BILL START RECORDING LECTURE

Threshold Secret

 Sharing: Information-Theoretic
Threshold Secret Sharing

Zelda has a secret $s \in\{0,1\}^{n}$.

Threshold Secret Sharing

Zelda has a secret $s \in\{0,1\}^{n}$.
Def Let $1 \leq t \leq m$. $(\boldsymbol{t}, \boldsymbol{m})$-secret sharing is a way for Zelda to give strings to A_{1}, \ldots, A_{m} such that:

Threshold Secret Sharing

Zelda has a secret $s \in\{0,1\}^{n}$.
Def Let $1 \leq t \leq m$. $(\boldsymbol{t}, \boldsymbol{m})$-secret sharing is a way for Zelda to give strings to A_{1}, \ldots, A_{m} such that:

1. If any t get together then they can learn s.

Threshold Secret Sharing

Zelda has a secret $s \in\{0,1\}^{n}$.
Def Let $1 \leq t \leq m$. $(\boldsymbol{t}, \boldsymbol{m})$-secret sharing is a way for Zelda to give strings to A_{1}, \ldots, A_{m} such that:

1. If any t get together then they can learn s.
2. If any $t-1$ get together they cannot learn s.

Threshold Secret Sharing

Zelda has a secret $s \in\{0,1\}^{n}$.
Def Let $1 \leq t \leq m$. $(\boldsymbol{t}, \boldsymbol{m})$-secret sharing is a way for Zelda to give strings to A_{1}, \ldots, A_{m} such that:

1. If any t get together then they can learn s.
2. If any $t-1$ get together they cannot learn s.

What do we mean by Cannot learn the secret?

Threshold Secret Sharing

Zelda has a secret $s \in\{0,1\}^{n}$.
Def Let $1 \leq t \leq m .(t, m)$-secret sharing is a way for Zelda to give strings to A_{1}, \ldots, A_{m} such that:

1. If any t get together then they can learn s.
2. If any $t-1$ get together they cannot learn s.

What do we mean by Cannot learn the secret? Info-theory-security. If $t-1$ people have big fancy supercomputers they cannot learn ANYTHING about s.

Threshold Secret Sharing

Zelda has a secret $s \in\{0,1\}^{n}$.
Def Let $1 \leq t \leq m .(t, m)$-secret sharing is a way for Zelda to give strings to A_{1}, \ldots, A_{m} such that:

1. If any t get together then they can learn s.
2. If any $t-1$ get together they cannot learn s.

What do we mean by Cannot learn the secret?
Info-theory-security. If $t-1$ people have big fancy supercomputers they cannot learn ANYTHING about s.
Time permitting we look at comp-security where we assume a limitation on how much the players can compute.

Applications

Rumor Secret Sharing is used for the Russian Nuclear Codes. There are three people (one is Putin) and if two of them agree to launch, they can launch.

Applications

Rumor Secret Sharing is used for the Russian Nuclear Codes. There are three people (one is Putin) and if two of them agree to launch, they can launch.

Fact For people signing a contract long distance, secret sharing is used as a building block in the protocol.

(4, 4)-Secret Sharing

Zelda has a secret s. $A_{1}, A_{2}, A_{3}, A_{4}$ are people. We want:

(4, 4)-Secret Sharing

Zelda has a secret s. $A_{1}, A_{2}, A_{3}, A_{4}$ are people. We want: 1. If all four of $A_{1}, A_{2}, A_{3}, A_{4}$ get together, they can find s.

(4, 4)-Secret Sharing

Zelda has a secret s. $A_{1}, A_{2}, A_{3}, A_{4}$ are people. We want:

1. If all four of $A_{1}, A_{2}, A_{3}, A_{4}$ get together, they can find s.
2. If any three of them get together, then they learn NOTHING.

An Attempt at (4,4)-Secret Sharing

An Attempt at (4,4)-Secret Sharing

1. Zelda breaks s up into $s=s_{1} s_{2} s_{3} s_{4}$ where

$$
\left|s_{1}\right|=\left|s_{2}\right|=\left|s_{3}\right|=\left|s_{4}\right|=\frac{n}{4}
$$

An Attempt at (4,4)-Secret Sharing

1. Zelda breaks s up into $s=s_{1} s_{2} s_{3} s_{4}$ where

$$
\left|s_{1}\right|=\left|s_{2}\right|=\left|s_{3}\right|=\left|s_{4}\right|=\frac{n}{4}
$$

2. Zelda gives A_{i} the string s_{i}.

An Attempt at (4,4)-Secret Sharing

1. Zelda breaks s up into $s=s_{1} s_{2} s_{3} s_{4}$ where

$$
\left|s_{1}\right|=\left|s_{2}\right|=\left|s_{3}\right|=\left|s_{4}\right|=\frac{n}{4}
$$

2. Zelda gives A_{i} the string s_{i}.

Does this work?

An Attempt at (4,4)-Secret Sharing

1. Zelda breaks s up into $s=s_{1} s_{2} s_{3} s_{4}$ where

$$
\left|s_{1}\right|=\left|s_{2}\right|=\left|s_{3}\right|=\left|s_{4}\right|=\frac{n}{4}
$$

2. Zelda gives A_{i} the string s_{i}.

Does this work?

1. If $A_{1}, A_{2}, A_{3}, A_{4}$ get together they can find s.

An Attempt at (4,4)-Secret Sharing

1. Zelda breaks s up into $s=s_{1} s_{2} s_{3} s_{4}$ where

$$
\left|s_{1}\right|=\left|s_{2}\right|=\left|s_{3}\right|=\left|s_{4}\right|=\frac{n}{4}
$$

2. Zelda gives A_{i} the string s_{i}.

Does this work?

1. If $A_{1}, A_{2}, A_{3}, A_{4}$ get together they can find s. YES!!

An Attempt at (4,4)-Secret Sharing

1. Zelda breaks s up into $s=s_{1} s_{2} s_{3} s_{4}$ where

$$
\left|s_{1}\right|=\left|s_{2}\right|=\left|s_{3}\right|=\left|s_{4}\right|=\frac{n}{4}
$$

2. Zelda gives A_{i} the string s_{i}.

Does this work?

1. If $A_{1}, A_{2}, A_{3}, A_{4}$ get together they can find s. YES!!
2. If any three of them get together they learn NOTHING.

An Attempt at (4,4)-Secret Sharing

1. Zelda breaks s up into $s=s_{1} s_{2} s_{3} s_{4}$ where

$$
\left|s_{1}\right|=\left|s_{2}\right|=\left|s_{3}\right|=\left|s_{4}\right|=\frac{n}{4}
$$

2. Zelda gives A_{i} the string s_{i}.

Does this work?

