =5 GCD(11, 15) =1 GCD(12, 15) =3 GCD(13, 15) =1 GCD(14, 15) =1 GCD(15, 15) =15 GCD(15, 24) =3

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n. Examples GCD(10, 15) = 5GCD(11, 15) = 1GCD(12, 15) = 3GCD(13, 15) = 1GCD(14, 15) = 1GCD(15, 15) =15 GCD(15, 24) =3 GCD(15, 25) =

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n. Examples GCD(10, 15) = 5GCD(11, 15) = 1GCD(12, 15) = 3GCD(13, 15) = 1GCD(14, 15) = 1GCD(15, 15) =15 GCD(15, 24) =3 GCD(15, 25) =5

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n. Examples GCD(10, 15) = 5GCD(11, 15) = 1GCD(12, 15) = 3GCD(13, 15) = 1GCD(14, 15) = 1GCD(15, 15) =15 GCD(15, 24) =3 GCD(15, 25) =5 GCD(15, 30) =

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n. Examples GCD(10, 15) = 5GCD(11, 15) = 1GCD(12, 15) = 3GCD(13, 15) = 1GCD(14, 15) = 1GCD(15, 15) =15 GCD(15, 24) =3 GCD(15, 25) =5 GCD(15, 30) =15

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n. Examples GCD(10, 15) = 5GCD(11, 15) = 1GCD(12, 15) = 3GCD(13, 15) = 1GCD(14, 15) = 1GCD(15, 15) =15 GCD(15, 24) =3 GCD(15, 25) =5 GCD(15, 30) =15 GCD(15, 0) =

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n. Examples GCD(10, 15) = 5GCD(11, 15) = 1GCD(12, 15) = 3GCD(13, 15) = 1GCD(14, 15) = 1GCD(15, 15) =15 GCD(15, 24) =3 GCD(15, 25) =5 GCD(15, 30) =15 GCD(15,0) =15

```
We first need to look at GCD.
GCD(m, n) is the largest number that divides m AND n.
Examples
GCD(10, 15) = 5
GCD(11, 15) = 1
GCD(12, 15) = 3
GCD(13, 15) = 1
GCD(14, 15) = 1
GCD(15, 15) =15
GCD(15, 24) = 3
GCD(15, 25) =5
GCD(15, 30) =15
GCD(15,0) = 15 (we will discuss GCD(a,0) = a later)
```

d is largest divisor of ${\color{blue}{both}}$ 404 and 192 IFF

d is largest divisor of 192 and 404 - 192 = 212.

d is largest divisor of ${\color{blue}{both}}$ 404 and 192 IFF

d is largest divisor of 192 and 404 - 192 = 212. Hence GCD(404,192)=GCD(192,404-192)=GCD(192,212).

d is largest divisor of **both** 404 and 192 IFF

d is largest divisor of 192 and 404 - 192 = 212. Hence GCD(404,192)=GCD(192,404-192)=GCD(192,212).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

d is largest divisor of **both** 212 and 192 IFF

d is largest divisor of 212 and 212 - 192 = 20.

d is largest divisor of **both** 404 and 192 IFF

d is largest divisor of 192 and 404 - 192 = 212. Hence GCD(404,192)=GCD(192,404-192)=GCD(192,212).

d is largest divisor of **both** 212 and 192 IFF

d is largest divisor of 212 and 212 - 192 = 20.

Hence GCD(212,192)=GCD(212-192,192)=GCD(20,192).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

```
d is largest divisor of both 404 and 192
IFF
d is largest divisor of 192 and 404 - 192 = 212.
Hence GCD(404,192)=GCD(192,404-192)=GCD(192,212).
```

d is largest divisor of **both** 212 and 192 IFF

d is largest divisor of 212 and 212 - 192 = 20.

Hence GCD(212,192)=GCD(212-192,192)=GCD(20,192).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Idea: Keep subtracting smaller from larger: GCD(404, 192) =

```
d is largest divisor of both 404 and 192
IFF
d is largest divisor of 192 and 404 - 192 = 212.
Hence GCD(404,192)=GCD(192,404-192)=GCD(192,212).
```

d is largest divisor of **both** 212 and 192 IFF

d is largest divisor of 212 and 212 - 192 = 20.

Hence GCD(212,192)=GCD(212-192,192)=GCD(20,192).

ション ふぼう メリン メリン しょうくしゃ

Idea: Keep subtracting smaller from larger: GCD(404, 192) = GCD(404 - 192, 192) =

```
d is largest divisor of both 404 and 192
IFF
d is largest divisor of 192 and 404 - 192 = 212.
Hence GCD(404,192)=GCD(192,404-192)=GCD(192,212).
```

d is largest divisor of **both** 212 and 192 IFF

d is largest divisor of 212 and 212 - 192 = 20.

Hence GCD(212,192)=GCD(212-192,192)=GCD(20,192).

Idea: Keep subtracting smaller from larger: GCD(404, 192) = GCD(404 - 192, 192) = GCD(212, 192)=

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

```
d is largest divisor of both 404 and 192
IFF
d is largest divisor of 192 and 404 - 192 = 212.
Hence GCD(404,192)=GCD(192,404-192)=GCD(192,212).
```

d is largest divisor of **both** 212 and 192 IFF

d is largest divisor of 212 and 212 - 192 = 20.

