BILL START RECORDING LECTURE

Threshold Secret Sharing: Information-Theoretic

Zelda has a **secret** $s \in \{0,1\}^n$.

Zelda has a **secret** $s \in \{0,1\}^n$.

Def Let $1 \le t \le m$. (t, m)-secret sharing is a way for Zelda to give strings to A_1, \ldots, A_m such that:

Zelda has a **secret** $s \in \{0,1\}^n$.

Def Let $1 \le t \le m$. (t, m)-secret sharing is a way for Zelda to give strings to A_1, \ldots, A_m such that:

1. If any t get together then they can learn s.

Zelda has a **secret** $s \in \{0,1\}^n$.

Def Let $1 \le t \le m$. (t, m)-secret sharing is a way for Zelda to give strings to A_1, \ldots, A_m such that:

- 1. If any t get together then they can learn s.
- 2. If any t-1 get together they cannot learn s.

Zelda has a **secret** $s \in \{0,1\}^n$.

Def Let $1 \le t \le m$. (t, m)-secret sharing is a way for Zelda to give strings to A_1, \ldots, A_m such that:

- 1. If any t get together then they can learn s.
- 2. If any t-1 get together they cannot learn s.

What do we mean by Cannot learn the secret?

Zelda has a **secret** $s \in \{0,1\}^n$.

Def Let $1 \le t \le m$. (t, m)-secret sharing is a way for Zelda to give strings to A_1, \ldots, A_m such that:

- 1. If any t get together then they can learn s.
- 2. If any t-1 get together they cannot learn s.

What do we mean by Cannot learn the secret?

Info-theory-security. If t-1 people have big fancy supercomputers they cannot learn ANYTHING about s.

Zelda has a **secret** $s \in \{0,1\}^n$.

Def Let $1 \le t \le m$. (t, m)-secret sharing is a way for Zelda to give strings to A_1, \ldots, A_m such that:

- 1. If any t get together then they can learn s.
- 2. If any t-1 get together they cannot learn s.

What do we mean by Cannot learn the secret?

Info-theory-security. If t-1 people have big fancy supercomputers they cannot learn ANYTHING about s.

Time permitting we look at comp-security where we assume a limitation on how much the players can compute.

Applications

Rumor Secret Sharing is used for the Russian Nuclear Codes. There are three people (one is Putin) and if two of them agree to launch, they can launch.

Applications

Rumor Secret Sharing is used for the Russian Nuclear Codes. There are three people (one is Putin) and if two of them agree to launch, they can launch.

Fact For people signing a contract long distance, secret sharing is used as a building block in the protocol.

(4,4)-Secret Sharing

Zelda has a secret s. A_1 , A_2 , A_3 , A_4 are people. We want:

(4,4)-Secret Sharing

Zelda has a secret s. A_1 , A_2 , A_3 , A_4 are people. We want:

1. If all four of A_1 , A_2 , A_3 , A_4 get together, they can find s.

(4,4)-Secret Sharing

Zelda has a secret s. A_1 , A_2 , A_3 , A_4 are people. We want:

- 1. If all four of A_1 , A_2 , A_3 , A_4 get together, they can find s.
- 2. If any three of them get together, then they learn **NOTHING**.

1. Zelda breaks s up into $s = s_1 s_2 s_3 s_4$ where

$$|s_1| = |s_2| = |s_3| = |s_4| = \frac{n}{4}$$

1. Zelda breaks s up into $s = s_1 s_2 s_3 s_4$ where

$$|s_1| = |s_2| = |s_3| = |s_4| = \frac{n}{4}$$

2. Zelda gives A_i the string s_i .

1. Zelda breaks s up into $s = s_1 s_2 s_3 s_4$ where

$$|s_1| = |s_2| = |s_3| = |s_4| = \frac{n}{4}$$

2. Zelda gives A_i the string s_i .

1. Zelda breaks s up into $s = s_1 s_2 s_3 s_4$ where

$$|s_1| = |s_2| = |s_3| = |s_4| = \frac{n}{4}$$

2. Zelda gives A_i the string s_i .

Does this work?

1. If A_1, A_2, A_3, A_4 get together they can find s.

1. Zelda breaks s up into $s = s_1 s_2 s_3 s_4$ where

$$|s_1| = |s_2| = |s_3| = |s_4| = \frac{n}{4}$$

2. Zelda gives A_i the string s_i .

Does this work?

1. If A_1, A_2, A_3, A_4 get together they can find s. **YES!!**

1. Zelda breaks s up into $s = s_1 s_2 s_3 s_4$ where

$$|s_1| = |s_2| = |s_3| = |s_4| = \frac{n}{4}$$

2. Zelda gives A_i the string s_i .

- 1. If A_1, A_2, A_3, A_4 get together they can find s. **YES!!**
- 2. If any three of them get together they learn **NOTHING**.

1. Zelda breaks s up into $s = s_1 s_2 s_3 s_4$ where

$$|s_1| = |s_2| = |s_3| = |s_4| = \frac{n}{4}$$

2. Zelda gives A_i the string s_i .

- 1. If A_1, A_2, A_3, A_4 get together they can find s. **YES!!**
- 2. If any three of them get together they learn **NOTHING**. **NO**.