1. If $A_{1}, A_{2}, A_{3}, A_{4}$ get together they can find s. YES!!
2. If any three of them get together they learn NOTHING. NO.

An Attempt at (4,4)-Secret Sharing

1. Zelda breaks s up into $s=s_{1} s_{2} s_{3} s_{4}$ where

$$
\left|s_{1}\right|=\left|s_{2}\right|=\left|s_{3}\right|=\left|s_{4}\right|=\frac{n}{4}
$$

2. Zelda gives A_{i} the string s_{i}.

Does this work?

1. If $A_{1}, A_{2}, A_{3}, A_{4}$ get together they can find s. YES!!
2. If any three of them get together they learn NOTHING. NO.
$2.1 A_{1}$ learns s_{1} which is $\frac{1}{4}$ of the secret!

An Attempt at (4,4)-Secret Sharing

1. Zelda breaks s up into $s=s_{1} s_{2} s_{3} s_{4}$ where

$$
\left|s_{1}\right|=\left|s_{2}\right|=\left|s_{3}\right|=\left|s_{4}\right|=\frac{n}{4}
$$

2. Zelda gives A_{i} the string s_{i}.

Does this work?

1. If $A_{1}, A_{2}, A_{3}, A_{4}$ get together they can find s. YES!!
2. If any three of them get together they learn NOTHING. NO.
2.1 A_{1} learns s_{1} which is $\frac{1}{4}$ of the secret!
2.2 A_{1}, A_{2} learn $s_{1} s_{2}$ which is $\frac{1}{2}$ of the secret!

An Attempt at (4,4)-Secret Sharing

1. Zelda breaks s up into $s=s_{1} s_{2} s_{3} s_{4}$ where

$$
\left|s_{1}\right|=\left|s_{2}\right|=\left|s_{3}\right|=\left|s_{4}\right|=\frac{n}{4}
$$

2. Zelda gives A_{i} the string s_{i}.

Does this work?

1. If $A_{1}, A_{2}, A_{3}, A_{4}$ get together they can find s. YES!!
2. If any three of them get together they learn NOTHING. NO.
2.1 A_{1} learns s_{1} which is $\frac{1}{4}$ of the secret!
2.2 A_{1}, A_{2} learn $s_{1} s_{2}$ which is $\frac{1}{2}$ of the secret!
$2.3 A_{1}, A_{2}, A_{3}$ learn $s_{1} s_{2} s_{3}$ which is $\frac{3}{4}$ of the secret!

Is $(4,4)$-Secret Sharing Possible?

VOTE Is (4, 4)-Secret sharing possible?

Is $(4,4)$-Secret Sharing Possible?

VOTE Is (4, 4)-Secret sharing possible?

1. YES and this is known.

Is $(4,4)$-Secret Sharing Possible?

VOTE Is (4, 4)-Secret sharing possible?

1. YES and this is known.
2. NO and this is known.

Is $(4,4)$-Secret Sharing Possible?

VOTE Is (4, 4)-Secret sharing possible?

1. YES and this is known.
2. NO and this is known.
3. YES given some hardness assumption, and this is known.

Is $(4,4)$-Secret Sharing Possible?

VOTE Is (4, 4)-Secret sharing possible?

1. YES and this is known.
2. NO and this is known.
3. YES given some hardness assumption, and this is known.
4. UNKNOWN TO SCIENCE!

Is $(4,4)$-Secret Sharing Possible?

VOTE Is (4, 4)-Secret sharing possible?

1. YES and this is known.
2. NO and this is known.
3. YES given some hardness assumption, and this is known.
4. UNKNOWN TO SCIENCE!

YES

Random String Approach

Zelda gives out shares of the secret

Random String Approach

Zelda gives out shares of the secret

1. Secret $s \in\{0,1\}^{n}$. Zelda gen random $r_{1}, r_{2}, r_{3} \in\{0,1\}^{n}$.

Random String Approach

Zelda gives out shares of the secret

1. Secret $s \in\{0,1\}^{n}$. Zelda gen random $r_{1}, r_{2}, r_{3} \in\{0,1\}^{n}$.
2. Zelda gives $A_{1} s_{1}=r_{1}$.

Random String Approach

Zelda gives out shares of the secret

1. Secret $s \in\{0,1\}^{n}$. Zelda gen random $r_{1}, r_{2}, r_{3} \in\{0,1\}^{n}$.
2. Zelda gives $A_{1} s_{1}=r_{1}$.

Zelda gives $A_{2} s_{2}=r_{2}$.

Random String Approach

Zelda gives out shares of the secret

1. Secret $s \in\{0,1\}^{n}$. Zelda gen random $r_{1}, r_{2}, r_{3} \in\{0,1\}^{n}$.
2. Zelda gives $A_{1} s_{1}=r_{1}$.

Zelda gives $A_{2} s_{2}=r_{2}$.
Zelda gives $A_{3} s_{3}=r_{3}$.

Random String Approach

Zelda gives out shares of the secret

1. Secret $s \in\{0,1\}^{n}$. Zelda gen random $r_{1}, r_{2}, r_{3} \in\{0,1\}^{n}$.
2. Zelda gives $A_{1} s_{1}=r_{1}$.

Zelda gives $A_{2} s_{2}=r_{2}$.
Zelda gives $A_{3} s_{3}=r_{3}$.
Zelda gives $A_{4} s_{4}=s \oplus r_{1} \oplus r_{2} \oplus r_{3}$.