Hence GCD(212,192)=GCD(212-192,192)=GCD(20,192).

Idea: Keep subtracting smaller from larger: GCD(404, 192) = GCD(404 - 192, 192) = GCD(212, 192)= GCD(212 - 192, 192) =

```
d is largest divisor of both 404 and 192
IFF
d is largest divisor of 192 and 404 - 192 = 212.
Hence GCD(404,192)=GCD(192,404-192)=GCD(192,212).
```

d is largest divisor of **both** 212 and 192 IFF

d is largest divisor of 212 and 212 - 192 = 20.

Hence GCD(212,192)=GCD(212-192,192)=GCD(20,192).

Idea: Keep subtracting smaller from larger: GCD(404, 192) = GCD(404 - 192, 192) = GCD(212, 192)= GCD(212 - 192, 192) = GCD(20, 192).

```
d is largest divisor of both 404 and 192
IFF
d is largest divisor of 192 and 404 - 192 = 212.
Hence GCD(404,192)=GCD(192,404-192)=GCD(192,212).
```

d is largest divisor of **both** 212 and 192 IFF

d is largest divisor of 212 and 212 - 192 = 20.

Hence GCD(212,192)=GCD(212-192,192)=GCD(20,192).

Idea: Keep subtracting smaller from larger: GCD(404, 192) = GCD(404 - 192, 192) = GCD(212, 192) = GCD(212 - 192, 192) = GCD(20, 192).Could keep going, but will be subtracting 20's for a while.

```
d is largest divisor of both 404 and 192
IFF
d is largest divisor of 192 and 404 - 192 = 212.
Hence GCD(404,192)=GCD(192,404-192)=GCD(192,212).
```

d is largest divisor of **both** 212 and 192 IFF

d is largest divisor of 212 and 212 - 192 = 20.

Hence GCD(212,192)=GCD(212-192,192)=GCD(20,192).

Idea: Keep subtracting smaller from larger: GCD(404, 192) = GCD(404 - 192, 192) = GCD(212, 192) = GCD(212 - 192, 192) = GCD(20, 192).Could keep going, but will be subtracting 20's for a while.

Idea: Subtract LOTS of 20's.

```
d is largest divisor of both 404 and 192
IFF
d is largest divisor of 192 and 404 - 192 = 212.
Hence GCD(404,192)=GCD(192,404-192)=GCD(192,212).
```

d is largest divisor of **both** 212 and 192 IFF

d is largest divisor of 212 and 212 - 192 = 20. Hence GCD(212,192)=GCD(212-192,192)=GCD(20,192).

Idea: Keep subtracting smaller from larger: GCD(404, 192) = GCD(404 - 192, 192) = GCD(212, 192)= GCD(212 - 192, 192) = GCD(20, 192).

Could keep going, but will be subtracting 20's for a while.

Idea: Subtract LOTS of 20's. Largest x: $192 - 20x \ge 0$, x = 9.

```
d is largest divisor of both 404 and 192
IFF
d is largest divisor of 192 and 404 - 192 = 212.
Hence GCD(404,192)=GCD(192,404-192)=GCD(192,212).
```

d is largest divisor of **both** 212 and 192 IFF

d is largest divisor of 212 and 212 - 192 = 20. Hence GCD(212,192)=GCD(212-192,192)=GCD(20,192).

Idea: Keep subtracting smaller from larger: GCD(404, 192) = GCD(404 - 192, 192) = GCD(212, 192) = GCD(212 - 192, 192) = GCD(20, 192).Could keep going, but will be subtracting 20's for a while.

Idea: Subtract LOTS of 20's. Largest $x : 192 - 20x \ge 0, x = 9$. = GCD(20, 192 - 20 × 9 = 12) = GCD(20 - 12, 12) = GCD(8, 12) = GCD(8, 12 - 8 = 4) = GCD(8 - 2 × 4, 4) = GCD(0, 4) = 4.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 $404=2\times192+20$

 $\begin{array}{l} 404 = 2 \times 192 + 20 \\ 192 = 9 \times 20 + 12 \end{array}$

 $\begin{array}{l} 404 = 2 \times 192 + 20 \\ 192 = 9 \times 20 + 12 \\ 20 = 1 \times 12 + 8 \end{array}$

 $\begin{array}{l} 404 = 2 \times 192 + 20 \\ 192 = 9 \times 20 + 12 \\ 20 = 1 \times 12 + 8 \\ 12 = 1 \times 8 + 4 \end{array}$

 $404 = 2 \times 192 + 20$ $192 = 9 \times 20 + 12$ $20 = 1 \times 12 + 8$ $12 = 1 \times 8 + 4$

 $8 = 4 \times 2 + 0$ STOP HERE and go back one: 4 is the GCD.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

 $404 = 2 \times 192 + 20$ $192 = 9 \times 20 + 12$ $20 = 1 \times 12 + 8$ $12 = 1 \times 8 + 4$ $8 = 4 \times 2 + 0$ STOP HERE and go back one: 4 is the GCD. Can use this to write 4 as a combination of 404 and 192

 $404 = 2 \times 192 + 20$ $192 = 9 \times 20 + 12$ $20 = 1 \times 12 + 8$ $12 = 1 \times 8 + 4$ $8 = 4 \times 2 + 0$ STOP HERE and go back one: 4 is the GCD. **Can use this to write 4 as a combination of 404 and 192** Write 4 as a combo of 12's and 8's: $4 = 12 - 1 \times 8$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