1. Zelda breaks s up into $s = s_1 s_2 s_3 s_4$ where

$$|s_1| = |s_2| = |s_3| = |s_4| = \frac{n}{4}$$

2. Zelda gives A_i the string s_i .

- 1. If A_1, A_2, A_3, A_4 get together they can find s. **YES!!**
- 2. If any three of them get together they learn **NOTHING**. **NO**.
 - 2.1 A_1 learns s_1 which is $\frac{1}{4}$ of the secret!

1. Zelda breaks s up into $s = s_1 s_2 s_3 s_4$ where

$$|s_1| = |s_2| = |s_3| = |s_4| = \frac{n}{4}$$

2. Zelda gives A_i the string s_i .

- 1. If A_1, A_2, A_3, A_4 get together they can find s. **YES!!**
- 2. If any three of them get together they learn **NOTHING**. **NO**.
 - 2.1 A_1 learns s_1 which is $\frac{1}{4}$ of the secret!
 - 2.2 A_1 , A_2 learn s_1s_2 which is $\frac{1}{2}$ of the secret!

1. Zelda breaks s up into $s = s_1 s_2 s_3 s_4$ where

$$|s_1| = |s_2| = |s_3| = |s_4| = \frac{n}{4}$$

2. Zelda gives A_i the string s_i .

- 1. If A_1, A_2, A_3, A_4 get together they can find s. **YES!!**
- 2. If any three of them get together they learn **NOTHING**. **NO**.
 - 2.1 A_1 learns s_1 which is $\frac{1}{4}$ of the secret!
 - 2.2 A_1 , A_2 learn s_1s_2 which is $\frac{1}{2}$ of the secret!
 - 2.3 A_1 , A_2 , A_3 learn $s_1s_2s_3$ which is $\frac{3}{4}$ of the secret!

Is (4,4)-Secret Sharing Possible?

Is (4, 4)-Secret Sharing Possible?

VOTE Is (4, 4)-Secret sharing possible?

1. YES and this is known.

Is (4,4)-Secret Sharing Possible?

- 1. YES and this is known.
- 2. NO and this is known.

Is (4,4)-Secret Sharing Possible?

- 1. YES and this is known.
- 2. NO and this is known.
- 3. YES given some hardness assumption, and this is known.

Is (4, 4)-Secret Sharing Possible?

- 1. YES and this is known.
- 2. NO and this is known.
- 3. YES given some hardness assumption, and this is known.
- 4. UNKNOWN TO SCIENCE!

Is (4, 4)-Secret Sharing Possible?

VOTE Is (4,4)-Secret sharing possible?

- 1. YES and this is known.
- 2. NO and this is known.
- 3. YES given some hardness assumption, and this is known.
- 4. UNKNOWN TO SCIENCE!

YES

Zelda gives out shares of the secret

1. Secret $s \in \{0,1\}^n$. Zelda gen **random** $r_1, r_2, r_3 \in \{0,1\}^n$.

- 1. Secret $s \in \{0,1\}^n$. Zelda gen **random** $r_1, r_2, r_3 \in \{0,1\}^n$.
- 2. Zelda gives A_1 $s_1 = r_1$.

- 1. Secret $s \in \{0,1\}^n$. Zelda gen **random** $r_1, r_2, r_3 \in \{0,1\}^n$.
- 2. Zelda gives A_1 $s_1 = r_1$. Zelda gives A_2 $s_2 = r_2$.

- 1. Secret $s \in \{0,1\}^n$. Zelda gen **random** $r_1, r_2, r_3 \in \{0,1\}^n$.
- 2. Zelda gives A_1 $s_1 = r_1$. Zelda gives A_2 $s_2 = r_2$. Zelda gives A_3 $s_3 = r_3$.

Random String Approach

Zelda gives out shares of the secret

- 1. Secret $s \in \{0,1\}^n$. Zelda gen **random** $r_1, r_2, r_3 \in \{0,1\}^n$.
- 2. Zelda gives A_1 $s_1 = r_1$. Zelda gives A_2 $s_2 = r_2$. Zelda gives A_3 $s_3 = r_3$. Zelda gives A_4 $s_4 = s \oplus r_1 \oplus r_2 \oplus r_3$.

Random String Approach

Zelda gives out shares of the secret

- 1. Secret $s \in \{0,1\}^n$. Zelda gen **random** $r_1, r_2, r_3 \in \{0,1\}^n$.
- 2. Zelda gives A_1 $s_1 = r_1$. Zelda gives A_2 $s_2 = r_2$. Zelda gives A_3 $s_3 = r_3$. Zelda gives A_4 $s_4 = s \oplus r_1 \oplus r_2 \oplus r_3$.

A_1, A_2, A_3, A_4 Can Recover the Secret

$$s_1 \oplus s_2 \oplus s_3 \oplus s_4 = r_1 \oplus r_2 \oplus r_3 \oplus r_1 \oplus r_2 \oplus r_3 \oplus s = s$$

Random String Approach

Zelda gives out shares of the secret

- 1. Secret $s \in \{0,1\}^n$. Zelda gen **random** $r_1, r_2, r_3 \in \{0,1\}^n$.
- 2. Zelda gives A_1 $s_1 = r_1$. Zelda gives A_2 $s_2 = r_2$. Zelda gives A_3 $s_3 = r_3$. Zelda gives A_4 $s_4 = s \oplus r_1 \oplus r_2 \oplus r_3$.