Random String Approach

Zelda gives out shares of the secret

1. Secret $s \in\{0,1\}^{n}$. Zelda gen random $r_{1}, r_{2}, r_{3} \in\{0,1\}^{n}$.
2. Zelda gives $A_{1} s_{1}=r_{1}$.

Zelda gives $A_{2} s_{2}=r_{2}$.
Zelda gives $A_{3} s_{3}=r_{3}$.
Zelda gives $A_{4} s_{4}=s \oplus r_{1} \oplus r_{2} \oplus r_{3}$.
$A_{1}, A_{2}, A_{3}, A_{4}$ Can Recover the Secret

$$
s_{1} \oplus s_{2} \oplus s_{3} \oplus s_{4}=r_{1} \oplus r_{2} \oplus r_{3} \oplus r_{1} \oplus r_{2} \oplus r_{3} \oplus s=s
$$

Random String Approach

Zelda gives out shares of the secret

1. Secret $s \in\{0,1\}^{n}$. Zelda gen random $r_{1}, r_{2}, r_{3} \in\{0,1\}^{n}$.
2. Zelda gives $A_{1} s_{1}=r_{1}$.

Zelda gives $A_{2} s_{2}=r_{2}$.
Zelda gives $A_{3} s_{3}=r_{3}$.
Zelda gives $A_{4} s_{4}=s \oplus r_{1} \oplus r_{2} \oplus r_{3}$.
$A_{1}, A_{2}, A_{3}, A_{4}$ Can Recover the Secret

$$
s_{1} \oplus s_{2} \oplus s_{3} \oplus s_{4}=r_{1} \oplus r_{2} \oplus r_{3} \oplus r_{1} \oplus r_{2} \oplus r_{3} \oplus s=s
$$

Easy to see that if ≤ 3 get together they learn NOTHING

(2,4)-Secret Sharing via Rand Strings

The secret is $s \in\{0,1\}^{n}$

(2,4)-Secret Sharing via Rand Strings

The secret is $s \in\{0,1\}^{n}$
Want A_{1}, A_{2} to determine s, but neither A_{1} nor A_{2} alone can. Idea Zelda will secret share with every pair separately.

(2,4)-Secret Sharing via Rand Strings

The secret is $s \in\{0,1\}^{n}$
Want A_{1}, A_{2} to determine s, but neither A_{1} nor A_{2} alone can.
Idea Zelda will secret share with every pair separately. Z Gen random r_{12}. Give $A_{1}\left(1,2, r_{12}\right)$ and $A_{2}\left(1,2, s \oplus r_{12}\right)$.

(2,4)-Secret Sharing via Rand Strings

The secret is $s \in\{0,1\}^{n}$
Want A_{1}, A_{2} to determine s, but neither A_{1} nor A_{2} alone can.
Idea Zelda will secret share with every pair separately.
Z Gen random r_{12}. Give $A_{1}\left(1,2, r_{12}\right)$ and $A_{2}\left(1,2, s \oplus r_{12}\right)$.
Z Gen random r_{13}. Give $A_{1}\left(1,3, r_{13}\right)$ and $A_{3}\left(1,3, s \oplus r_{13}\right)$.

(2,4)-Secret Sharing via Rand Strings

The secret is $s \in\{0,1\}^{n}$
Want A_{1}, A_{2} to determine s, but neither A_{1} nor A_{2} alone can.
Idea Zelda will secret share with every pair separately.
Z Gen random r_{12}. Give $A_{1}\left(1,2, r_{12}\right)$ and $A_{2}\left(1,2, s \oplus r_{12}\right)$.
Z Gen random r_{13}. Give $A_{1}\left(1,3, r_{13}\right)$ and $A_{3}\left(1,3, s \oplus r_{13}\right)$.
Z Gen random r_{14}. Give $A_{1}\left(1,4, r_{14}\right)$ and $A_{4}\left(1,4, s \oplus r_{14}\right)$.

(2,4)-Secret Sharing via Rand Strings

The secret is $s \in\{0,1\}^{n}$
Want A_{1}, A_{2} to determine s, but neither A_{1} nor A_{2} alone can.
Idea Zelda will secret share with every pair separately.
Z Gen random r_{12}. Give $A_{1}\left(1,2, r_{12}\right)$ and $A_{2}\left(1,2, s \oplus r_{12}\right)$.
Z Gen random r_{13}. Give $A_{1}\left(1,3, r_{13}\right)$ and $A_{3}\left(1,3, s \oplus r_{13}\right)$.
Z Gen random r_{14}. Give $A_{1}\left(1,4, r_{14}\right)$ and $A_{4}\left(1,4, s \oplus r_{14}\right)$.
Z Gen random r_{23}. Give $A_{2}\left(2,3, r_{23}\right)$ and $A_{3}\left(2,3, s \oplus r_{23}\right)$.

(2,4)-Secret Sharing via Rand Strings

The secret is $s \in\{0,1\}^{n}$
Want A_{1}, A_{2} to determine s, but neither A_{1} nor A_{2} alone can.
Idea Zelda will secret share with every pair separately.
Z Gen random r_{12}. Give $A_{1}\left(1,2, r_{12}\right)$ and $A_{2}\left(1,2, s \oplus r_{12}\right)$.
Z Gen random r_{13}. Give $A_{1}\left(1,3, r_{13}\right)$ and $A_{3}\left(1,3, s \oplus r_{13}\right)$.
Z Gen random r_{14}. Give $A_{1}\left(1,4, r_{14}\right)$ and $A_{4}\left(1,4, s \oplus r_{14}\right)$.
Z Gen random r_{23}. Give $A_{2}\left(2,3, r_{23}\right)$ and $A_{3}\left(2,3, s \oplus r_{23}\right)$.
Z Gen random r_{24}. Give $A_{2}\left(2,4, r_{24}\right)$ and $A_{4}\left(2,4, s \oplus r_{24}\right)$.

(2,4)-Secret Sharing via Rand Strings

The secret is $s \in\{0,1\}^{n}$
Want A_{1}, A_{2} to determine s, but neither A_{1} nor A_{2} alone can.
Idea Zelda will secret share with every pair separately.
Z Gen random r_{12}. Give $A_{1}\left(1,2, r_{12}\right)$ and $A_{2}\left(1,2, s \oplus r_{12}\right)$.
Z Gen random r_{13}. Give $A_{1}\left(1,3, r_{13}\right)$ and $A_{3}\left(1,3, s \oplus r_{13}\right)$.
Z Gen random r_{14}. Give $A_{1}\left(1,4, r_{14}\right)$ and $A_{4}\left(1,4, s \oplus r_{14}\right)$.
Z Gen random r_{23}. Give $A_{2}\left(2,3, r_{23}\right)$ and $A_{3}\left(2,3, s \oplus r_{23}\right)$.
Z Gen random r_{24}. Give $A_{2}\left(2,4, r_{24}\right)$ and $A_{4}\left(2,4, s \oplus r_{24}\right)$.
Z Gen random r_{34}. Give $A_{3}\left(3,4, r_{34}\right)$ and $A_{4}\left(3,4, s \oplus r_{34}\right)$.