 $404 = 2 \times 192 + 20$

 $\begin{array}{l} 192 = 9 \times 20 + 12 \\ 20 = 1 \times 12 + 8 \\ 12 = 1 \times 8 + 4 \\ 8 = 4 \times 2 + 0 \text{ STOP HERE and go back one: 4 is the GCD.} \\ \hline \textbf{Can use this to write 4 as a combination of 404 and 192} \\ Write 4 as a combo of 12's and 8's: \\ 4 = 12 - 1 \times 8 \\ Write 8 as a combo of 20's and 12's: \\ 4 = 12 - 1 \times (20 - 12) = 2 \times 12 - 1 \times 20 \end{array}$

ション ふゆ アメリア メリア しょうくしゃ

 $404 = 2 \times 192 + 20$ $192 = 9 \times 20 + 12$ $20 = 1 \times 12 + 8$ $12 = 1 \times 8 + 4$ $8 = 4 \times 2 + 0$ STOP HERE and go back one: 4 is the GCD. Can use this to write 4 as a combination of 404 and 192 Write 4 as a combo of 12's and 8's: $4 = 12 - 1 \times 8$ Write 8 as a combo of 20's and 12's: $4 = 12 - 1 \times (20 - 12) = 2 \times 12 - 1 \times 20$ Write 12 as combo of 192's and 20's: $4 = 2 \times (192 - 9 \times 20) - 1 \times 20 = 2 \times 192 - 19 \times 20$

 $404 = 2 \times 192 + 20$ $192 = 9 \times 20 + 12$ $20 = 1 \times 12 + 8$ $12 = 1 \times 8 + 4$ $8 = 4 \times 2 + 0$ STOP HERE and go back one: 4 is the GCD. Can use this to write 4 as a combination of 404 and 192 Write 4 as a combo of 12's and 8's: $4 = 12 - 1 \times 8$ Write 8 as a combo of 20's and 12's: $4 = 12 - 1 \times (20 - 12) = 2 \times 12 - 1 \times 20$ Write 12 as combo of 192's and 20's: $4 = 2 \times (192 - 9 \times 20) - 1 \times 20 = 2 \times 192 - 19 \times 20$ Write 20 as a combo of 404 and 192: $4 = 2 \times 192 - 19 \times (404 - 2 \times 192) = 40 \times 192 - 19 \times 404$ **Upshot:** GCD(m, n) is a combo of m and n

 $101 = 2 \times 38 + 25$

 $101 = 2 \times 38 + 25$ $38 = 1 \times 25 + 13$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

```
101 = 2 \times 38 + 25 
38 = 1 \times 25 + 13 
25 = 1 \times 13 + 12
```

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

```
101 = 2 \times 38 + 25

38 = 1 \times 25 + 13

25 = 1 \times 13 + 12

13 = 12 + 1
```

```
\begin{array}{l} 101 = 2 \times 38 + 25 \\ 38 = 1 \times 25 + 13 \\ 25 = 1 \times 13 + 12 \\ 13 = 12 + 1 \\ 12 = 12 \times 1 + 0. \ \mbox{Go back one: } 1 \ \mbox{is the GCD.} \end{array}
```

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

 $\begin{array}{l} 101 = 2 \times 38 + 25 \\ 38 = 1 \times 25 + 13 \\ 25 = 1 \times 13 + 12 \\ 13 = 12 + 1 \\ 12 = 12 \times 1 + 0. \end{array} \text{ Go back one: } 1 \text{ is the GCD.} \end{array}$

 $1 = 13 - 12 = 13 - (25 - 13) = 2 \times 13 - 25$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

$$\begin{array}{l} 101 = 2 \times 38 + 25 \\ 38 = 1 \times 25 + 13 \\ 25 = 1 \times 13 + 12 \\ 13 = 12 + 1 \\ 12 = 12 \times 1 + 0. \end{array}$$
 Go back one: 1 is the GCD.

$$\begin{array}{l} 1 = 13 - 12 = 13 - (25 - 13) = 2 \times 13 - 25 \\ 1 = 2(38 - 25) - 25 = 2 \times 38 - 3 \times 25 \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{array}{l} 101 = 2 \times 38 + 25 \\ 38 = 1 \times 25 + 13 \\ 25 = 1 \times 13 + 12 \\ 13 = 12 + 1 \\ 12 = 12 \times 1 + 0. \end{array} \text{ Go back one: } 1 \text{ is the GCD.} \end{array}$$

$$1 = 13 - 12 = 13 - (25 - 13) = 2 \times 13 - 25$$

$$1 = 2(38 - 25) - 25 = 2 \times 38 - 3 \times 25$$

$$1 = 2 \times 38 - 3 \times (101 - 2 \times 38) = 8 \times 38 - 3 \times 101$$

(ロト (個) (E) (E) (E) (E) のへの

$$\begin{array}{l} 101 = 2 \times 38 + 25 \\ 38 = 1 \times 25 + 13 \\ 25 = 1 \times 13 + 12 \\ 13 = 12 + 1 \\ 12 = 12 \times 1 + 0. \end{array} \text{ Go back one: } 1 \text{ is the GCD.} \end{array}$$

$$1 = 13 - 12 = 13 - (25 - 13) = 2 \times 13 - 25$$

$$1 = 2(38 - 25) - 25 = 2 \times 38 - 3 \times 25$$

$$1 = 2 \times 38 - 3 \times (101 - 2 \times 38) = 8 \times 38 - 3 \times 101$$

$$1 = 8 \times 38 - 3 \times 101$$

Why is this interesting? Hint: What was our original goal?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$\begin{split} 101 &= 2 \times 38 + 25 \\ 38 &= 1 \times 25 + 13 \\ 25 &= 1 \times 13 + 12 \\ 13 &= 12 + 1 \\ 12 &= 12 \times 1 + 0. \end{split}$$
 Go back one: 1 is the GCD.

