
BILL
RECORD THIS

LECTURE

September 9, 2021



Gen Sub Cipher: How to
Really Crack

September 9, 2021



General Substitution Cipher

Def Gen Sub Cipher with perm f on {0, . . . , 25}.
1. Encrypt via x → f (x).

2. Decrypt via x → f −1(x).



Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T , counting repeats.

2. The 2-grams of T are just the contiguous pairs of letters in
T , counting repeats. Also called bigrams.

3. The 3-grams of T you can guess. Also called trigrams.

4. One usually talks about the freq of n-grams.



Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T , counting repeats.

2. The 2-grams of T are just the contiguous pairs of letters in
T , counting repeats. Also called bigrams.

3. The 3-grams of T you can guess. Also called trigrams.

4. One usually talks about the freq of n-grams.



Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T , counting repeats.

2. The 2-grams of T are just the contiguous pairs of letters in
T , counting repeats. Also called bigrams.

3. The 3-grams of T you can guess. Also called trigrams.

4. One usually talks about the freq of n-grams.



Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T , counting repeats.

2. The 2-grams of T are just the contiguous pairs of letters in
T , counting repeats. Also called bigrams.

3. The 3-grams of T you can guess. Also called trigrams.

4. One usually talks about the freq of n-grams.



Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T , counting repeats.

2. The 2-grams of T are just the contiguous pairs of letters in
T , counting repeats. Also called bigrams.

3. The 3-grams of T you can guess. Also called trigrams.

4. One usually talks about the freq of n-grams.



Example of 1-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.

The following 1-grams occur 2 times: h,l,n,p,w.

The following 1-grams occur 3 times: c,i,m.

The following 1-grams occur 4 times: r,s,t.

The following 1-gram occurs 6 times: o.

The following 1-gram occurs 9 times: e.

No 1-gram occurs ≥ 10 times.



Example of 1-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.

The following 1-grams occur 2 times: h,l,n,p,w.

The following 1-grams occur 3 times: c,i,m.

The following 1-grams occur 4 times: r,s,t.

The following 1-gram occurs 6 times: o.

The following 1-gram occurs 9 times: e.

No 1-gram occurs ≥ 10 times.



Example of 1-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.

The following 1-grams occur 2 times: h,l,n,p,w.

The following 1-grams occur 3 times: c,i,m.

The following 1-grams occur 4 times: r,s,t.

The following 1-gram occurs 6 times: o.

The following 1-gram occurs 9 times: e.

No 1-gram occurs ≥ 10 times.



Example of 1-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.

The following 1-grams occur 2 times: h,l,n,p,w.

The following 1-grams occur 3 times: c,i,m.

The following 1-grams occur 4 times: r,s,t.

The following 1-gram occurs 6 times: o.

The following 1-gram occurs 9 times: e.

No 1-gram occurs ≥ 10 times.



Example of 1-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.

The following 1-grams occur 2 times: h,l,n,p,w.

The following 1-grams occur 3 times: c,i,m.

The following 1-grams occur 4 times: r,s,t.

The following 1-gram occurs 6 times: o.

The following 1-gram occurs 9 times: e.

No 1-gram occurs ≥ 10 times.



Example of 1-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.

The following 1-grams occur 2 times: h,l,n,p,w.

The following 1-grams occur 3 times: c,i,m.

The following 1-grams occur 4 times: r,s,t.

The following 1-gram occurs 6 times: o.

The following 1-gram occurs 9 times: e.

No 1-gram occurs ≥ 10 times.



Example of 1-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.

The following 1-grams occur 2 times: h,l,n,p,w.

The following 1-grams occur 3 times: c,i,m.

The following 1-grams occur 4 times: r,s,t.

The following 1-gram occurs 6 times: o.

The following 1-gram occurs 9 times: e.

No 1-gram occurs ≥ 10 times.



Example of 1-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.

The following 1-grams occur 2 times: h,l,n,p,w.

The following 1-grams occur 3 times: c,i,m.

The following 1-grams occur 4 times: r,s,t.

The following 1-gram occurs 6 times: o.

The following 1-gram occurs 9 times: e.

No 1-gram occurs ≥ 10 times.



Example of 2-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 2-grams occur 2 times: me, or.

The following 2-grams occur 1 time: ev, ve, er, rn, no, ot, ti, ic,
eh, ho, ow, ws, so, et, ti, im, es, sp, pe, eo, op, pl, le, eu, us, se,
em, ma, at, th, hw, wo, ds, in, nc, co, rr, re, ec, ct, tl, ly.