(2,4)-Secret Sharing via Rand Strings

The secret is $s \in\{0,1\}^{n}$
Want A_{1}, A_{2} to determine s, but neither A_{1} nor A_{2} alone can.
Idea Zelda will secret share with every pair separately.
Z Gen random r_{12}. Give $A_{1}\left(1,2, r_{12}\right)$ and $A_{2}\left(1,2, s \oplus r_{12}\right)$.
Z Gen random r_{13}. Give $A_{1}\left(1,3, r_{13}\right)$ and $A_{3}\left(1,3, s \oplus r_{13}\right)$.
Z Gen random r_{14}. Give $A_{1}\left(1,4, r_{14}\right)$ and $A_{4}\left(1,4, s \oplus r_{14}\right)$.
Z Gen random r_{23}. Give $A_{2}\left(2,3, r_{23}\right)$ and $A_{3}\left(2,3, s \oplus r_{23}\right)$.
Z Gen random r_{24}. Give $A_{2}\left(2,4, r_{24}\right)$ and $A_{4}\left(2,4, s \oplus r_{24}\right)$.
Z Gen random r_{34}. Give $A_{3}\left(3,4, r_{34}\right)$ and $A_{4}\left(3,4, s \oplus r_{34}\right)$.
If any two get together they can find secret. No one person can find the secret.

(t, m)-Secret Sharing via Rand Strings

The secret is $s \in\{0,1\}^{n}$.
For each t-set of A_{1}, \ldots, A_{m} we set up random strings so they can recover the secret if they all get together. We omit details but may be on HW.

(t, m)-Secret Sharing via Rand Strings

The secret is $s \in\{0,1\}^{n}$.
For each t-set of A_{1}, \ldots, A_{m} we set up random strings so they can recover the secret if they all get together. We omit details but may be on HW.

Every t-subset does its own secret sharing, so LOTS of strings.

A_{i} Gets ??? Strings in $(m / 2, m)$-Secret Sharing

If do $(m / 2, m)$ secret sharing then how many strings does A_{1} get?

A_{i} Gets ??? Strings in $(m / 2, m)$-Secret Sharing

If do $(m / 2, m)$ secret sharing then how many strings does A_{1} get?
A_{1} gets a string for every $J \subseteq\{1, \ldots, m\},|J|=\frac{m}{2}, 1 \in J$.
Equivalent to:

A_{i} Gets ??? Strings in $(m / 2, m)$-Secret Sharing

If do $(m / 2, m)$ secret sharing then how many strings does A_{1} get?
A_{1} gets a string for every $J \subseteq\{1, \ldots, m\},|J|=\frac{m}{2}, 1 \in J$.
Equivalent to:
A_{1} gets a string for every $J \subseteq\{2, \ldots, m\},|J|=\frac{m}{2}-1$.

A_{i} Gets ??? Strings in $(m / 2, m)$-Secret Sharing

If do $(m / 2, m)$ secret sharing then how many strings does A_{1} get?
A_{1} gets a string for every $J \subseteq\{1, \ldots, m\},|J|=\frac{m}{2}, 1 \in J$.
Equivalent to:
A_{1} gets a string for every $J \subseteq\{2, \ldots, m\},|J|=\frac{m}{2}-1$.
How many sets? Discuss

A_{i} Gets ??? Strings in $(m / 2, m)$-Secret Sharing

If do $(m / 2, m)$ secret sharing then how many strings does A_{1} get?
A_{1} gets a string for every $J \subseteq\{1, \ldots, m\},|J|=\frac{m}{2}, 1 \in J$.
Equivalent to:
A_{1} gets a string for every $J \subseteq\{2, \ldots, m\},|J|=\frac{m}{2}-1$.
How many sets? Discuss

$$
\binom{m-1}{\frac{m}{2}-1} \sim \frac{2^{m}}{\sqrt{m}} \text { strings }
$$

A_{i} Gets ??? Strings in $(m / 2, m)$-Secret Sharing

If do $(m / 2, m)$ secret sharing then how many strings does A_{1} get?
A_{1} gets a string for every $J \subseteq\{1, \ldots, m\},|J|=\frac{m}{2}, 1 \in J$.
Equivalent to:
A_{1} gets a string for every $J \subseteq\{2, \ldots, m\},|J|=\frac{m}{2}-1$.
How many sets? Discuss

$$
\binom{m-1}{\frac{m}{2}-1} \sim \frac{2^{m}}{\sqrt{m}} \text { strings }
$$

Thats A LOT of Strings!

Reduce The Number of Strings for $(m / 2, m)$?

In our $(m / 2, m)$-scheme each A_{i} gets $\sim \frac{2^{m}}{\sqrt{m}}$ strings. VOTE

Reduce The Number of Strings for $(m / 2, m) ?$

In our $(m / 2, m)$-scheme each A_{i} gets $\sim \frac{2^{m}}{\sqrt{m}}$ strings.
VOTE

1. Requires roughly 2^{m} strings.

Reduce The Number of Strings for $(m / 2, m) ?$

In our $(m / 2, m)$-scheme each A_{i} gets $\sim \frac{2^{m}}{\sqrt{m}}$ strings.
VOTE

1. Requires roughly 2^{m} strings.
2. $O\left(\beta^{m}\right)$ strings for some $1<\beta<2$ but not poly.

Reduce The Number of Strings for $(m / 2, m) ?$

In our $(m / 2, m)$-scheme each A_{i} gets $\sim \frac{2^{m}}{\sqrt{m}}$ strings. VOTE

1. Requires roughly 2^{m} strings.
2. $O\left(\beta^{m}\right)$ strings for some $1<\beta<2$ but not poly.
3. $O\left(m^{a}\right)$ strings for some $a>1$ but not linear.

Reduce The Number of Strings for $(m / 2, m) ?$

In our $(m / 2, m)$-scheme each A_{i} gets $\sim \frac{2^{m}}{\sqrt{m}}$ strings. VOTE

1. Requires roughly 2^{m} strings.
2. $O\left(\beta^{m}\right)$ strings for some $1<\beta<2$ but not poly.
3. $O\left(m^{a}\right)$ strings for some $a>1$ but not linear.
4. $O(m)$ strings but not m^{a} with $a<1$.

Reduce The Number of Strings for $(m / 2, m) ?$

In our $(m / 2, m)$-scheme each A_{i} gets $\sim \frac{2^{m}}{\sqrt{m}}$ strings. VOTE

1. Requires roughly 2^{m} strings.
2. $O\left(\beta^{m}\right)$ strings for some $1<\beta<2$ but not poly.
3. $O\left(m^{a}\right)$ strings for some $a>1$ but not linear.
4. $O(m)$ strings but not m^{a} with $a<1$.
5. $O\left(m^{a}\right)$ strings for some $a<1$ but not logarithmic.