A₁, A₂, A₃, A₄ Can Recover the Secret

$$s_1 \oplus s_2 \oplus s_3 \oplus s_4 = r_1 \oplus r_2 \oplus r_3 \oplus r_1 \oplus r_2 \oplus r_3 \oplus s = s$$

Easy to see that if ≤ 3 get together they learn **NOTHING**

The secret is $s \in \{0,1\}^n$

The secret is $s \in \{0,1\}^n$ Want A_1, A_2 to determine s, but neither A_1 nor A_2 alone can. Idea Zelda will secret share with every pair separately.

The secret is $s \in \{0,1\}^n$ Want A_1, A_2 to determine s, but neither A_1 nor A_2 alone can. Idea Zelda will secret share with every pair separately. Z Gen random r_{12} . Give A_1 $(1,2,r_{12})$ and A_2 $(1,2,s\oplus r_{12})$.

The secret is $s \in \{0,1\}^n$ Want A_1, A_2 to determine s, but neither A_1 nor A_2 alone can. Idea Zelda will secret share with every pair separately. Z Gen random r_{12} . Give A_1 $(1,2,r_{12})$ and A_2 $(1,2,s\oplus r_{12})$. Z Gen random r_{13} . Give A_1 $(1,3,r_{13})$ and A_3 $(1,3,s\oplus r_{13})$.

```
The secret is s \in \{0,1\}^n Want A_1, A_2 to determine s, but neither A_1 nor A_2 alone can. Idea Zelda will secret share with every pair separately. Z Gen random r_{12}. Give A_1 (1,2,r_{12}) and A_2 (1,2,s\oplus r_{12}). Z Gen random r_{13}. Give A_1 (1,3,r_{13}) and A_3 (1,3,s\oplus r_{13}). Z Gen random r_{14}. Give A_1 (1,4,r_{14}) and A_4 (1,4,s\oplus r_{14}).
```

```
The secret is s \in \{0,1\}^n Want A_1, A_2 to determine s, but neither A_1 nor A_2 alone can. Idea Zelda will secret share with every pair separately. Z Gen random r_{12}. Give A_1 (1,2,r_{12}) and A_2 (1,2,s\oplus r_{12}). Z Gen random r_{13}. Give A_1 (1,3,r_{13}) and A_3 (1,3,s\oplus r_{13}). Z Gen random r_{14}. Give A_1 (1,4,r_{14}) and A_4 (1,4,s\oplus r_{14}). Z Gen random r_{23}. Give A_2 (2,3,r_{23}) and A_3 (2,3,s\oplus r_{23}).
```

```
The secret is s \in \{0,1\}^n Want A_1, A_2 to determine s, but neither A_1 nor A_2 alone can. Idea Zelda will secret share with every pair separately. Z Gen random r_{12}. Give A_1 (1,2,r_{12}) and A_2 (1,2,s\oplus r_{12}). Z Gen random r_{13}. Give A_1 (1,3,r_{13}) and A_3 (1,3,s\oplus r_{13}). Z Gen random r_{14}. Give A_1 (1,4,r_{14}) and A_4 (1,4,s\oplus r_{14}). Z Gen random r_{23}. Give A_2 (2,3,r_{23}) and A_3 (2,3,s\oplus r_{23}). Z Gen random r_{24}. Give A_2 (2,4,r_{24}) and A_4 (2,4,s\oplus r_{24}).
```

```
The secret is s \in \{0,1\}^n Want A_1, A_2 to determine s, but neither A_1 nor A_2 alone can. Idea Zelda will secret share with every pair separately. Z Gen random r_{12}. Give A_1 (1,2,r_{12}) and A_2 (1,2,s\oplus r_{12}). Z Gen random r_{13}. Give A_1 (1,3,r_{13}) and A_3 (1,3,s\oplus r_{13}). Z Gen random r_{14}. Give A_1 (1,4,r_{14}) and A_4 (1,4,s\oplus r_{14}). Z Gen random r_{23}. Give A_2 (2,3,r_{23}) and A_3 (2,3,s\oplus r_{23}). Z Gen random r_{24}. Give A_2 (2,4,r_{24}) and A_4 (2,4,s\oplus r_{24}). Z Gen random r_{34}. Give A_3 (3,4,r_{34}) and A_4 (3,4,s\oplus r_{34}).
```

```
The secret is s \in \{0, 1\}^n
Want A_1, A_2 to determine s, but neither A_1 nor A_2 alone can.
Idea Zelda will secret share with every pair separately.
Z Gen random r_{12}. Give A_1 (1, 2, r_{12}) and A_2 (1, 2, s \oplus r_{12}).
Z Gen random r_{13}. Give A_1 (1, 3, r_{13}) and A_3 (1, 3, s \oplus r_{13}).
Z Gen random r_{14}. Give A_1 (1, 4, r_{14}) and A_4 (1, 4, s \oplus r_{14}).
Z Gen random r_{23}. Give A_2 (2, 3, r_{23}) and A_3 (2, 3, s \oplus r_{23}).
Z Gen random r_{24}. Give A_2 (2, 4, r_{24}) and A_4 (2, 4, s \oplus r_{24}).
Z Gen random r_{34}. Give A_3 (3, 4, r_{34}) and A_4 (3, 4, s \oplus r_{34}).
If any two get together they can find secret. No one person can
find the secret.
```

The secret is $s \in \{0, 1\}^n$.