No 2-gram occurs ≥ 3 times.



Example of 2-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 2-grams occur 2 times: me, or.

The following 2-grams occur 1 time: ev, ve, er, rn, no, ot, ti, ic,
eh, ho, ow, ws, so, et, ti, im, es, sp, pe, eo, op, pl, le, eu, us, se,
em, ma, at, th, hw, wo, ds, in, nc, co, rr, re, ec, ct, tl, ly.

No 2-gram occurs ≥ 3 times.



Example of 2-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 2-grams occur 2 times: me, or.

The following 2-grams occur 1 time: ev, ve, er, rn, no, ot, ti, ic,
eh, ho, ow, ws, so, et, ti, im, es, sp, pe, eo, op, pl, le, eu, us, se,
em, ma, at, th, hw, wo, ds, in, nc, co, rr, re, ec, ct, tl, ly.

No 2-gram occurs ≥ 3 times.



Example of 2-Grams

Let the text be:
Ever notice how sometimes people use math words incorrectly?

The following 2-grams occur 2 times: me, or.

The following 2-grams occur 1 time: ev, ve, er, rn, no, ot, ti, ic,
eh, ho, ow, ws, so, et, ti, im, es, sp, pe, eo, op, pl, le, eu, us, se,
em, ma, at, th, hw, wo, ds, in, nc, co, rr, re, ec, ct, tl, ly.

No 2-gram occurs ≥ 3 times.



BILL:
BEGIN HERE.
RECORD THIS

LECTURE

September 9, 2021



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE ,n is freq of n-grams in English. It is a 26n long vector.

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ),n is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE ,n is freq of n-grams in English. It is a 26n long vector.

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ),n is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE ,n is freq of n-grams in English. It is a 26n long vector.

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ),n is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE ,n is freq of n-grams in English. It is a 26n long vector.

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ),n is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE ,n is freq of n-grams in English. It is a 26n long vector.

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ),n is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.

I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE ,n is freq of n-grams in English. It is a 26n long vector.

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ),n is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).

R stands for Redos and will be small (like 5).



Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE ,n is freq of n-grams in English. It is a 26n long vector.

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ),n is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).



Stats for 1-Gram, 2-Gram, 3-Gram, 4-Gram

1. 1-grams: fE ,1 · fE ,1 ∼ 0.065.

2. 2-grams: fE ,2 · fE ,2 ∼ 0.0067.

3. 3-grams: fE ,3 · fE ,3 ∼ 0.0011.

4. 4-grams: fE ,4 · fE ,4 ∼ 0.00023.



Stats for 1-Gram, 2-Gram, 3-Gram, 4-Gram

1. 1-grams: fE ,1 · fE ,1 ∼ 0.065.

2. 2-grams: fE ,2 · fE ,2 ∼ 0.0067.

3. 3-grams: fE ,3 · fE ,3 ∼ 0.0011.

4. 4-grams: fE ,4 · fE ,4 ∼ 0.00023.



Stats for 1-Gram, 2-Gram, 3-Gram, 4-Gram

1. 1-grams: fE ,1 · fE ,1 ∼ 0.065.

2. 2-grams: fE ,2 · fE ,2 ∼ 0.0067.

3. 3-grams: fE ,3 · fE ,3 ∼ 0.0011.

4. 4-grams: fE ,4 · fE ,4 ∼ 0.00023.



Stats for 1-Gram, 2-Gram, 3-Gram, 4-Gram

1. 1-grams: fE ,1 · fE ,1 ∼ 0.065.

2. 2-grams: fE ,2 · fE ,2 ∼ 0.0067.

3. 3-grams: fE ,3 · fE ,3 ∼ 0.0011.

4. 4-grams: fE ,4 · fE ,4 ∼ 0.00023.



Stats for 1-Gram, 2-Gram, 3-Gram, 4-Gram

1. 1-grams: fE ,1 · fE ,1 ∼ 0.065.

2. 2-grams: fE ,2 · fE ,2 ∼ 0.0067.

3. 3-grams: fE ,3 · fE ,3 ∼ 0.0011.

4. 4-grams: fE ,4 · fE ,4 ∼ 0.00023.