Reduce The Number of Strings for $(m / 2, m) ?$

In our $(m / 2, m)$-scheme each A_{i} gets $\sim \frac{2^{m}}{\sqrt{m}}$ strings. VOTE

1. Requires roughly 2^{m} strings.
2. $O\left(\beta^{m}\right)$ strings for some $1<\beta<2$ but not poly.
3. $O\left(m^{a}\right)$ strings for some $a>1$ but not linear.
4. $O(m)$ strings but not m^{a} with $a<1$.
5. $O\left(m^{a}\right)$ strings for some $a<1$ but not logarithmic.
6. $O(\log m)$ strings but not constant.

Reduce The Number of Strings for $(m / 2, m) ?$

In our $(m / 2, m)$-scheme each A_{i} gets $\sim \frac{2^{m}}{\sqrt{m}}$ strings. VOTE

1. Requires roughly 2^{m} strings.
2. $O\left(\beta^{m}\right)$ strings for some $1<\beta<2$ but not poly.
3. $O\left(m^{a}\right)$ strings for some $a>1$ but not linear.
4. $O(m)$ strings but not m^{a} with $a<1$.
5. $O\left(m^{a}\right)$ strings for some $a<1$ but not logarithmic.
6. $O(\log m)$ strings but not constant.
7. $O(1)$ strings.

Reduce The Number of Strings for $(m / 2, m)$?

In our $(m / 2, m)$-scheme each A_{i} gets $\sim \frac{2^{m}}{\sqrt{m}}$ strings. VOTE

1. Requires roughly 2^{m} strings.
2. $O\left(\beta^{m}\right)$ strings for some $1<\beta<2$ but not poly.
3. $O\left(m^{a}\right)$ strings for some $a>1$ but not linear.
4. $O(m)$ strings but not m^{a} with $a<1$.
5. $O\left(m^{a}\right)$ strings for some $a<1$ but not logarithmic.
6. $O(\log m)$ strings but not constant.
7. $O(1)$ strings.

You can always do this with everyone getting 1 string.

Reduce The Number of Strings for $(m / 2, m)$?

In our $(m / 2, m)$-scheme each A_{i} gets $\sim \frac{2^{m}}{\sqrt{m}}$ strings. VOTE

1. Requires roughly 2^{m} strings.
2. $O\left(\beta^{m}\right)$ strings for some $1<\beta<2$ but not poly.
3. $O\left(m^{a}\right)$ strings for some $a>1$ but not linear.
4. $O(m)$ strings but not m^{a} with $a<1$.
5. $O\left(m^{a}\right)$ strings for some $a<1$ but not logarithmic.
6. $O(\log m)$ strings but not constant.
7. $O(1)$ strings.

You can always do this with everyone getting 1 string. I know what you are thinking:

Reduce The Number of Strings for $(m / 2, m)$?

In our $(m / 2, m)$-scheme each A_{i} gets $\sim \frac{2^{m}}{\sqrt{m}}$ strings. VOTE

1. Requires roughly 2^{m} strings.
2. $O\left(\beta^{m}\right)$ strings for some $1<\beta<2$ but not poly.
3. $O\left(m^{a}\right)$ strings for some $a>1$ but not linear.
4. $O(m)$ strings but not m^{a} with $a<1$.
5. $O\left(m^{a}\right)$ strings for some $a<1$ but not logarithmic.
6. $O(\log m)$ strings but not constant.
7. $O(1)$ strings.

You can always do this with everyone getting 1 string. I know what you are thinking: LOOOONG string.

Reduce The Number of Strings for $(m / 2, m)$?

In our $(m / 2, m)$-scheme each A_{i} gets $\sim \frac{2^{m}}{\sqrt{m}}$ strings. VOTE

1. Requires roughly 2^{m} strings.
2. $O\left(\beta^{m}\right)$ strings for some $1<\beta<2$ but not poly.
3. $O\left(m^{a}\right)$ strings for some $a>1$ but not linear.
4. $O(m)$ strings but not m^{a} with $a<1$.
5. $O\left(m^{a}\right)$ strings for some $a<1$ but not logarithmic.
6. $O(\log m)$ strings but not constant.
7. $O(1)$ strings.

You can always do this with everyone getting 1 string. I know what you are thinking: LOOOONG string.No.

Reduce The Number of Strings for $(m / 2, m)$?

In our $(m / 2, m)$-scheme each A_{i} gets $\sim \frac{2^{m}}{\sqrt{m}}$ strings. VOTE

1. Requires roughly 2^{m} strings.
2. $O\left(\beta^{m}\right)$ strings for some $1<\beta<2$ but not poly.
3. $O\left(m^{a}\right)$ strings for some $a>1$ but not linear.
4. $O(m)$ strings but not m^{a} with $a<1$.
5. $O\left(m^{a}\right)$ strings for some $a<1$ but not logarithmic.
6. $O(\log m)$ strings but not constant.
7. $O(1)$ strings.

You can always do this with everyone getting 1 string. I know what you are thinking: LOOOONG string.No. You can always do this with everyone getting 1 string that is the same length as the secret

Convention On Secrets

From now on the secret will always be an element of \mathbb{Z}_{p} for some primes p.

Convention On Secrets

From now on the secret will always be an element of \mathbb{Z}_{p} for some primes p.

Example If the secret is 20 then you must operate in \mathbb{Z}_{23}.

Convention On Secrets

From now on the secret will always be an element of \mathbb{Z}_{p} for some primes p.

Example If the secret is 20 then you must operate in \mathbb{Z}_{23}.
Always take the smallest prime larger than the secret.

Convention On Secrets

From now on the secret will always be an element of \mathbb{Z}_{p} for some primes p.

Example If the secret is 20 then you must operate in \mathbb{Z}_{23}.
Always take the smallest prime larger than the secret.
If Secret is 23 then take $p=23$, so now secret is 0 .

Secret Sharing With Polynomials: $(3,6)$

We do (3, 6)-Secret Sharing but technique works for any (t, m).

Secret Sharing With Polynomials: $(3,6)$

We do (3, 6)-Secret Sharing but technique works for any (t, m).

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.

Secret Sharing With Polynomials: $(3,6)$

We do (3, 6)-Secret Sharing but technique works for any (t, m).

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand numbers $a_{2}, a_{1} \in \mathbb{Z}_{p}$

Secret Sharing With Polynomials: $(3,6)$

We do (3, 6)-Secret Sharing but technique works for any (t, m).