For each t-set of A_1, \ldots, A_m we set up random strings so they can recover the secret if they all get together. We omit details but may be on HW.

The secret is $s \in \{0,1\}^n$.

For each t-set of A_1, \ldots, A_m we set up random strings so they can recover the secret if they all get together. We omit details but may be on HW.

Every *t*-subset does its own secret sharing, so LOTS of strings.

If do (m/2, m) secret sharing then how many strings does A_1 get?

If do (m/2, m) secret sharing then how many strings does A_1 get?

 A_1 gets a string for every $J\subseteq\{1,\ldots,m\}$, $|J|=\frac{m}{2}$, $1\in J$. Equivalent to:

If do (m/2, m) secret sharing then how many strings does A_1 get?

 A_1 gets a string for every $J\subseteq\{1,\ldots,m\}$, $|J|=\frac{m}{2}$, $1\in J$. Equivalent to:

 A_1 gets a string for every $J \subseteq \{2, \ldots, m\}$, $|J| = \frac{m}{2} - 1$.

If do (m/2, m) secret sharing then how many strings does A_1 get?

 A_1 gets a string for every $J\subseteq\{1,\ldots,m\}$, $|J|=\frac{m}{2}$, $1\in J$. Equivalent to:

 A_1 gets a string for every $J \subseteq \{2, \ldots, m\}$, $|J| = \frac{m}{2} - 1$.

How many sets? **Discuss**

If do (m/2, m) secret sharing then how many strings does A_1 get?

 A_1 gets a string for every $J\subseteq\{1,\ldots,m\}$, $|J|=\frac{m}{2}$, $1\in J$. Equivalent to:

 A_1 gets a string for every $J\subseteq\{2,\ldots,m\}$, $|J|=rac{m}{2}-1$.

How many sets? Discuss

$${m-1 \choose rac{m}{2}-1} \sim rac{2^m}{\sqrt{m}}$$
 strings

If do (m/2, m) secret sharing then how many strings does A_1 get?

 A_1 gets a string for every $J\subseteq\{1,\ldots,m\}$, $|J|=\frac{m}{2}$, $1\in J$. Equivalent to:

 A_1 gets a string for every $J\subseteq\{2,\ldots,m\},\ |J|=rac{m}{2}-1.$

How many sets? Discuss

$$egin{pmatrix} m-1 \ rac{m}{2}-1 \end{pmatrix} \sim rac{2^m}{\sqrt{m}}$$
 strings

Thats A LOT of Strings!

In our (m/2, m)-scheme each A_i gets $\sim \frac{2^m}{\sqrt{m}}$ strings. **VOTE**

In our (m/2, m)-scheme each A_i gets $\sim \frac{2^m}{\sqrt{m}}$ strings.

VOTE

1. Requires roughly 2^m strings.

In our (m/2, m)-scheme each A_i gets $\sim \frac{2^m}{\sqrt{m}}$ strings.

- 1. Requires roughly 2^m strings.
- 2. $O(\beta^m)$ strings for some $1 < \beta < 2$ but not poly.

In our (m/2, m)-scheme each A_i gets $\sim \frac{2^m}{\sqrt{m}}$ strings.

- 1. Requires roughly 2^m strings.
- 2. $O(\beta^m)$ strings for some $1 < \beta < 2$ but not poly.
- 3. $O(m^a)$ strings for some a > 1 but not linear.

In our (m/2, m)-scheme each A_i gets $\sim \frac{2^m}{\sqrt{m}}$ strings.

- 1. Requires roughly 2^m strings.
- 2. $O(\beta^m)$ strings for some $1 < \beta < 2$ but not poly.
- 3. $O(m^a)$ strings for some a > 1 but not linear.
- 4. O(m) strings but not m^a with a < 1.

In our (m/2, m)-scheme each A_i gets $\sim \frac{2^m}{\sqrt{m}}$ strings.

- 1. Requires roughly 2^m strings.
- 2. $O(\beta^m)$ strings for some $1 < \beta < 2$ but not poly.
- 3. $O(m^a)$ strings for some a > 1 but not linear.
- 4. O(m) strings but not m^a with a < 1.
- 5. $O(m^a)$ strings for some a < 1 but not logarithmic.

In our (m/2, m)-scheme each A_i gets $\sim \frac{2^m}{\sqrt{m}}$ strings.

- 1. Requires roughly 2^m strings.
- 2. $O(\beta^m)$ strings for some $1 < \beta < 2$ but not poly.
- 3. $O(m^a)$ strings for some a > 1 but not linear.
- 4. O(m) strings but not m^a with a < 1.
- 5. $O(m^a)$ strings for some a < 1 but not logarithmic.
- 6. $O(\log m)$ strings but not constant.

In our (m/2, m)-scheme each A_i gets $\sim \frac{2^m}{\sqrt{m}}$ strings.

- 1. Requires roughly 2^m strings.
- 2. $O(\beta^m)$ strings for some $1 < \beta < 2$ but not poly.
- 3. $O(m^a)$ strings for some a > 1 but not linear.
- **4**. O(m) strings but not m^a with a < 1.
- 5. $O(m^a)$ strings for some a < 1 but not logarithmic.
- 6. $O(\log m)$ strings but not constant.
- 7. O(1) strings.