Contrast Shift to Gen Sub

To crack shift went through all 26 shifts σ:

1. If fσ(T ),1 · fE ,1 is large then σ is correct shift. Large ∼ 0.065.

2. If fσ(T ),1 · fE ,1 is small then σ is incorrect shift. Small ∼ 0.035.

3. Important Will always be large or small. So we have a gap.

Lets try this with gen sub, ignoring the issue of 26! perms.
To crack gen sub shift went through all 26! perm σ:

1. If fσ(T ),1 · fE ,1 is large then σ is correct perm. Large ∼ 0.065.

2. If fσ(T ),1 · fE ,1 is small then σ is incorrect perm. Small.
Hmmm?

3. We have a problem. If σ only changed a few letters around,
then likely fE ,1 · fσ(T ),1 will be large. We do not have a gap!

What to do?



Contrast Shift to Gen Sub

To crack shift went through all 26 shifts σ:

1. If fσ(T ),1 · fE ,1 is large then σ is correct shift. Large ∼ 0.065.

2. If fσ(T ),1 · fE ,1 is small then σ is incorrect shift. Small ∼ 0.035.

3. Important Will always be large or small. So we have a gap.

Lets try this with gen sub, ignoring the issue of 26! perms.
To crack gen sub shift went through all 26! perm σ:

1. If fσ(T ),1 · fE ,1 is large then σ is correct perm. Large ∼ 0.065.

2. If fσ(T ),1 · fE ,1 is small then σ is incorrect perm. Small.
Hmmm?

3. We have a problem. If σ only changed a few letters around,
then likely fE ,1 · fσ(T ),1 will be large. We do not have a gap!

What to do?



Contrast Shift to Gen Sub

To crack shift went through all 26 shifts σ:

1. If fσ(T ),1 · fE ,1 is large then σ is correct shift. Large ∼ 0.065.

2. If fσ(T ),1 · fE ,1 is small then σ is incorrect shift. Small ∼ 0.035.

3. Important Will always be large or small. So we have a gap.

Lets try this with gen sub, ignoring the issue of 26! perms.
To crack gen sub shift went through all 26! perm σ:

1. If fσ(T ),1 · fE ,1 is large then σ is correct perm. Large ∼ 0.065.

2. If fσ(T ),1 · fE ,1 is small then σ is incorrect perm. Small.
Hmmm?

3. We have a problem. If σ only changed a few letters around,
then likely fE ,1 · fσ(T ),1 will be large. We do not have a gap!

What to do?



Contrast Shift to Gen Sub

To crack shift went through all 26 shifts σ:

1. If fσ(T ),1 · fE ,1 is large then σ is correct shift. Large ∼ 0.065.

2. If fσ(T ),1 · fE ,1 is small then σ is incorrect shift. Small ∼ 0.035.

3. Important Will always be large or small. So we have a gap.

Lets try this with gen sub, ignoring the issue of 26! perms.
To crack gen sub shift went through all 26! perm σ:

1. If fσ(T ),1 · fE ,1 is large then σ is correct perm. Large ∼ 0.065.

2. If fσ(T ),1 · fE ,1 is small then σ is incorrect perm. Small.
Hmmm?

3. We have a problem. If σ only changed a few letters around,
then likely fE ,1 · fσ(T ),1 will be large. We do not have a gap!

What to do?



Contrast Shift to Gen Sub

To crack shift went through all 26 shifts σ:

1. If fσ(T ),1 · fE ,1 is large then σ is correct shift. Large ∼ 0.065.

2. If fσ(T ),1 · fE ,1 is small then σ is incorrect shift. Small ∼ 0.035.

3. Important Will always be large or small. So we have a gap.

Lets try this with gen sub, ignoring the issue of 26! perms.
To crack gen sub shift went through all 26! perm σ:

1. If fσ(T ),1 · fE ,1 is large then σ is correct perm. Large ∼ 0.065.

2. If fσ(T ),1 · fE ,1 is small then σ is incorrect perm. Small.
Hmmm?

3. We have a problem. If σ only changed a few letters around,
then likely fE ,1 · fσ(T ),1 will be large. We do not have a gap!

What to do?



Contrast Shift to Gen Sub

To crack shift went through all 26 shifts σ:

1. If fσ(T ),1 · fE ,1 is large then σ is correct shift. Large ∼ 0.065.

2. If fσ(T ),1 · fE ,1 is small then σ is incorrect shift. Small ∼ 0.035.

3. Important Will always be large or small. So we have a gap.

Lets try this with gen sub, ignoring the issue of 26! perms.
To crack gen sub shift went through all 26! perm σ:

1. If fσ(T ),1 · fE ,1 is large then σ is correct perm. Large ∼ 0.065.

2. If fσ(T ),1 · fE ,1 is small then σ is incorrect perm. Small.
Hmmm?

3. We have a problem. If σ only changed a few letters around,
then likely fE ,1 · fσ(T ),1 will be large. We do not have a gap!