$$\begin{array}{l} 1 = 13 - 12 = 13 - (25 - 13) = 2 \times 13 - 25 \\ 1 = 2(38 - 25) - 25 = 2 \times 38 - 3 \times 25 \\ 1 = 2 \times 38 - 3 \times (101 - 2 \times 38) = 8 \times 38 - 3 \times 101 \\ 1 = 8 \times 38 - 3 \times 101 \\ \end{array}$$

Why is this interesting? Hint: What was our original goal?
Take both sides mod 101
 $1 \equiv 8 \times 38 \pmod{101}$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

$$\begin{split} 101 &= 2 \times 38 + 25 \\ 38 &= 1 \times 25 + 13 \\ 25 &= 1 \times 13 + 12 \\ 13 &= 12 + 1 \\ 12 &= 12 \times 1 + 0. \end{split}$$
 Go back one: 1 is the GCD.

$$\begin{array}{l} 1 = 13 - 12 = 13 - (25 - 13) = 2 \times 13 - 25 \\ 1 = 2(38 - 25) - 25 = 2 \times 38 - 3 \times 25 \\ 1 = 2 \times 38 - 3 \times (101 - 2 \times 38) = 8 \times 38 - 3 \times 101 \\ 1 = 8 \times 38 - 3 \times 101 \\ \end{array}$$

Why is this interesting? Hint: What was our original goal?
Take both sides mod 101
$$1 \equiv 8 \times 38 \pmod{101}$$

8 is the inverse of 38 mod 101

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

$\operatorname{GCD}(x, \mathbf{0})$

Two things about GCD I want to clarify.

• Why is GCD(x, 0) = x for $x \ge 1$?

When does the algorithm stop?

 $404 = 2 \times 192 + 20$

 $\begin{array}{l} 404 = 2 \times 192 + 20 \\ 192 = 9 \times 20 + 12 \end{array}$

 $\begin{array}{l} 404 = 2 \times 192 + 20 \\ 192 = 9 \times 20 + 12 \\ 20 = 1 \times 12 + 8 \end{array}$


```
404 = 2 \times 192 + 20

192 = 9 \times 20 + 12

20 = 1 \times 12 + 8

12 = 1 \times 8 + 4
```


 $404 = 2 \times 192 + 20$ $192 = 9 \times 20 + 12$ $20 = 1 \times 12 + 8$ $12 = 1 \times 8 + 4$ $8 = 4 \times 2 + 0$ STOP WHEN GET 0. Go back one: 4 is GCD.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

```
404 = 2 \times 192 + 20

192 = 9 \times 20 + 12

20 = 1 \times 12 + 8

12 = 1 \times 8 + 4

8 = 4 \times 2 + 0 STOP WHEN GET 0. Go back one: 4 is GCD.

Lets look at what the algorithm actually does:
```

 $404 = 2 \times 192 + 20$ $192 = 9 \times 20 + 12$ $20 = 1 \times 12 + 8$ $12 = 1 \times 8 + 4$ $8 = 4 \times 2 + 0$ STOP WHEN GET 0. Go back one: 4 is GCD. Lets look at what the algorithm actually does:

 $GCD(404, 192) = GCD(404 - 2 \times 192, 192) = GCD(20, 192) =$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

 $404 = 2 \times 192 + 20$ $192 = 9 \times 20 + 12$ $20 = 1 \times 12 + 8$ $12 = 1 \times 8 + 4$ $8 = 4 \times 2 + 0$ STOP WHEN GET 0. Go back one: 4 is GCD. Lets look at what the algorithm actually does:

 $GCD(404, 192) = GCD(404 - 2 \times 192, 192) = GCD(20, 192) =$ $GCD(20, 192 - 9 \times 20) = GCD(20, 12) = GCD(20 - 1 \times 12, 12) =$

ション ふぼう メリン メリン しょうくしゃ

 $\begin{array}{l} 404 = 2 \times 192 + 20 \\ 192 = 9 \times 20 + 12 \\ 20 = 1 \times 12 + 8 \\ 12 = 1 \times 8 + 4 \\ 8 = 4 \times 2 + 0 \text{ STOP WHEN GET 0. Go back one: 4 is GCD.} \\ \text{Lets look at what the algorithm actually does:} \\ \text{GCD}(404, 192) = \text{GCD}(404 - 2 \times 192, 192) = \text{GCD}(20, 192) = \\ \text{GCD}(20, 192 - 9 \times 20) = \text{GCD}(20, 12) = \text{GCD}(20 - 1 \times 12, 12) = \\ \end{array}$