In our (m/2, m)-scheme each A_i gets $\sim \frac{2^m}{\sqrt{m}}$ strings.

VOTE

- 1. Requires roughly 2^m strings.
- 2. $O(\beta^m)$ strings for some $1 < \beta < 2$ but not poly.
- 3. $O(m^a)$ strings for some a > 1 but not linear.
- **4**. O(m) strings but not m^a with a < 1.
- 5. $O(m^a)$ strings for some a < 1 but not logarithmic.
- 6. $O(\log m)$ strings but not constant.
- 7. O(1) strings.

You can always do this with everyone getting 1 string.

In our (m/2, m)-scheme each A_i gets $\sim \frac{2^m}{\sqrt{m}}$ strings.

VOTE

- 1. Requires roughly 2^m strings.
- 2. $O(\beta^m)$ strings for some $1 < \beta < 2$ but not poly.
- 3. $O(m^a)$ strings for some a > 1 but not linear.
- **4**. O(m) strings but not m^a with a < 1.
- 5. $O(m^a)$ strings for some a < 1 but not logarithmic.
- 6. $O(\log m)$ strings but not constant.
- 7. O(1) strings.

You can always do this with everyone getting 1 string. I know what you are thinking:

In our (m/2, m)-scheme each A_i gets $\sim \frac{2^m}{\sqrt{m}}$ strings.

VOTE

- 1. Requires roughly 2^m strings.
- 2. $O(\beta^m)$ strings for some $1 < \beta < 2$ but not poly.
- 3. $O(m^a)$ strings for some a > 1 but not linear.
- 4. O(m) strings but not m^a with a < 1.
- 5. $O(m^a)$ strings for some a < 1 but not logarithmic.
- 6. $O(\log m)$ strings but not constant.
- 7. O(1) strings.

You can always do this with everyone getting 1 string. I know what you are thinking: LOOOONG string.

In our (m/2, m)-scheme each A_i gets $\sim \frac{2^m}{\sqrt{m}}$ strings.

VOTE

- 1. Requires roughly 2^m strings.
- 2. $O(\beta^m)$ strings for some $1 < \beta < 2$ but not poly.
- 3. $O(m^a)$ strings for some a > 1 but not linear.
- **4**. O(m) strings but not m^a with a < 1.
- 5. $O(m^a)$ strings for some a < 1 but not logarithmic.
- 6. $O(\log m)$ strings but not constant.
- 7. O(1) strings.

You can always do this with everyone getting 1 string. I know what you are thinking: LOOOONG string.No.

In our (m/2, m)-scheme each A_i gets $\sim \frac{2^m}{\sqrt{m}}$ strings.

VOTE

- 1. Requires roughly 2^m strings.
- 2. $O(\beta^m)$ strings for some $1 < \beta < 2$ but not poly.
- 3. $O(m^a)$ strings for some a > 1 but not linear.
- 4. O(m) strings but not m^a with a < 1.
- 5. $O(m^a)$ strings for some a < 1 but not logarithmic.
- 6. $O(\log m)$ strings but not constant.
- 7. O(1) strings.

You can always do this with everyone getting 1 string. I know what you are thinking: LOOOONG string.No. You can always do this with everyone getting 1 string that is the same length as the secret

Convention On Secrets

From now on the secret will always be an element of \mathbb{Z}_p for some primes p.

Convention On Secrets

From now on the secret will always be an element of \mathbb{Z}_p for some primes p.

Example If the secret is 20 then you must operate in \mathbb{Z}_{23} .

Convention On Secrets

From now on the secret will always be an element of \mathbb{Z}_p for some primes p.

Example If the secret is 20 then you must operate in \mathbb{Z}_{23} .

Always take the smallest prime larger than the secret.

Convention On Secrets

From now on the secret will always be an element of \mathbb{Z}_p for some primes p.

Example If the secret is 20 then you must operate in \mathbb{Z}_{23} .

Always take the smallest prime larger than the secret.

If Secret is 23 then take p = 23, so now secret is 0.

We do (3,6)-Secret Sharing but technique works for any (t,m).

1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand numbers $a_2, a_1 \in \mathbb{Z}_p$

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand numbers $a_2, a_1 \in \mathbb{Z}_p$
- 3. Zelda forms polynomial $f(x) = a_2x^2 + a_1x + s$.

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand numbers $a_2, a_1 \in \mathbb{Z}_p$
- 3. Zelda forms polynomial $f(x) = a_2x^2 + a_1x + s$.
- 4. Zelda gives A_1 f(1), A_2 f(2), ..., A_6 f(6) (all mod p). These are all in \mathbb{Z}_p . (Everyone also has p.)

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand numbers $a_2, a_1 \in \mathbb{Z}_p$
- 3. Zelda forms polynomial $f(x) = a_2x^2 + a_1x + s$.
- 4. Zelda gives A_1 f(1), A_2 f(2), ..., A_6 f(6) (all mod p). These are all in \mathbb{Z}_p . (Everyone also has p.)
- 1. Any 3 have 3 points from f(x) so can find f(x), s.