What to do?



Contrast Shift to Gen Sub

To crack shift went through all 26 shifts σ:

1. If fσ(T ),1 · fE ,1 is large then σ is correct shift. Large ∼ 0.065.

2. If fσ(T ),1 · fE ,1 is small then σ is incorrect shift. Small ∼ 0.035.

3. Important Will always be large or small. So we have a gap.

Lets try this with gen sub, ignoring the issue of 26! perms.
To crack gen sub shift went through all 26! perm σ:

1. If fσ(T ),1 · fE ,1 is large then σ is correct perm. Large ∼ 0.065.

2. If fσ(T ),1 · fE ,1 is small then σ is incorrect perm. Small.

Hmmm?

3. We have a problem. If σ only changed a few letters around,
then likely fE ,1 · fσ(T ),1 will be large. We do not have a gap!

What to do?



Contrast Shift to Gen Sub

To crack shift went through all 26 shifts σ:

1. If fσ(T ),1 · fE ,1 is large then σ is correct shift. Large ∼ 0.065.

2. If fσ(T ),1 · fE ,1 is small then σ is incorrect shift. Small ∼ 0.035.

3. Important Will always be large or small. So we have a gap.

Lets try this with gen sub, ignoring the issue of 26! perms.
To crack gen sub shift went through all 26! perm σ:

1. If fσ(T ),1 · fE ,1 is large then σ is correct perm. Large ∼ 0.065.

2. If fσ(T ),1 · fE ,1 is small then σ is incorrect perm. Small.
Hmmm?

3. We have a problem. If σ only changed a few letters around,
then likely fE ,1 · fσ(T ),1 will be large. We do not have a gap!

What to do?



Contrast Shift to Gen Sub

To crack shift went through all 26 shifts σ:

1. If fσ(T ),1 · fE ,1 is large then σ is correct shift. Large ∼ 0.065.

2. If fσ(T ),1 · fE ,1 is small then σ is incorrect shift. Small ∼ 0.035.

3. Important Will always be large or small. So we have a gap.

Lets try this with gen sub, ignoring the issue of 26! perms.
To crack gen sub shift went through all 26! perm σ:

1. If fσ(T ),1 · fE ,1 is large then σ is correct perm. Large ∼ 0.065.

2. If fσ(T ),1 · fE ,1 is small then σ is incorrect perm. Small.
Hmmm?

3. We have a problem. If σ only changed a few letters around,
then likely fE ,1 · fσ(T ),1 will be large. We do not have a gap!

What to do?



What to do if there is no Gap?

1. Use n-grams instead of 1-grams.

2. If σ is a perm and n ∈ N then

goodσ,n = fE ,n · fσ(T ),n.

3. Rather than view the Is-English program as a YES-NO, view
it as comparative:

T1 looks more like English than T2.



What to do if there is no Gap?

1. Use n-grams instead of 1-grams.

2. If σ is a perm and n ∈ N then

goodσ,n = fE ,n · fσ(T ),n.

3. Rather than view the Is-English program as a YES-NO, view
it as comparative:

T1 looks more like English than T2.



What to do if there is no Gap?

1. Use n-grams instead of 1-grams.

2. If σ is a perm and n ∈ N then

goodσ,n = fE ,n · fσ(T ),n.

3. Rather than view the Is-English program as a YES-NO, view
it as comparative:

T1 looks more like English than T2.



What to do if there is no Gap?

1. Use n-grams instead of 1-grams.

2. If σ is a perm and n ∈ N then

goodσ,n = fE ,n · fσ(T ),n.

3. Rather than view the Is-English program as a YES-NO, view
it as comparative:

T1 looks more like English than T2.



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.

σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with max goodσr ,n or have human look at all σr (T )



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with max goodσr ,n or have human look at all σr (T )



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with max goodσr ,n or have human look at all σr (T )



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit

For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with max goodσr ,n or have human look at all σr (T )



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with max goodσr ,n or have human look at all σr (T )



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.