ション ふぼう メリン メリン しょうくしゃ

GCD(8, 12) = GCD(8, 12 - 8) = GCD(8, 4) =

 $404 = 2 \times 192 + 20$ $192 = 9 \times 20 + 12$ $20 = 1 \times 12 + 8$ $12 = 1 \times 8 + 4$ $8 = 4 \times 2 + 0$ STOP WHEN GET 0. Go back one: 4 is GCD. Lets look at what the algorithm actually does:

 $\begin{array}{l} \operatorname{GCD}(404,192) = \operatorname{GCD}(404 - 2 \times 192,192) = \operatorname{GCD}(20,192) = \\ \operatorname{GCD}(20,192 - 9 \times 20) = \operatorname{GCD}(20,12) = \operatorname{GCD}(20 - 1 \times 12,12) = \\ \operatorname{GCD}(8,12) = \operatorname{GCD}(8,12 - 8) = \operatorname{GCD}(8,4) = \\ \operatorname{GCD}(8 - 2 \times 4,4) = \operatorname{GCD}(0,4) \end{array}$

 $\begin{array}{l} 404 = 2 \times 192 + 20 \\ 192 = 9 \times 20 + 12 \\ 20 = 1 \times 12 + 8 \\ 12 = 1 \times 8 + 4 \\ 8 = 4 \times 2 + 0 \end{array}$ STOP WHEN GET 0. Go back one: 4 is GCD.

Lets look at what the algorithm actually does: $GCD(404, 192) = GCD(404 - 2 \times 192, 192) = GCD(20, 192) =$ $GCD(20, 192 - 9 \times 20) = GCD(20, 12) = GCD(20 - 1 \times 12, 12) =$ GCD(8, 12) = GCD(8, 12 - 8) = GCD(8, 4) = $GCD(8 - 2 \times 4, 4) = GCD(0, 4)$

To make our formula GCD(x, y) = GCD(x - ky, x) work all the way to 0, we define GCD(0, x) = x.

(日本本語を本語を表示)の(の)

Why is $\operatorname{GCD}(0, x) = x$?

Why is GCD(0, x) = x? This is a more interesting question than it appears.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Why is $\operatorname{GCD}(\mathbf{0}, \mathbf{x}) = \mathbf{x}$?

This is a more interesting question than it appears.

Or I am going to make a point about math inspired by the question.

Why is GCD(0, x) = x? This is a more interesting question than it appears.

Or I am going to make a point about math inspired by the question.

First a short detour: why is $5^{1/2} = \sqrt{5}$?

Why is $5^{1/2} = \sqrt{5}$?

Why is

$$5^{1/2} = \sqrt{5}?$$

(ロト (個) (E) (E) (E) (E) のへの

Are we multiplying a number by itself half a time?

Why is $5^{1/2} = \sqrt{5}$?

Why is

$$5^{1/2} = \sqrt{5}?$$

・ロト・日本・ヨト・ヨト・ヨー つへぐ

Are we multiplying a number by itself half a time? Discuss.

Why is $5^{1/2} = \sqrt{5}$?

Why is

$$5^{1/2} = \sqrt{5}?$$

(ロト (個) (E) (E) (E) (E) のへの

Are we multiplying a number by itself half a time? Discuss. No.

Why is $5^{1/2} = \sqrt{5}$?

$$5^{1/2} = \sqrt{5}?$$

Are we multiplying a number by itself half a time? Discuss. No. For $a, b \in \mathbb{N}$ we have

$$5^a \times 5^b = 5^{a+b}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Why is $5^{1/2} = \sqrt{5}$?

$$5^{1/2} = \sqrt{5}?$$

Are we multiplying a number by itself half a time? Discuss. No. For $a, b \in \mathbb{N}$ we have

$$5^a \times 5^b = 5^{a+b}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

We want this rule to still apply when $a, b \in \mathbb{Q}$.

Why is $5^{1/2} = \sqrt{5}$?

$$5^{1/2} = \sqrt{5}?$$

Are we multiplying a number by itself half a time? Discuss. No. For $a, b \in \mathbb{N}$ we have

$$5^a \times 5^b = 5^{a+b}.$$

We want this rule to still apply when $a, b \in \mathbb{Q}$. So we want

$$5^{1/2} \times 5^{1/2} = 5^{1/2+1/2} = 5$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Why is $5^{1/2} = \sqrt{5}$?

$$5^{1/2} = \sqrt{5}?$$

Are we multiplying a number by itself half a time? Discuss. No. For $a, b \in \mathbb{N}$ we have

$$5^a \times 5^b = 5^{a+b}.$$

We want this rule to still apply when $a, b \in \mathbb{Q}$. So we want

$$5^{1/2} \times 5^{1/2} = 5^{1/2+1/2} = 5$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Hence we define $5^{1/2} = \sqrt{5}$ to make that rule work out.

Why is $5^{1/2} = \sqrt{5}$?

$$5^{1/2} = \sqrt{5}?$$

Are we multiplying a number by itself half a time? Discuss. No. For $a, b \in \mathbb{N}$ we have

$$5^a \times 5^b = 5^{a+b}.$$

We want this rule to still apply when $a, b \in \mathbb{Q}$. So we want

$$5^{1/2} \times 5^{1/2} = 5^{1/2+1/2} = 5$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Hence we **define** $5^{1/2} = \sqrt{5}$ to make that rule work out. Similar for 5⁰ and 5^{-a}.