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand numbers $a_2, a_1 \in \mathbb{Z}_p$
- 3. Zelda forms polynomial $f(x) = a_2x^2 + a_1x + s$.
- 4. Zelda gives A_1 f(1), A_2 f(2), ..., A_6 f(6) (all mod p). These are all in \mathbb{Z}_p . (Everyone also has p.)
- 1. Any 3 have 3 points from f(x) so can find f(x), s.
- 2. Any 2 have 2 points from f(x). From these two points what can they conclude?

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand numbers $a_2, a_1 \in \mathbb{Z}_p$
- 3. Zelda forms polynomial $f(x) = a_2x^2 + a_1x + s$.
- 4. Zelda gives A_1 f(1), A_2 f(2), ..., A_6 f(6) (all mod p). These are all in \mathbb{Z}_p . (Everyone also has p.)
- 1. Any 3 have 3 points from f(x) so can find f(x), s.
- 2. Any 2 have 2 points from f(x). From these two points what can they conclude? **NOTHING!**

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand numbers $a_2, a_1 \in \mathbb{Z}_p$
- 3. Zelda forms polynomial $f(x) = a_2x^2 + a_1x + s$.
- 4. Zelda gives A_1 f(1), A_2 f(2), ..., A_6 f(6) (all mod p). These are all in \mathbb{Z}_p . (Everyone also has p.)
- 1. Any 3 have 3 points from f(x) so can find f(x), s.
- 2. Any 2 have 2 points from f(x). From these two points what can they conclude? **NOTHING!** If they know f(1) = 3 and f(2) = 7 and f is degree 2 then the constant term can be anything in $\{0, \ldots, p\}$. So they know NOTHING about s.

Zelda wants to give strings to A_1, \ldots, A_m such that Any t of A_1, \ldots, A_m can find s. Any t-1 learn **NOTHING**.

Zelda wants to give strings to A_1, \ldots, A_m such that Any t of A_1, \ldots, A_m can find s. Any t-1 learn **NOTHING**.

1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.

Zelda wants to give strings to A_1, \ldots, A_m such that

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand $a_{t-1}, \ldots, a_1 \in \mathbb{Z}_p$.

Zelda wants to give strings to A_1, \ldots, A_m such that

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand $a_{t-1}, \ldots, a_1 \in \mathbb{Z}_p$.
- 3. Zelda forms polynomial $f(x) = a_{t-1}x^{t-1} + \cdots + a_1x + s$.

Zelda wants to give strings to A_1, \ldots, A_m such that

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand $a_{t-1}, \ldots, a_1 \in \mathbb{Z}_p$.
- 3. Zelda forms polynomial $f(x) = a_{t-1}x^{t-1} + \cdots + a_1x + s$.
- **4**. For $1 \le i \le m$ Zelda gives A_i f(i) mod p.

Zelda wants to give strings to A_1, \ldots, A_m such that

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand $a_{t-1}, \ldots, a_1 \in \mathbb{Z}_p$.
- 3. Zelda forms polynomial $f(x) = a_{t-1}x^{t-1} + \cdots + a_1x + s$.
- **4**. For $1 \le i \le m$ Zelda gives A_i f(i) mod p.
- 1. Any t have t points from f(x) so can find f(x), s.

Zelda wants to give strings to A_1, \ldots, A_m such that

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand $a_{t-1}, \ldots, a_1 \in \mathbb{Z}_p$.
- 3. Zelda forms polynomial $f(x) = a_{t-1}x^{t-1} + \cdots + a_1x + s$.
- **4**. For $1 \le i \le m$ Zelda gives A_i f(i) mod p.
- 1. Any t have t points from f(x) so can find f(x), s.
- 2. Any t-1 have t-1 points from f(x). From these t-1 points what can they conclude?

Zelda wants to give strings to A_1, \ldots, A_m such that

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand $a_{t-1}, \ldots, a_1 \in \mathbb{Z}_p$.
- 3. Zelda forms polynomial $f(x) = a_{t-1}x^{t-1} + \cdots + a_1x + s$.
- 4. For $1 \le i \le m$ Zelda gives A_i f(i) mod p.
- 1. Any t have t points from f(x) so can find f(x), s.
- 2. Any t-1 have t-1 points from f(x). From these t-1 points what can they conclude? **NOTHING!**

Zelda wants to give strings to A_1, \ldots, A_m such that

- 1. Secret $s \in \mathbb{Z}_p$. Zelda works mod p.
- 2. Zelda gen rand $a_{t-1}, \ldots, a_1 \in \mathbb{Z}_p$.
- 3. Zelda forms polynomial $f(x) = a_{t-1}x^{t-1} + \cdots + a_1x + s$.
- **4**. For $1 \le i \le m$ Zelda gives A_i f(i) mod p.
- 1. Any t have t points from f(x) so can find f(x), s.
- 2. Any t-1 have t-1 points from f(x). From these t-1 points what can they conclude? **NOTHING!** Any constant term is consistent with what they know. So they know NOTHING about s.

(3,6) secret sharing. s = 20 and p = 37.

(3,6) secret sharing.

$$s = 20$$
 and $p = 37$.

1. Zelda picks $a_2 = 8$ and $a_1 = 13$.

- (3,6) secret sharing.
- s = 20 and p = 37.
 - 1. Zelda picks $a_2 = 8$ and $a_1 = 13$.
 - 2. Zelda forms polynomial $f(x) = 8x^2 + 13x + 20$.