Let σ′ be σr with j , k swapped
If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with max goodσr ,n or have human look at all σr (T )



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped

If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with max goodσr ,n or have human look at all σr (T )



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with max goodσr ,n or have human look at all σr (T )



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR

Pick the σr with max goodσr ,n or have human look at all σr (T )



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with max goodσr ,n or have human look at all σr (T )



Finding Parameters: A Chicken-and-Egg Problem

An old question:
What came first, the chicken or the egg?

Our Problem We need parameters I and R so the answer looks
like English. But we then need a notion of Is English that does
not use a gap. Need a program to tell us that it looks like English.

We Trebekked It!
On the TV show JEOPARDY Alex Trebek (before he died) gives
you the answer and you have to figure out the question.

Same here.

We find the parameters for texts where we know the answers.



Finding Parameters: A Chicken-and-Egg Problem

An old question:
What came first, the chicken or the egg?

Our Problem We need parameters I and R so the answer looks
like English. But we then need a notion of Is English that does
not use a gap. Need a program to tell us that it looks like English.

We Trebekked It!
On the TV show JEOPARDY Alex Trebek (before he died) gives
you the answer and you have to figure out the question.

Same here.

We find the parameters for texts where we know the answers.



Finding Parameters: A Chicken-and-Egg Problem

An old question:
What came first, the chicken or the egg?

Our Problem We need parameters I and R so the answer looks
like English. But we then need a notion of Is English that does
not use a gap. Need a program to tell us that it looks like English.

We Trebekked It!

On the TV show JEOPARDY Alex Trebek (before he died) gives
you the answer and you have to figure out the question.

Same here.

We find the parameters for texts where we know the answers.



Finding Parameters: A Chicken-and-Egg Problem

An old question:
What came first, the chicken or the egg?

Our Problem We need parameters I and R so the answer looks
like English. But we then need a notion of Is English that does
not use a gap. Need a program to tell us that it looks like English.

We Trebekked It!
On the TV show JEOPARDY Alex Trebek (before he died) gives
you the answer and you have to figure out the question.

Same here.

We find the parameters for texts where we know the answers.



Finding Parameters: A Chicken-and-Egg Problem

An old question:
What came first, the chicken or the egg?

Our Problem We need parameters I and R so the answer looks
like English. But we then need a notion of Is English that does
not use a gap. Need a program to tell us that it looks like English.

We Trebekked It!
On the TV show JEOPARDY Alex Trebek (before he died) gives
you the answer and you have to figure out the question.

Same here.

We find the parameters for texts where we know the answers.



Finding Parameters: A Chicken-and-Egg Problem

An old question:
What came first, the chicken or the egg?

Our Problem We need parameters I and R so the answer looks
like English. But we then need a notion of Is English that does
not use a gap. Need a program to tell us that it looks like English.

We Trebekked It!
On the TV show JEOPARDY Alex Trebek (before he died) gives
you the answer and you have to figure out the question.

Same here.

We find the parameters for texts where we know the answers.



Finding the Parameters

Do the following a large number of times:

1. Take a text T of ∼ 10, 000 characters.

2. Take a random perm σ.

3. Compute σ(T ). (Note- We know σ and T )

4. Run the n-gram algorithm but with no bound on the number
of iterations. Stop when either

4.1 Get original text T , or
4.2 Swaps do not improve how close to English (could be in local

max). In this case try again.

5. Keep track of how how many iterations suffice and how many
redos suffice.



Finding the Parameters

Do the following a large number of times:

1. Take a text T of ∼ 10, 000 characters.

2. Take a random perm σ.

3. Compute σ(T ). (Note- We know σ and T )

4. Run the n-gram algorithm but with no bound on the number
of iterations. Stop when either

4.1 Get original text T , or
4.2 Swaps do not improve how close to English (could be in local

max). In this case try again.

5. Keep track of how how many iterations suffice and how many
redos suffice.



Finding the Parameters

Do the following a large number of times:

1. Take a text T of ∼ 10, 000 characters.

2. Take a random perm σ.

3. Compute σ(T ). (Note- We know σ and T )

4. Run the n-gram algorithm but with no bound on the number
of iterations. Stop when either

4.1 Get original text T , or
4.2 Swaps do not improve how close to English (could be in local

max). In this case try again.

5. Keep track of how how many iterations suffice and how many
redos suffice.



Finding the Parameters

Do the following a large number of times:

1. Take a text T of ∼ 10, 000 characters.

2. Take a random perm σ.

3. Compute σ(T ). (Note- We know σ and T )

4. Run the n-gram algorithm but with no bound on the number
of iterations. Stop when either

4.1 Get original text T , or
4.2 Swaps do not improve how close to English (could be in local

max). In this case try again.