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand numbers $a_{2}, a_{1} \in \mathbb{Z}_{p}$
3. Zelda forms polynomial $f(x)=a_{2} x^{2}+a_{1} x+s$.

Secret Sharing With Polynomials: $(3,6)$

We do (3, 6)-Secret Sharing but technique works for any (t, m).

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand numbers $a_{2}, a_{1} \in \mathbb{Z}_{p}$
3. Zelda forms polynomial $f(x)=a_{2} x^{2}+a_{1} x+s$.
4. Zelda gives $A_{1} f(1), A_{2} f(2), \ldots, A_{6} f(6)(\operatorname{all} \bmod p)$. These are all in \mathbb{Z}_{p}. (Everyone also has p.)

Secret Sharing With Polynomials: $(3,6)$

We do (3, 6)-Secret Sharing but technique works for any (t, m).

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand numbers $a_{2}, a_{1} \in \mathbb{Z}_{p}$
3. Zelda forms polynomial $f(x)=a_{2} x^{2}+a_{1} x+s$.
4. Zelda gives $A_{1} f(1), A_{2} f(2), \ldots, A_{6} f(6)(\operatorname{all} \bmod p)$. These are all in \mathbb{Z}_{p}. (Everyone also has p.)
5. Any 3 have 3 points from $f(x)$ so can find $f(x)$, s.

Secret Sharing With Polynomials: $(3,6)$

We do (3, 6)-Secret Sharing but technique works for any (t, m).

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand numbers $a_{2}, a_{1} \in \mathbb{Z}_{p}$
3. Zelda forms polynomial $f(x)=a_{2} x^{2}+a_{1} x+s$.
4. Zelda gives $A_{1} f(1), A_{2} f(2), \ldots, A_{6} f(6)(\operatorname{all} \bmod p)$. These are all in \mathbb{Z}_{p}. (Everyone also has p.)
5. Any 3 have 3 points from $f(x)$ so can find $f(x)$, s.
6. Any 2 have 2 points from $f(x)$. From these two points what can they conclude?

Secret Sharing With Polynomials: $(3,6)$

We do (3, 6)-Secret Sharing but technique works for any (t, m).

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand numbers $a_{2}, a_{1} \in \mathbb{Z}_{p}$
3. Zelda forms polynomial $f(x)=a_{2} x^{2}+a_{1} x+s$.
4. Zelda gives $A_{1} f(1), A_{2} f(2), \ldots, A_{6} f(6)(\operatorname{all} \bmod p)$. These are all in \mathbb{Z}_{p}. (Everyone also has p.)
5. Any 3 have 3 points from $f(x)$ so can find $f(x)$, s.
6. Any 2 have 2 points from $f(x)$. From these two points what can they conclude? NOTHING!

Secret Sharing With Polynomials: $(3,6)$

We do (3, 6)-Secret Sharing but technique works for any (t, m).

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand numbers $a_{2}, a_{1} \in \mathbb{Z}_{p}$
3. Zelda forms polynomial $f(x)=a_{2} x^{2}+a_{1} x+s$.
4. Zelda gives $A_{1} f(1), A_{2} f(2), \ldots, A_{6} f(6)(\operatorname{all} \bmod p)$. These are all in \mathbb{Z}_{p}. (Everyone also has p.)
5. Any 3 have 3 points from $f(x)$ so can find $f(x)$, s.
6. Any 2 have 2 points from $f(x)$. From these two points what can they conclude? NOTHING! If they know $f(1)=3$ and $f(2)=7$ and f is degree 2 then the constant term can be anything in $\{0, \ldots, p\}$. So they know NOTHING about s.

Threshold Secret Sharing With Polynomials: (t, m)

Zelda wants to give strings to A_{1}, \ldots, A_{m} such that
Any t of A_{1}, \ldots, A_{m} can find s. Any $t-1$ learn NOTHING.

Threshold Secret Sharing With Polynomials: (t, m)

Zelda wants to give strings to A_{1}, \ldots, A_{m} such that
Any t of A_{1}, \ldots, A_{m} can find s. Any $t-1$ learn NOTHING.

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.

Threshold Secret Sharing With Polynomials: (t, m)

Zelda wants to give strings to A_{1}, \ldots, A_{m} such that
Any t of A_{1}, \ldots, A_{m} can find s. Any $t-1$ learn NOTHING.

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand $a_{t-1}, \ldots, a_{1} \in \mathbb{Z}_{p}$.

Threshold Secret Sharing With Polynomials: (t, m)

Zelda wants to give strings to A_{1}, \ldots, A_{m} such that
Any t of A_{1}, \ldots, A_{m} can find s. Any $t-1$ learn NOTHING.

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand $a_{t-1}, \ldots, a_{1} \in \mathbb{Z}_{p}$.
3. Zelda forms polynomial $f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+s$.

Threshold Secret Sharing With Polynomials: (t, m)

Zelda wants to give strings to A_{1}, \ldots, A_{m} such that
Any t of A_{1}, \ldots, A_{m} can find s. Any $t-1$ learn NOTHING.

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand $a_{t-1}, \ldots, a_{1} \in \mathbb{Z}_{p}$.
3. Zelda forms polynomial $f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+s$.
4. For $1 \leq i \leq m$ Zelda gives $A_{i} f(i) \bmod p$.

Threshold Secret Sharing With Polynomials: (t, m)

Zelda wants to give strings to A_{1}, \ldots, A_{m} such that
Any t of A_{1}, \ldots, A_{m} can find s. Any $t-1$ learn NOTHING.

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand $a_{t-1}, \ldots, a_{1} \in \mathbb{Z}_{p}$.
3. Zelda forms polynomial $f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+s$.
4. For $1 \leq i \leq m$ Zelda gives $A_{i} f(i) \bmod p$.
5. Any t have t points from $f(x)$ so can find $f(x)$, s.

Threshold Secret Sharing With Polynomials: (t, m)

Zelda wants to give strings to A_{1}, \ldots, A_{m} such that
Any t of A_{1}, \ldots, A_{m} can find s. Any $t-1$ learn NOTHING.

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand $a_{t-1}, \ldots, a_{1} \in \mathbb{Z}_{p}$.
3. Zelda forms polynomial $f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+s$.
4. For $1 \leq i \leq m$ Zelda gives $A_{i} f(i) \bmod p$.
5. Any t have t points from $f(x)$ so can find $f(x)$, s.
6. Any $t-1$ have $t-1$ points from $f(x)$. From these $t-1$ points what can they conclude?