- (3,6) secret sharing.
- s = 20 and p = 37.
 - 1. Zelda picks $a_2 = 8$ and $a_1 = 13$.
 - 2. Zelda forms polynomial $f(x) = 8x^2 + 13x + 20$.
 - 3. Zelda gives A_1 f(1) = 4, A_2 f(2) = 4, A_3 f(3) = 20, A_4 f(4) = 15, A_5 f(5) = 26, A_6 f(6) = 16.

- (3,6) secret sharing.
- s = 20 and p = 37.
 - 1. Zelda picks $a_2 = 8$ and $a_1 = 13$.
 - 2. Zelda forms polynomial $f(x) = 8x^2 + 13x + 20$.
 - 3. Zelda gives A_1 f(1) = 4, A_2 f(2) = 4, A_3 f(3) = 20, A_4 f(4) = 15, A_5 f(5) = 26, A_6 f(6) = 16.

If A_1, A_3, A_4 get together and want to find f(x) hence s.

$$f(x) = a_2x^2 + a_1x + s.$$

$$f(1) = 4$$
: $a_2 \times 1^2 + a_1 \times 1 + s \equiv 4 \pmod{37}$

$$f(3) = 20$$
: $a_2 \times 3^2 + a_1 \times 3 + s \equiv 20 \pmod{37}$

$$f(4) = 15$$
: $a_2 \times 4^2 + a_1 \times 4 + s \equiv 14 \pmod{37}$

- (3,6) secret sharing.
- s = 20 and p = 37.
 - 1. Zelda picks $a_2 = 8$ and $a_1 = 13$.
 - 2. Zelda forms polynomial $f(x) = 8x^2 + 13x + 20$.
 - 3. Zelda gives A_1 f(1) = 4, A_2 f(2) = 4, A_3 f(3) = 20, A_4 f(4) = 15, A_5 f(5) = 26, A_6 f(6) = 16.

If A_1, A_3, A_4 get together and want to find f(x) hence s.

$$f(x)=a_2x^2+a_1x+s.$$

$$f(1) = 4$$
: $a_2 \times 1^2 + a_1 \times 1 + s \equiv 4 \pmod{37}$

$$f(3) = 20$$
: $a_2 \times 3^2 + a_1 \times 3 + s \equiv 20 \pmod{37}$

$$f(4) = 15$$
: $a_2 \times 4^2 + a_1 \times 4 + s \equiv 14 \pmod{37}$

3 linear equations in 3 variables, over mod 37 can be solved.

- (3,6) secret sharing.
- s = 20 and p = 37.
 - 1. Zelda picks $a_2 = 8$ and $a_1 = 13$.
 - 2. Zelda forms polynomial $f(x) = 8x^2 + 13x + 20$.
 - 3. Zelda gives A_1 f(1) = 4, A_2 f(2) = 4, A_3 f(3) = 20, A_4 f(4) = 15, A_5 f(5) = 26, A_6 f(6) = 16.

If A_1, A_3, A_4 get together and want to find f(x) hence s.

$$f(x) = a_2x^2 + a_1x + s.$$

$$f(1) = 4$$
: $a_2 \times 1^2 + a_1 \times 1 + s \equiv 4 \pmod{37}$

$$f(3) = 20$$
: $a_2 \times 3^2 + a_1 \times 3 + s \equiv 20 \pmod{37}$

$$f(4) = 15$$
: $a_2 \times 4^2 + a_1 \times 4 + s \equiv 14 \pmod{37}$

3 linear equations in 3 variables, over mod 37 can be solved.

Note Only need constant term s but can get all coeffs.

What if A_1 and A_3 get together: f(1)=4: $a_2\times 1^2+a_1\times 1+s\equiv 4\pmod {37}$ f(3)=20: $a_2\times 3^2+a_1\times 3+s\equiv 20\pmod {37}$ Can they solve these to find s Discuss.

What if A_1 and A_3 get together:

$$f(1) = 4$$
: $a_2 \times 1^2 + a_1 \times 1 + s \equiv 4 \pmod{37}$

$$f(3) = 20$$
: $a_2 \times 3^2 + a_1 \times 3 + s \equiv 20 \pmod{37}$

Can they solve these to find s **Discuss**.

No. However, can they use these equations to eliminate some values of *s*? **Discuss**.

What if A_1 and A_3 get together:

$$f(1) = 4$$
: $a_2 \times 1^2 + a_1 \times 1 + s \equiv 4 \pmod{37}$

$$f(3) = 20$$
: $a_2 \times 3^2 + a_1 \times 3 + s \equiv 20 \pmod{37}$

Can they solve these to find s **Discuss**.

No. However, can they use these equations to eliminate some values of *s*? **Discuss**.

No. ANY s is consistent. If you pick a value of s, you then have two equations in two variables that can be solved.

What if A_1 and A_3 get together:

$$f(1) = 4$$
: $a_2 \times 1^2 + a_1 \times 1 + s \equiv 4 \pmod{37}$

$$f(3) = 20$$
: $a_2 \times 3^2 + a_1 \times 3 + s \equiv 20 \pmod{37}$

Can they solve these to find s **Discuss**.

No. However, can they use these equations to eliminate some values of *s*? **Discuss**.

No. ANY s is consistent. If you pick a value of s, you then have two equations in two variables that can be solved.