5. Keep track of how how many iterations suffice and how many
redos suffice.



Finding the Parameters

Do the following a large number of times:

1. Take a text T of ∼ 10, 000 characters.

2. Take a random perm σ.

3. Compute σ(T ). (Note- We know σ and T )

4. Run the n-gram algorithm but with no bound on the number
of iterations. Stop when either

4.1 Get original text T , or
4.2 Swaps do not improve how close to English (could be in local

max). In this case try again.

5. Keep track of how how many iterations suffice and how many
redos suffice.



Finding the Parameters

Do the following a large number of times:

1. Take a text T of ∼ 10, 000 characters.

2. Take a random perm σ.

3. Compute σ(T ). (Note- We know σ and T )

4. Run the n-gram algorithm but with no bound on the number
of iterations. Stop when either

4.1 Get original text T , or

4.2 Swaps do not improve how close to English (could be in local
max). In this case try again.

5. Keep track of how how many iterations suffice and how many
redos suffice.



Finding the Parameters

Do the following a large number of times:

1. Take a text T of ∼ 10, 000 characters.

2. Take a random perm σ.

3. Compute σ(T ). (Note- We know σ and T )

4. Run the n-gram algorithm but with no bound on the number
of iterations. Stop when either

4.1 Get original text T , or
4.2 Swaps do not improve how close to English (could be in local

max). In this case try again.

5. Keep track of how how many iterations suffice and how many
redos suffice.



Finding the Parameters

Do the following a large number of times:

1. Take a text T of ∼ 10, 000 characters.

2. Take a random perm σ.

3. Compute σ(T ). (Note- We know σ and T )

4. Run the n-gram algorithm but with no bound on the number
of iterations. Stop when either

4.1 Get original text T , or
4.2 Swaps do not improve how close to English (could be in local

max). In this case try again.

5. Keep track of how how many iterations suffice and how many
redos suffice.



David Zhen Found the Parameters

UMCP ugrad CS major David Zhen worked with me on this over
the summer.

The next three slides show the parameters he found.

He used a Mac-Book Pro with 2.2 Ghz 6-core Intel Core i7
processor and 16 GB of RAM.

My Point He used a computer that an ugrad can buy and use.

He ran the program to find parameters on 150 texts of size approx
10,000 characters:

For each text he generated many random perm and ran the
algorithm.



David Zhen Found the Parameters

UMCP ugrad CS major David Zhen worked with me on this over
the summer.

The next three slides show the parameters he found.

He used a Mac-Book Pro with 2.2 Ghz 6-core Intel Core i7
processor and 16 GB of RAM.

My Point He used a computer that an ugrad can buy and use.

He ran the program to find parameters on 150 texts of size approx
10,000 characters:

For each text he generated many random perm and ran the
algorithm.



David Zhen Found the Parameters

UMCP ugrad CS major David Zhen worked with me on this over
the summer.

The next three slides show the parameters he found.

He used a Mac-Book Pro with 2.2 Ghz 6-core Intel Core i7
processor and 16 GB of RAM.

My Point He used a computer that an ugrad can buy and use.

He ran the program to find parameters on 150 texts of size approx
10,000 characters:

For each text he generated many random perm and ran the
algorithm.



David Zhen Found the Parameters

UMCP ugrad CS major David Zhen worked with me on this over
the summer.

The next three slides show the parameters he found.

He used a Mac-Book Pro with 2.2 Ghz 6-core Intel Core i7
processor and 16 GB of RAM.

My Point He used a computer that an ugrad can buy and use.

He ran the program to find parameters on 150 texts of size approx
10,000 characters:

For each text he generated many random perm and ran the
algorithm.



David Zhen Found the Parameters

UMCP ugrad CS major David Zhen worked with me on this over
the summer.

The next three slides show the parameters he found.

He used a Mac-Book Pro with 2.2 Ghz 6-core Intel Core i7
processor and 16 GB of RAM.

My Point He used a computer that an ugrad can buy and use.

He ran the program to find parameters on 150 texts of size approx
10,000 characters:

For each text he generated many random perm and ran the
algorithm.



David Zhen Found the Parameters

UMCP ugrad CS major David Zhen worked with me on this over
the summer.

The next three slides show the parameters he found.

He used a Mac-Book Pro with 2.2 Ghz 6-core Intel Core i7
processor and 16 GB of RAM.

My Point He used a computer that an ugrad can buy and use.