Threshold Secret Sharing With Polynomials: (t, m)

Zelda wants to give strings to A_{1}, \ldots, A_{m} such that
Any t of A_{1}, \ldots, A_{m} can find s. Any $t-1$ learn NOTHING.

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand $a_{t-1}, \ldots, a_{1} \in \mathbb{Z}_{p}$.
3. Zelda forms polynomial $f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+s$.
4. For $1 \leq i \leq m$ Zelda gives $A_{i} f(i) \bmod p$.
5. Any t have t points from $f(x)$ so can find $f(x)$, s.
6. Any $t-1$ have $t-1$ points from $f(x)$. From these $t-1$ points what can they conclude? NOTHING!

Threshold Secret Sharing With Polynomials: (t, m)

Zelda wants to give strings to A_{1}, \ldots, A_{m} such that
Any t of A_{1}, \ldots, A_{m} can find s. Any $t-1$ learn NOTHING.

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand $a_{t-1}, \ldots, a_{1} \in \mathbb{Z}_{p}$.
3. Zelda forms polynomial $f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+s$.
4. For $1 \leq i \leq m$ Zelda gives $A_{i} f(i) \bmod p$.
5. Any t have t points from $f(x)$ so can find $f(x)$, s.
6. Any $t-1$ have $t-1$ points from $f(x)$. From these $t-1$ points what can they conclude? NOTHING! Any constant term is consistent with what they know.' So they know NOTHING about s.

Example

$(3,6)$ secret sharing. $s=20$ and $p=37$.

Example

$(3,6)$ secret sharing. $s=20$ and $p=37$.

1. Zelda picks $a_{2}=8$ and $a_{1}=13$.

Example

$(3,6)$ secret sharing. $s=20$ and $p=37$.

1. Zelda picks $a_{2}=8$ and $a_{1}=13$.
2. Zelda forms polynomial $f(x)=8 x^{2}+13 x+20$.

Example

$(3,6)$ secret sharing.
$s=20$ and $p=37$.

1. Zelda picks $a_{2}=8$ and $a_{1}=13$.
2. Zelda forms polynomial $f(x)=8 x^{2}+13 x+20$.
3. Zelda gives $A_{1} f(1)=4, A_{2} f(2)=4, A_{3} f(3)=20, A_{4}$ $f(4)=15, A_{5} f(5)=26, A_{6} f(6)=16$.

Example

$(3,6)$ secret sharing.
$s=20$ and $p=37$.

1. Zelda picks $a_{2}=8$ and $a_{1}=13$.
2. Zelda forms polynomial $f(x)=8 x^{2}+13 x+20$.
3. Zelda gives $A_{1} f(1)=4, A_{2} f(2)=4, A_{3} f(3)=20, A_{4}$ $f(4)=15, A_{5} f(5)=26, A_{6} f(6)=16$.
If A_{1}, A_{3}, A_{4} get together and want to find $f(x)$ hence s.
$f(x)=a_{2} x^{2}+a_{1} x+s$.
$f(1)=4: a_{2} \times 1^{2}+a_{1} \times 1+s \equiv 4(\bmod 37)$
$f(3)=20: a_{2} \times 3^{2}+a_{1} \times 3+s \equiv 20(\bmod 37)$
$f(4)=15: a_{2} \times 4^{2}+a_{1} \times 4+s \equiv 14(\bmod 37)$

Example

$(3,6)$ secret sharing.
$s=20$ and $p=37$.

1. Zelda picks $a_{2}=8$ and $a_{1}=13$.
2. Zelda forms polynomial $f(x)=8 x^{2}+13 x+20$.
3. Zelda gives $A_{1} f(1)=4, A_{2} f(2)=4, A_{3} f(3)=20, A_{4}$ $f(4)=15, A_{5} f(5)=26, A_{6} f(6)=16$.
If A_{1}, A_{3}, A_{4} get together and want to find $f(x)$ hence s.
$f(x)=a_{2} x^{2}+a_{1} x+s$.
$f(1)=4: a_{2} \times 1^{2}+a_{1} \times 1+s \equiv 4(\bmod 37)$
$f(3)=20: a_{2} \times 3^{2}+a_{1} \times 3+s \equiv 20(\bmod 37)$
$f(4)=15: a_{2} \times 4^{2}+a_{1} \times 4+s \equiv 14(\bmod 37)$
3 linear equations in 3 variables, over mod 37 can be solved.

Example

$(3,6)$ secret sharing.
$s=20$ and $p=37$.

1. Zelda picks $a_{2}=8$ and $a_{1}=13$.
2. Zelda forms polynomial $f(x)=8 x^{2}+13 x+20$.
3. Zelda gives $A_{1} f(1)=4, A_{2} f(2)=4, A_{3} f(3)=20, A_{4}$ $f(4)=15, A_{5} f(5)=26, A_{6} f(6)=16$.
If A_{1}, A_{3}, A_{4} get together and want to find $f(x)$ hence s.
$f(x)=a_{2} x^{2}+a_{1} x+s$.
$f(1)=4: a_{2} \times 1^{2}+a_{1} \times 1+s \equiv 4(\bmod 37)$
$f(3)=20: a_{2} \times 3^{2}+a_{1} \times 3+s \equiv 20(\bmod 37)$
$f(4)=15: a_{2} \times 4^{2}+a_{1} \times 4+s \equiv 14(\bmod 37)$
3 linear equations in 3 variables, over mod 37 can be solved.
Note Only need constant term sut can get all coeffs.

What if Two Get Together?

What if A_{1} and A_{3} get together:
$f(1)=4: a_{2} \times 1^{2}+a_{1} \times 1+s \equiv 4(\bmod 37)$
$f(3)=20: a_{2} \times 3^{2}+a_{1} \times 3+s \equiv 20(\bmod 37)$
Can they solve these to find s Discuss.

What if Two Get Together?

What if A_{1} and A_{3} get together:
$f(1)=4: a_{2} \times 1^{2}+a_{1} \times 1+s \equiv 4(\bmod 37)$
$f(3)=20: a_{2} \times 3^{2}+a_{1} \times 3+s \equiv 20(\bmod 37)$
Can they solve these to find s Discuss.
No. However, can they use these equations to eliminate some values of s ? Discuss.

What if Two Get Together?

What if A_{1} and A_{3} get together:
$f(1)=4: a_{2} \times 1^{2}+a_{1} \times 1+s \equiv 4(\bmod 37)$
$f(3)=20: a_{2} \times 3^{2}+a_{1} \times 3+s \equiv 20(\bmod 37)$
Can they solve these to find s Discuss.
No. However, can they use these equations to eliminate some values of s ? Discuss.

