
Stream ciphers

Stream ciphers

Stream Ciphers are Psuedorandom Generators made practical!

They are better than PRG’s!

Are Stream Ciphers ciphers? Depends on who you ask.

Some people identify the stream cipher with the cipher that results
from using it as the pseudo-one-time-pad.

We will not do that.

However,

we are right, and they are wrong.

Stream ciphers

Stream Ciphers are Psuedorandom Generators made practical!

They are better than PRG’s!

Are Stream Ciphers ciphers? Depends on who you ask.

Some people identify the stream cipher with the cipher that results
from using it as the pseudo-one-time-pad.

We will not do that.

However,

we are right, and they are wrong.

Stream ciphers

Stream Ciphers are Psuedorandom Generators made practical!

They are better than PRG’s!

Are Stream Ciphers ciphers? Depends on who you ask.

Some people identify the stream cipher with the cipher that results
from using it as the pseudo-one-time-pad.

We will not do that.

However,

we are right, and they are wrong.

Stream ciphers

Stream Ciphers are Psuedorandom Generators made practical!

They are better than PRG’s!

Are Stream Ciphers ciphers? Depends on who you ask.

Some people identify the stream cipher with the cipher that results
from using it as the pseudo-one-time-pad.

We will not do that.

However,

we are right, and they are wrong.

Stream ciphers

Stream Ciphers are Psuedorandom Generators made practical!

They are better than PRG’s!

Are Stream Ciphers ciphers? Depends on who you ask.

Some people identify the stream cipher with the cipher that results
from using it as the pseudo-one-time-pad.

We will not do that.

However,

we are right, and they are wrong.

Stream ciphers

Stream Ciphers are Psuedorandom Generators made practical!

They are better than PRG’s!

Are Stream Ciphers ciphers? Depends on who you ask.

Some people identify the stream cipher with the cipher that results
from using it as the pseudo-one-time-pad.

We will not do that.

However,

we are right, and they are wrong.

Stream ciphers

Stream Ciphers are Psuedorandom Generators made practical!

They are better than PRG’s!

Are Stream Ciphers ciphers? Depends on who you ask.

Some people identify the stream cipher with the cipher that results
from using it as the pseudo-one-time-pad.

We will not do that.

However,

we are right, and they are wrong.

Stream ciphers

I As we defined them, PRGs are limited

I They have fixed-length output

I They produce output in “one shot”

I In practice, Psuedo 1-Time Pads use Stream Ciphers

I Can be viewed as producing an “infinite” stream of
pseudorandom bits, on demand

I More flexible, more efficient

Stream ciphers

I As we defined them, PRGs are limited

I They have fixed-length output

I They produce output in “one shot”

I In practice, Psuedo 1-Time Pads use Stream Ciphers

I Can be viewed as producing an “infinite” stream of
pseudorandom bits, on demand

I More flexible, more efficient

Stream ciphers

A Stream Cipher is basically a recurrence that generates bits.
Formally a Stream Cipher is a pair of efficient, deterministic
algorithms (Init, GetBits) such that:

1. Init does the following:

1.1 Input private seed s. Think of as truly random.
1.2 Output y0, y1, . . . , yn for some n.

2. GetBits does the following:

2.1 Input Given y0, . . . , ym (likely depends on less of the past).
2.2 Output the bit ym+1.

Note In practice, yi is a block rather than a bit.

Stream ciphers

A Stream Cipher is basically a recurrence that generates bits.
Formally a Stream Cipher is a pair of efficient, deterministic
algorithms (Init, GetBits) such that:

1. Init does the following:

1.1 Input private seed s. Think of as truly random.
1.2 Output y0, y1, . . . , yn for some n.

2. GetBits does the following:

2.1 Input Given y0, . . . , ym (likely depends on less of the past).
2.2 Output the bit ym+1.

Note In practice, yi is a block rather than a bit.

Stream ciphers

I Can use (Init, GetBits) to generate any desired number of
output bits from an initial seed

Stream ciphers

I A stream cipher is secure (informally) if the output stream
generated from a uniform seed is pseudorandom

I I.e. regardless of how long the output stream is (so long as it
is polynomial)

I We omit formal definition which is in terms of games.

Do Stream Ciphers exist? Theoretical

Under reasonable crypto assumptions can construct Secure Stream
Cipher.

A stream cipher constructed this way is too slow to really use.

Still good to have proof-of-concept.

Over time, constructions that are too slow are worked on and
become fast enough.

Do Stream Ciphers exist? Theoretical

Under reasonable crypto assumptions can construct Secure Stream
Cipher.

A stream cipher constructed this way is too slow to really use.

Still good to have proof-of-concept.

Over time, constructions that are too slow are worked on and
become fast enough.

Do Stream Ciphers exist? Theoretical

Under reasonable crypto assumptions can construct Secure Stream
Cipher.

A stream cipher constructed this way is too slow to really use.

Still good to have proof-of-concept.

Over time, constructions that are too slow are worked on and
become fast enough.

Do Stream Ciphers exist? Theoretical

Under reasonable crypto assumptions can construct Secure Stream
Cipher.