He ran the program to find parameters on 150 texts of size approx
10,000 characters:

For each text he generated many random perm and ran the
algorithm.



Parameters for n-Grams

1-grams Nothing worked
2-grams Nothing worked
3-grams I = 2000, R = 4 worked. Took ≤ 2 minutes to crack.
4-grams I = 2000, R = 8, Took around 6 minutes to crack.

So the winner is 3-grams, with I = 2000 and R = 4.

Can we do better than 2 minutes? Can we do something clever?



Parameters for n-Grams

1-grams Nothing worked

2-grams Nothing worked
3-grams I = 2000, R = 4 worked. Took ≤ 2 minutes to crack.
4-grams I = 2000, R = 8, Took around 6 minutes to crack.

So the winner is 3-grams, with I = 2000 and R = 4.

Can we do better than 2 minutes? Can we do something clever?



Parameters for n-Grams

1-grams Nothing worked
2-grams Nothing worked

3-grams I = 2000, R = 4 worked. Took ≤ 2 minutes to crack.
4-grams I = 2000, R = 8, Took around 6 minutes to crack.

So the winner is 3-grams, with I = 2000 and R = 4.

Can we do better than 2 minutes? Can we do something clever?



Parameters for n-Grams

1-grams Nothing worked
2-grams Nothing worked
3-grams I = 2000, R = 4 worked. Took ≤ 2 minutes to crack.

4-grams I = 2000, R = 8, Took around 6 minutes to crack.

So the winner is 3-grams, with I = 2000 and R = 4.

Can we do better than 2 minutes? Can we do something clever?



Parameters for n-Grams

1-grams Nothing worked
2-grams Nothing worked
3-grams I = 2000, R = 4 worked. Took ≤ 2 minutes to crack.
4-grams I = 2000, R = 8, Took around 6 minutes to crack.

So the winner is 3-grams, with I = 2000 and R = 4.

Can we do better than 2 minutes? Can we do something clever?



Parameters for n-Grams

1-grams Nothing worked
2-grams Nothing worked
3-grams I = 2000, R = 4 worked. Took ≤ 2 minutes to crack.
4-grams I = 2000, R = 8, Took around 6 minutes to crack.

So the winner is 3-grams, with I = 2000 and R = 4.

Can we do better than 2 minutes? Can we do something clever?



Parameters for n-Grams

1-grams Nothing worked
2-grams Nothing worked
3-grams I = 2000, R = 4 worked. Took ≤ 2 minutes to crack.
4-grams I = 2000, R = 8, Took around 6 minutes to crack.

So the winner is 3-grams, with I = 2000 and R = 4.

Can we do better than 2 minutes? Can we do something clever?



A Possible Improvement to n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
For r = 1 to R (R is small, about 5)

σr ← σinit (Could do this more cleverly)

For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random Cleverly!
Let σ′ be σr with j , k swapped
If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with max goodnσr or have human look at all σr (T )

Tradeoff Lets say this takes less iterations. But we spend more
time finding the clever swap. Is it worth it? Only way to find out is
to DO IT.

A High School Student did this for me and claims it worked better-
could use 400 instead of 2000 and it is faster.
There were issues with his work so I would want to see this redone
more carefully. However, I suspect



A Possible Improvement to n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
For r = 1 to R (R is small, about 5)

σr ← σinit (Could do this more cleverly)

For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random Cleverly!
Let σ′ be σr with j , k swapped
If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with max goodnσr or have human look at all σr (T )

Tradeoff Lets say this takes less iterations. But we spend more
time finding the clever swap. Is it worth it? Only way to find out is
to DO IT.

A High School Student did this for me and claims it worked better-
could use 400 instead of 2000 and it is faster.
There were issues with his work so I would want to see this redone
more carefully. However, I suspect



A Possible Improvement to n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
For r = 1 to R (R is small, about 5)

σr ← σinit (Could do this more cleverly)

For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random Cleverly!
Let σ′ be σr with j , k swapped
If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with max goodnσr or have human look at all σr (T )

Tradeoff Lets say this takes less iterations. But we spend more
time finding the clever swap. Is it worth it? Only way to find out is
to DO IT.

A High School Student did this for me and claims it worked better-
could use 400 instead of 2000 and it is faster.
There were issues with his work so I would want to see this redone
more carefully. However, I suspect



A Possible Improvement to n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
For r = 1 to R (R is small, about 5)

σr ← σinit (Could do this more cleverly)

For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random Cleverly!