No. ANY s is consistent. If you pick a value of s, you then have two equations in two variables that can be solved.

What if Two Get Together?

What if A_{1} and A_{3} get together:
$f(1)=4: a_{2} \times 1^{2}+a_{1} \times 1+s \equiv 4(\bmod 37)$
$f(3)=20: a_{2} \times 3^{2}+a_{1} \times 3+s \equiv 20(\bmod 37)$
Can they solve these to find s Discuss.
No. However, can they use these equations to eliminate some values of s ? Discuss.

No. ANY s is consistent. If you pick a value of s, you then have two equations in two variables that can be solved.

Important Information-Theoretic Secure: if A_{1} and A_{3} meet they learn NOTHING. If they had big fancy supercomputers they would still learn NOTHING.

A Note About Linear Equations

The three equations below, over mod 37, can be solved: $a_{2} \times 1^{2}+a_{1} \times 1+s \equiv 4(\bmod 37)$
$a_{2} \times 3^{2}+a_{1} \times 3+s \equiv 20(\bmod 37)$
$a_{2} \times 4^{2}+a_{1} \times 4+s \equiv 15(\bmod 37)$
Could we have solved this had we used mod 32 ? vOTE

A Note About Linear Equations

The three equations below, over mod 37, can be solved: $a_{2} \times 1^{2}+a_{1} \times 1+s \equiv 4(\bmod 37)$
$a_{2} \times 3^{2}+a_{1} \times 3+s \equiv 20(\bmod 37)$
$a_{2} \times 4^{2}+a_{1} \times 4+s \equiv 15(\bmod 37)$
Could we have solved this had we used mod 32 ? VOTE

1. YES

A Note About Linear Equations

The three equations below, over mod 37, can be solved:
$a_{2} \times 1^{2}+a_{1} \times 1+s \equiv 4(\bmod 37)$
$a_{2} \times 3^{2}+a_{1} \times 3+s \equiv 20(\bmod 37)$
$a_{2} \times 4^{2}+a_{1} \times 4+s \equiv 15(\bmod 37)$
Could we have solved this had we used mod 32 ? VOTE

1. YES
2. NO

A Note About Linear Equations

The three equations below, over mod 37, can be solved:
$a_{2} \times 1^{2}+a_{1} \times 1+s \equiv 4(\bmod 37)$
$a_{2} \times 3^{2}+a_{1} \times 3+s \equiv 20(\bmod 37)$
$a_{2} \times 4^{2}+a_{1} \times 4+s \equiv 15(\bmod 37)$
Could we have solved this had we used mod 32 ? VOTE

1. YES
2. NO

These equations, Don't know, but in general, NO Need a domain where every number has a mult inverse.
Over mod p, p primes, all numbers have mult inverses. Over mod 32, even numbers do not have mult inverse.

Threshold Secret Sharing With Polynomials: Ref

Due to Adi Shamir How to Share a Secret
Communication of the ACM
Volume 22, Number 11
1979

We Used Polynomials. Could Use. . .

What did we use about degree $t-1$ polynomials?

We Used Polynomials. Could Use. . .

What did we use about degree $t-1$ polynomials?

1. t points determine the polynomial (we need constant term).

We Used Polynomials. Could Use. . .

What did we use about degree $t-1$ polynomials?

1. t points determine the polynomial (we need constant term).
2. $t-1$ points give no information about constant term.

We Used Polynomials. Could Use. . .

What did we use about degree $t-1$ polynomials?

1. t points determine the polynomial (we need constant term).
2. $t-1$ points give no information about constant term.

Could do geometry over \mathbb{Z}_{p}^{3}. A Plane in \mathbb{Z}_{p}^{3} is:

$$
\{(x, y, z): a x+b y+c z=d\}
$$

We Used Polynomials. Could Use. . .

What did we use about degree $t-1$ polynomials?

1. t points determine the polynomial (we need constant term).
2. $t-1$ points give no information about constant term.

Could do geometry over \mathbb{Z}_{p}^{3}. A Plane in \mathbb{Z}_{p}^{3} is:

$$
\{(x, y, z): a x+b y+c z=d\}
$$

1. 3 points in \mathbb{Z}_{p}^{3} determine a plane.

We Used Polynomials. Could Use. . .

What did we use about degree $t-1$ polynomials?

1. t points determine the polynomial (we need constant term).
2. $t-1$ points give no information about constant term.

Could do geometry over \mathbb{Z}_{p}^{3}. A Plane in \mathbb{Z}_{p}^{3} is:

$$
\{(x, y, z): a x+b y+c z=d\}
$$

1. 3 points in \mathbb{Z}_{p}^{3} determine a plane.
2. 2 points in \mathbb{Z}_{p}^{3} give no information about d.

This approach is due to George Blakely, Safeguarding Cryptographic Keys, International Workshop on Managing Requirements, Vol 48, 1979.
We will not do secret sharing this way, though one could.

We Used Polynomials. Could Use. . .

We won't go into details but there are two ways to use the Chinese Remainder Thm to do Secret Sharing.

Due to:
C.A. Asmuth and J. Bloom. A modular approach to key safeguarding. IEEE Transactions on Information Theory Vol 29, Number 2, 208-210, 1983.

And Independently
M. Mignotte How to share a secret, Cryptography:

Proceedings of the Workshop on Cryptography, Burg
Deursetein, Volume 149 of Lecture Notes in Computer Science, 1982.

Features and Caveats of Poly Method

Imagine that you've done (t, m) secret sharing with polynomial, $p(x)$. So for $1 \leq i \leq m, A_{i}$ has $f(i)$.

Features and Caveats of Poly Method

Imagine that you've done (t, m) secret sharing with polynomial, $p(x)$. So for $1 \leq i \leq m, A_{i}$ has $f(i)$.

1. Feature If more people come FINE- can extend to $(t, m+a)$ by giving $A_{m+1}, f(m+1), \ldots, A_{m+a}, f(m+a)$.

Features and Caveats of Poly Method

Imagine that you've done (t, m) secret sharing with polynomial, $p(x)$. So for $1 \leq i \leq m, A_{i}$ has $f(i)$.

1. Feature If more people come FINE- can extend to $(t, m+a)$ by giving $A_{m+1}, f(m+1), \ldots, A_{m+a}, f(m+a)$.
2. Caveat If $m \geq p$ then you run out of points to give people. There are ways to deal with this, but we will not bother. We will always assume $m<p$.

BILL STOP RECORDING LECTURE