Why is $5^{1/2} = \sqrt{5}$?

$$5^{1/2} = \sqrt{5}?$$

Are we multiplying a number by itself half a time? Discuss. No. For $a, b \in \mathbb{N}$ we have

$$5^a \times 5^b = 5^{a+b}.$$

We want this rule to still apply when $a, b \in \mathbb{Q}$. So we want

$$5^{1/2} \times 5^{1/2} = 5^{1/2+1/2} = 5$$

Hence we **define** $5^{1/2} = \sqrt{5}$ to make that rule work out. Similar for 5^0 and 5^{-a} . How is 5^{π} defined?

Why is $5^{1/2} = \sqrt{5}$?

$$5^{1/2} = \sqrt{5}?$$

Are we multiplying a number by itself half a time? Discuss. No. For $a, b \in \mathbb{N}$ we have

$$5^a \times 5^b = 5^{a+b}.$$

We want this rule to still apply when $a, b \in \mathbb{Q}$. So we want

$$5^{1/2} \times 5^{1/2} = 5^{1/2+1/2} = 5$$

Hence we **define** $5^{1/2} = \sqrt{5}$ to make that rule work out. Similar for 5^0 and 5^{-a} .

How is 5^{π} defined? Discuss.

We want

$$5^{3.14159} < 5^{\pi} < 5^{3.141593}.$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

We want

$$5^{3.14159} < 5^{\pi} < 5^{3.141593}.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

We can approximate π better and better.

We want

$$5^{3.14159} < 5^{\pi} < 5^{3.141593}$$
.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We can approximate π better and better. So, with this in mind, how do we define 5^{π} ?

We want

$$5^{3.14159} < 5^{\pi} < 5^{3.141593}$$

We can approximate π better and better. So, with this in mind, how do we define 5^{π} ? Let $\alpha_1, \alpha_2, \ldots$, be an infinite sequence of rationals that cvg to π .

We want

$$5^{3.14159} < 5^{\pi} < 5^{3.141593}$$
.

We can approximate π better and better. So, with this in mind, how do we define 5^{π} ? Let $\alpha_1, \alpha_2, \ldots$, be an infinite sequence of rationals that cvg to π . 5^{π} is defined to be $\lim_{i\to\infty} 5^{\alpha_i}$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

We want

$$5^{3.14159} < 5^{\pi} < 5^{3.141593}$$

We can approximate π better and better.

So, with this in mind, how do we define 5^{π} ?

Let $\alpha_1, \alpha_2, \ldots$, be an infinite sequence of rationals that cvg to π . 5^{π} is **defined** to be $\lim_{i \to \infty} 5^{\alpha_i}$.

Need to prove that all choices of sequences yield the same result. We won't do that here

START HERE ON SEPT 7

START HERE ON SEPT 7. BILL- START RECORDING.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Sometimes functions are defined on certain values **not** because its the most natural way to do it, but because it makes prior rules work out.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Sometimes functions are defined on certain values **not** because its the most natural way to do it, but because it makes prior rules work out.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Sometimes functions are defined on certain values **not** because its the most natural way to do it, but because it makes prior rules work out.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$\blacktriangleright \operatorname{GCD}(x,0) = x.$$

Sometimes functions are defined on certain values **not** because its the most natural way to do it, but because it makes prior rules work out.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Sometimes functions are defined on certain values **not** because its the most natural way to do it, but because it makes prior rules work out.

This is the case for

GCD(x, 0) = x.
 5^{1/2} = √5.
 ¹/₂!

Sometimes functions are defined on certain values **not** because its the most natural way to do it, but because it makes prior rules work out.

This is the case for

GCD(x, 0) = x.
 5^{1/2} = √5.
 ¹/₂!= √π.

Sometimes functions are defined on certain values **not** because its the most natural way to do it, but because it makes prior rules work out.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$\blacktriangleright \operatorname{GCD}(x,0) = x.$$

►
$$5^{1/2} = \sqrt{5}$$
.

•
$$\frac{1}{2}! = \sqrt{\pi}$$
. Don't ask me why.

Sometimes functions are defined on certain values **not** because its the most natural way to do it, but because it makes prior rules work out.

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

This is the case for

$$\blacktriangleright \operatorname{GCD}(x,0) = x.$$

►
$$5^{1/2} = \sqrt{5}$$
.

•
$$\frac{1}{2}! = \sqrt{\pi}$$
. Don't ask me why.

 \blacktriangleright 5^{*i*} I leave to you to look up or derive.

I defined 5^{π} using limits. A student recommended the following:

(ロト (個) (E) (E) (E) (E) のへの

I defined 5^{π} using limits. A student recommended the following:

$$5^{\pi}=e^{\pi\ln 5}.$$

(ロト (個) (E) (E) (E) (E) のへの

I defined 5^{π} using limits. A student recommended the following:

$$5^{\pi}=e^{\pi\ln 5}.$$

The students way is better since it is simpler. With my way you need to prove the answer is independent of which sequence is used.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

I defined 5^{π} using limits. A student recommended the following:

$$5^{\pi}=e^{\pi\ln 5}.$$

The students way is better since it is simpler. With my way you need to prove the answer is independent of which sequence is used.