Important Information-Theoretic Secure: if A_1 and A_3 meet they learn NOTHING. If they had big fancy supercomputers they would still learn NOTHING.

The three equations below, over mod 37, can be solved:

$$a_2 \times 1^2 + a_1 \times 1 + s \equiv 4 \pmod{37}$$

 $a_2 \times 3^2 + a_1 \times 3 + s \equiv 20 \pmod{37}$
 $a_2 \times 4^2 + a_1 \times 4 + s \equiv 15 \pmod{37}$

Could we have solved this had we used mod 32?

VOTE

The three equations below, over mod 37, can be solved:

$$a_2 \times 1^2 + a_1 \times 1 + s \equiv 4 \pmod{37}$$

 $a_2 \times 3^2 + a_1 \times 3 + s \equiv 20 \pmod{37}$
 $a_2 \times 4^2 + a_1 \times 4 + s \equiv 15 \pmod{37}$

Could we have solved this had we used mod 32?

VOTE

1. YES

The three equations below, over mod 37, can be solved:

$$a_2 \times 1^2 + a_1 \times 1 + s \equiv 4 \pmod{37}$$

 $a_2 \times 3^2 + a_1 \times 3 + s \equiv 20 \pmod{37}$
 $a_2 \times 4^2 + a_1 \times 4 + s \equiv 15 \pmod{37}$

Could we have solved this had we used mod 32?

VOTE

- 1. YES
- 2. NO

The three equations below, over mod 37, can be solved:

$$a_2 \times 1^2 + a_1 \times 1 + s \equiv 4 \pmod{37}$$

 $a_2 \times 3^2 + a_1 \times 3 + s \equiv 20 \pmod{37}$
 $a_2 \times 4^2 + a_1 \times 4 + s \equiv 15 \pmod{37}$

Could we have solved this had we used mod 32?

VOTE

- 1. YES
- 2. NO

These equations, Don't know, but in general, NO

Need a domain where every number has a mult inverse. Over mod p, p primes, all numbers have mult inverses. Over mod 32, even numbers do not have mult inverse.

Due to Adi Shamir How to Share a Secret Communication of the ACM Volume 22, Number 11 1979

What did we use about degree t-1 polynomials?

What did we use about degree t-1 polynomials?

1. t points determine the polynomial (we need constant term).

What did we use about degree t-1 polynomials?

- 1. t points determine the polynomial (we need constant term).
- 2. t-1 points give **no information** about constant term.

What did we use about degree t-1 polynomials?

- 1. *t* points determine the polynomial (we need constant term).
- 2. t-1 points give **no information** about constant term.

Could do geometry over \mathbb{Z}_p^3 . A **Plane** in \mathbb{Z}_p^3 is:

$$\{(x,y,z):ax+by+cz=d\}$$

What did we use about degree t-1 polynomials?

- 1. *t* points determine the polynomial (we need constant term).
- 2. t-1 points give **no information** about constant term.

Could do geometry over \mathbb{Z}_p^3 . A **Plane** in \mathbb{Z}_p^3 is:

$$\{(x, y, z) : ax + by + cz = d\}$$

1. 3 points in \mathbb{Z}_p^3 determine a plane.

What did we use about degree t-1 polynomials?

- 1. t points determine the polynomial (we need constant term).
- 2. t-1 points give **no information** about constant term.

Could do geometry over \mathbb{Z}_p^3 . A **Plane** in \mathbb{Z}_p^3 is:

$$\{(x, y, z) : ax + by + cz = d\}$$

- 1. 3 points in \mathbb{Z}_p^3 determine a plane.
- 2. 2 points in \mathbb{Z}_p^3 give **no information** about d.

This approach is due to George Blakely, **Safeguarding Cryptographic Keys**, **International Workshop on Managing Requirements**, **Vol 48**, **1979**.

We will not do secret sharing this way, though one could.

We won't go into details but there are two ways to use the **Chinese Remainder Thm** to do Secret Sharing.

Due to:

C.A. Asmuth and J. Bloom. A modular approach to key safeguarding. IEEE Transactions on Information Theory Vol 29, Number 2, 208-210, 1983.

And Independently

M. Mignotte How to share a secret, Cryptography: Proceedings of the Workshop on Cryptography, Burg Deursetein, Volume 149 of Lecture Notes in Computer Science, 1982.

Features and Caveats of Poly Method

Imagine that you've done (t, m) secret sharing with polynomial, p(x). So for $1 \le i \le m$, A_i has f(i).

Features and Caveats of Poly Method

Imagine that you've done (t, m) secret sharing with polynomial, p(x). So for $1 \le i \le m$, A_i has f(i).

1. **Feature** If more people come FINE- can extend to (t, m + a) by giving A_{m+1} , f(m+1), ..., A_{m+a} , f(m+a).

Features and Caveats of Poly Method

Imagine that you've done (t, m) secret sharing with polynomial, p(x). So for $1 \le i \le m$, A_i has f(i).

- 1. **Feature** If more people come FINE- can extend to (t, m + a) by giving A_{m+1} , f(m+1), ..., A_{m+a} , f(m+a).
- 2. Caveat If $m \ge p$ then you run out of points to give people. There are ways to deal with this, but we will not bother. We will always assume m < p.

BILL STOP RECORDING LECTURE