Let σ′ be σr with j , k swapped
If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with max goodnσr or have human look at all σr (T )

Tradeoff Lets say this takes less iterations. But we spend more
time finding the clever swap. Is it worth it? Only way to find out is
to DO IT.

A High School Student did this for me and claims it worked better-
could use 400 instead of 2000 and it is faster.
There were issues with his work so I would want to see this redone
more carefully. However, I suspect



A Possible Improvement to n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
For r = 1 to R (R is small, about 5)

σr ← σinit (Could do this more cleverly)

For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random Cleverly!
Let σ′ be σr with j , k swapped

If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with max goodnσr or have human look at all σr (T )

Tradeoff Lets say this takes less iterations. But we spend more
time finding the clever swap. Is it worth it? Only way to find out is
to DO IT.

A High School Student did this for me and claims it worked better-
could use 400 instead of 2000 and it is faster.
There were issues with his work so I would want to see this redone
more carefully. However, I suspect



A Possible Improvement to n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
For r = 1 to R (R is small, about 5)

σr ← σinit (Could do this more cleverly)

For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random Cleverly!
Let σ′ be σr with j , k swapped
If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with max goodnσr or have human look at all σr (T )

Tradeoff Lets say this takes less iterations. But we spend more
time finding the clever swap. Is it worth it? Only way to find out is
to DO IT.

A High School Student did this for me and claims it worked better-
could use 400 instead of 2000 and it is faster.
There were issues with his work so I would want to see this redone
more carefully. However, I suspect



A Possible Improvement to n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
For r = 1 to R (R is small, about 5)

σr ← σinit (Could do this more cleverly)

For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random Cleverly!
Let σ′ be σr with j , k swapped
If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR

Pick the σr with max goodnσr or have human look at all σr (T )

Tradeoff Lets say this takes less iterations. But we spend more
time finding the clever swap. Is it worth it? Only way to find out is
to DO IT.

A High School Student did this for me and claims it worked better-
could use 400 instead of 2000 and it is faster.
There were issues with his work so I would want to see this redone
more carefully. However, I suspect



A Possible Improvement to n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
For r = 1 to R (R is small, about 5)

σr ← σinit (Could do this more cleverly)

For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random Cleverly!
Let σ′ be σr with j , k swapped
If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with max goodnσr or have human look at all σr (T )

Tradeoff Lets say this takes less iterations. But we spend more
time finding the clever swap. Is it worth it? Only way to find out is
to DO IT.

A High School Student did this for me and claims it worked better-
could use 400 instead of 2000 and it is faster.
There were issues with his work so I would want to see this redone
more carefully. However, I suspect



A Possible Improvement to n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
For r = 1 to R (R is small, about 5)

σr ← σinit (Could do this more cleverly)

For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random Cleverly!
Let σ′ be σr with j , k swapped
If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with max goodnσr or have human look at all σr (T )

Tradeoff Lets say this takes less iterations. But we spend more
time finding the clever swap. Is it worth it? Only way to find out is
to DO IT.

A High School Student did this for me and claims it worked better-
could use 400 instead of 2000 and it is faster.
There were issues with his work so I would want to see this redone
more carefully. However, I suspect



A Possible Improvement to n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
For r = 1 to R (R is small, about 5)

σr ← σinit (Could do this more cleverly)

For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random Cleverly!
Let σ′ be σr with j , k swapped
If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with max goodnσr or have human look at all σr (T )

Tradeoff Lets say this takes less iterations. But we spend more
time finding the clever swap. Is it worth it? Only way to find out is
to DO IT.

A High School Student did this for me and claims it worked better-
could use 400 instead of 2000 and it is faster.

There were issues with his work so I would want to see this redone
more carefully. However, I suspect



A Possible Improvement to n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.
For r = 1 to R (R is small, about 5)

σr ← σinit (Could do this more cleverly)

For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random Cleverly!
Let σ′ be σr with j , k swapped
If fσ′(T ),n · fE ,n > fσr (T ),n · fE ,n then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with max goodnσr or have human look at all σr (T )

Tradeoff Lets say this takes less iterations. But we spend more
time finding the clever swap. Is it worth it? Only way to find out is
to DO IT.

A High School Student did this for me and claims it worked better-
could use 400 instead of 2000 and it is faster.
There were issues with his work so I would want to see this redone
more carefully. However, I suspect



BILL
STOP RECORDING

THIS LECTURE

September 9, 2021