For a story about me, my Dad, and π see https://blog.computationalcomplexity.org/2019/06/ a-proof-that-227-pi-0-and-more.html

・ロト・雪ト・雪ト・雪ト・雪・ つんぐ

1. Key space is $K = \{(a, b) : 0 \le a, b \le 25, a \text{ is rel prime to } 26\}.$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 2. To encode x goes to ax + b.
- 3. To decode x goes to $a^{-1}(x b)$. ($a^{-1} \pmod{26}$ exists since a is rel prime to 26.)

1. Key space is $K = \{(a, b) : 0 \le a, b \le 25, a \text{ is rel prime to } 26\}.$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 2. To encode x goes to ax + b.
- 3. To decode x goes to $a^{-1}(x b)$. ($a^{-1} \pmod{26}$ exists since a is rel prime to 26.)

Is it crackable?

1. Key space is $K = \{(a, b) : 0 \le a, b \le 25, a \text{ is rel prime to } 26\}$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 2. To encode x goes to ax + b.
- 3. To decode x goes to $a^{-1}(x b)$. ($a^{-1} \pmod{26}$) exists since a is rel prime to 26.)

Is it crackable?

Yes

1. Key space is $K = \{(a, b) : 0 \le a, b \le 25, a \text{ is rel prime to } 26\}$.

ション ふゆ アメリア メリア しょうくしゃ

- 2. To encode x goes to ax + b.
- 3. To decode x goes to $a^{-1}(x b)$. ($a^{-1} \pmod{26}$ exists since a is rel prime to 26.)

Is it crackable?

Yes

Similar to how we cracked Shift.

1. Key space is $K = \{(a, b) : 0 \le a, b \le 25, a \text{ is rel prime to } 26\}$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 2. To encode x goes to ax + b.
- 3. To decode x goes to $a^{-1}(x b)$. ($a^{-1} \pmod{26}$ exists since a is rel prime to 26.)

Is it crackable?

Yes

Similar to how we cracked Shift.

Next Slide.

<ロト < 団 > < 臣 > < 臣 > 三 の < で</p>

1. Input T, a long text of normal English.

1. Input T, a long text of normal English.

2. For all $(a, b) \in K$:

1. Input T, a long text of normal English.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

2. For all
$$(a, b) \in K$$
:
(i) apply $ax + b$ to T to obtain $T_{a,b}$.

1. Input T, a long text of normal English.

1. Input T, a long text of normal English.

1. Input T, a long text of normal English.

3.
$$(a_0, b_0) = \max_{(a,b) \in K} f_{a,b} \cdot f_E$$
. (a_0, b_0) is key to decode with.

1. Input T, a long text of normal English.

3. $(a_0, b_0) = \max_{(a,b) \in K} f_{a,b} \cdot f_E$. (a_0, b_0) is key to decode with. For affine there is a gap just like with Shift. We need to know there IS a gap for this to work, but do not need to know what it is.

ション ふゆ アメリア メリア しょうくしゃ

1. Input T, a long text of normal English.

3. $(a_0, b_0) = \max_{(a,b) \in K} f_{a,b} \cdot f_E$. (a_0, b_0) is key to decode with. For affine there is a gap just like with Shift. We need to know there IS a gap for this to work, but do not need to know what it is. **Freq Vector** (A student asked this in my office hours.) Its really a prob vector- the entries sum to 1. So you take the freqs and divide by the length of the text.

The Quadratic Ciphers

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Def The Quadratic cipher with a, b, c: Encrypt via $x \rightarrow ax^2 + bx + c$.

Def The Quadratic cipher with a, b, c: Encrypt via $x \rightarrow ax^2 + bx + c$.

Does this work? Vote YES or NO.

Def The Quadratic cipher with a, b, c: Encrypt via $x \rightarrow ax^2 + bx + c$.

Does this work? Vote YES or NO. Answer: NO

Def The Quadratic cipher with a, b, c: Encrypt via $x \rightarrow ax^2 + bx + c$.

Does this work? Vote YES or NO. Answer: NO Need $f(x) = ax^2 + bx + c$ to be a bijection.

ション ふゆ アメリア メリア しょうくしゃ

Def The Quadratic cipher with a, b, c: Encrypt via $x \rightarrow ax^2 + bx + c$.

Does this work? Vote YES or NO. Answer: NO Need $f(x) = ax^2 + bx + c$ to be a bijection. So pick a, b, c so that f(x) has an inverse.

ション ふゆ アメリア メリア しょうくしゃ

Def The Quadratic cipher with a, b, c: Encrypt via $x \rightarrow ax^2 + bx + c$.

Does this work? Vote YES or NO. Answer: NO Need $f(x) = ax^2 + bx + c$ to be a bijection. So pick a, b, c so that f(x) has an inverse. Contrast

Def The Quadratic cipher with a, b, c: Encrypt via $x \rightarrow ax^2 + bx + c$.

Does this work? Vote YES or NO. Answer: NO Need $f(x) = ax^2 + bx + c$ to be a bijection. So pick a, b, c so that f(x) has an inverse. Contrast

1. Affine: **Easy** to test if f(x) = ax + b is bijection.

Def The Quadratic cipher with a, b, c: Encrypt via $x \rightarrow ax^2 + bx + c$.

Does this work? Vote YES or NO. Answer: NO Need $f(x) = ax^2 + bx + c$ to be a bijection. So pick a, b, c so that f(x) has an inverse. Contrast

- 1. Affine: **Easy** to test if f(x) = ax + b is bijection.
- 2. Quad: Hard to test if $f(x) = ax^2 + bx + c$ is a bijection.

Def The Quadratic cipher with a, b, c: Encrypt via $x \rightarrow ax^2 + bx + c$.

Does this work? Vote YES or NO. Answer: NO Need $f(x) = ax^2 + bx + c$ to be a bijection. So pick a, b, c so that f(x) has an inverse. Contrast

1. Affine: **Easy** to test if f(x) = ax + b is bijection.

2. Quad: Hard to test if $f(x) = ax^2 + bx + c$ is a bijection.

Is there **some** way to test? Discuss

Def The Quadratic cipher with a, b, c: Encrypt via $x \rightarrow ax^2 + bx + c$.

Does this work? Vote YES or NO. Answer: NO Need $f(x) = ax^2 + bx + c$ to be a bijection. So pick a, b, c so that f(x) has an inverse. Contrast

1. Affine: **Easy** to test if f(x) = ax + b is bijection.

2. Quad: Hard to test if $f(x) = ax^2 + bx + c$ is a bijection.

Is there **some** way to test? Discuss

Yes Compute $f(0), \ldots, f(25)$ and see if all are different.

Def The Quadratic cipher with a, b, c: Encrypt via $x \rightarrow ax^2 + bx + c$.

Does this work? Vote YES or NO. Answer: NO Need $f(x) = ax^2 + bx + c$ to be a bijection. So pick a, b, c so that f(x) has an inverse. Contrast

1. Affine: **Easy** to test if f(x) = ax + b is bijection.

2. Quad: Hard to test if $f(x) = ax^2 + bx + c$ is a bijection. Is there some way to test? Discuss Yes Compute $f(0), \ldots, f(25)$ and see if all are different.

1. Test takes too long.

Def The Quadratic cipher with a, b, c: Encrypt via $x \rightarrow ax^2 + bx + c$.

Does this work? Vote YES or NO. Answer: NO Need $f(x) = ax^2 + bx + c$ to be a bijection. So pick a, b, c so that f(x) has an inverse. Contrast

1. Affine: **Easy** to test if f(x) = ax + b is bijection.

2. Quad: Hard to test if $f(x) = ax^2 + bx + c$ is a bijection. Is there some way to test? Discuss Yes Compute $f(0), \ldots, f(25)$ and see if all are different.

- 1. Test takes too long.
- 2. Quad Cipher not secure enough to be worth the time.

History of the Quadratic Cipher

The first place The Quadratic Cipher appeared was

History of the Quadratic Cipher

The first place The Quadratic Cipher appeared was

my 3-week course on crypto for High School Students in 2010.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

History of the Quadratic Cipher

The first place The Quadratic Cipher appeared was

my 3-week course on crypto for High School Students in 2010.

So, as the kids say, it's not a thing.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

When looking at a cipher one usually asks:

When looking at a cipher one usually asks:

Is the cipher secure?

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

When looking at a cipher one usually asks:

- Is the cipher secure?
- That is a good question.

When looking at a cipher one usually asks:

- Is the cipher secure?
- That is a good question.

But there is another important one:

When looking at a cipher one usually asks:

- Is the cipher secure?
- That is a good question.

But there is another important one:

Is the cipher easy to use?

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

When looking at a cipher one usually asks:

- Is the cipher secure?
- That is a good question.

But there is another important one:

Is the cipher easy to use?

Quadratic Cipher fails the ease of use test.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

When looking at a cipher one usually asks:

- Is the cipher secure?
- That is a good question.

But there is another important one:

Is the cipher easy to use?

Quadratic Cipher fails the ease of use test.

It is also insecure.

Many amateur's come up with ciphers that they claim are **uncrackable**.

Many amateur's come up with ciphers that they claim are **uncrackable**.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

These ciphers fall into the following categories.

Many amateur's come up with ciphers that they claim are **uncrackable**.

These ciphers fall into the following categories.

1. Hard to use. That was the problem with Quad Cipher.

Many amateur's come up with ciphers that they claim are **uncrackable**.

These ciphers fall into the following categories.

1. Hard to use. That was the problem with Quad Cipher.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

2. Easy to crack by a trick the inventor didn't know.

Many amateur's come up with ciphers that they claim are **uncrackable**.

These ciphers fall into the following categories.

1. Hard to use. That was the problem with Quad Cipher.

- 2. Easy to crack by a trick the inventor didn't know.
- 3. Only uncrackable on short texts.

Many amateur's come up with ciphers that they claim are **uncrackable**.

These ciphers fall into the following categories.

- 1. Hard to use. That was the problem with Quad Cipher.
- 2. Easy to crack by a trick the inventor didn't know.
- 3. Only uncrackable on short texts.
- 4. Only uncrackable if Eve does not know the system (violates Kerckhoff's Principle).

Many amateur's come up with ciphers that they claim are **uncrackable**.

These ciphers fall into the following categories.

- 1. Hard to use. That was the problem with Quad Cipher.
- 2. Easy to crack by a trick the inventor didn't know.
- 3. Only uncrackable on short texts.
- 4. Only uncrackable if Eve does not know the system (violates Kerckhoff's Principle).

5. There are other reasons they are wrong.

BILL STOP RECORDING THIS LECTURE

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