A stream cipher constructed this way is too slow to really use.

Still good to have proof-of-concept.

Over time, constructions that are too slow are worked on and
become fast enough.

Do Stream Ciphers exist? Practical

Attempts at Stream Ciphers:

1. Linear Feedback Shift Registers. Fast! Used! Not Secure!

2. Trivium. Fast! Used! Empirically Secure! Not proven.

3. Rivest Cipher 4. Fast! Used! No longer secure!

Note Seems impossible to get Stream Ciphers that are provably
(even using Hardness Assumptions) secure and practical.

Note But having the rigor gives the practitioners (1) a target to
shoot for, and (2) pitfalls to watch out for.

Do Stream Ciphers exist? Practical

Attempts at Stream Ciphers:

1. Linear Feedback Shift Registers. Fast! Used! Not Secure!

2. Trivium. Fast! Used! Empirically Secure! Not proven.

3. Rivest Cipher 4. Fast! Used! No longer secure!

Note Seems impossible to get Stream Ciphers that are provably
(even using Hardness Assumptions) secure and practical.

Note But having the rigor gives the practitioners (1) a target to
shoot for, and (2) pitfalls to watch out for.

Do Stream Ciphers exist? Practical

Attempts at Stream Ciphers:

1. Linear Feedback Shift Registers. Fast! Used! Not Secure!

2. Trivium. Fast! Used! Empirically Secure! Not proven.

3. Rivest Cipher 4. Fast! Used! No longer secure!

Note Seems impossible to get Stream Ciphers that are provably
(even using Hardness Assumptions) secure and practical.

Note But having the rigor gives the practitioners (1) a target to
shoot for, and (2) pitfalls to watch out for.

Do Stream Ciphers exist? Practical

Attempts at Stream Ciphers:

1. Linear Feedback Shift Registers. Fast! Used! Not Secure!

2. Trivium. Fast! Used! Empirically Secure! Not proven.

3. Rivest Cipher 4. Fast! Used! No longer secure!

Note Seems impossible to get Stream Ciphers that are provably
(even using Hardness Assumptions) secure and practical.

Note But having the rigor gives the practitioners (1) a target to
shoot for, and (2) pitfalls to watch out for.

Do Stream Ciphers exist? Practical

Attempts at Stream Ciphers:

1. Linear Feedback Shift Registers. Fast! Used! Not Secure!

2. Trivium. Fast! Used! Empirically Secure! Not proven.

3. Rivest Cipher 4. Fast! Used! No longer secure!

Note Seems impossible to get Stream Ciphers that are provably
(even using Hardness Assumptions) secure and practical.

Note But having the rigor gives the practitioners (1) a target to
shoot for, and (2) pitfalls to watch out for.

Do Stream Ciphers exist? Practical

Attempts at Stream Ciphers:

1. Linear Feedback Shift Registers. Fast! Used! Not Secure!

2. Trivium. Fast! Used! Empirically Secure! Not proven.

3. Rivest Cipher 4. Fast! Used! No longer secure!

Note Seems impossible to get Stream Ciphers that are provably
(even using Hardness Assumptions) secure and practical.

Note But having the rigor gives the practitioners (1) a target to
shoot for, and (2) pitfalls to watch out for.

Linear Feedback Shift Registers (LFSR): Example

Degree 3 LFSR, 3 constants : c3, c2, c1 ∈ {0, 1}. + is mod 2.

Key is 3 bits: (y0, y1, y2).

(∀t ≥ 3)[yt = c1yt−1 + c2yt−2 + c3yt−3].

Note Leave it to you to generalize to degree n LFSR.

Linear Feedback Shift Registers (LFSR): Example

Degree 3 LFSR, 3 constants : c3, c2, c1 ∈ {0, 1}. + is mod 2.

Key is 3 bits: (y0, y1, y2).

(∀t ≥ 3)[yt = c1yt−1 + c2yt−2 + c3yt−3].

Note Leave it to you to generalize to degree n LFSR.

LFSRs

1. Will eventually be periodic but hope the periodicity is long.

2. For n-degree max periodicity is 2n − 1.

3. Known how to set feedback coefficients so as to achieve
2n − 1.

4. Maximal-length LFSRs have good statistical properties.

5. Are LFSRs secure? Vote YES, NO, UNKNOWN TO
SCIENCE. NO.

LFSRs

1. Will eventually be periodic but hope the periodicity is long.

2. For n-degree max periodicity is 2n − 1.

3. Known how to set feedback coefficients so as to achieve
2n − 1.

4. Maximal-length LFSRs have good statistical properties.

5. Are LFSRs secure? Vote YES, NO, UNKNOWN TO
SCIENCE. NO.

LFSRs

1. Will eventually be periodic but hope the periodicity is long.

2. For n-degree max periodicity is 2n − 1.

3. Known how to set feedback coefficients so as to achieve
2n − 1.

4. Maximal-length LFSRs have good statistical properties.

5. Are LFSRs secure? Vote YES, NO, UNKNOWN TO
SCIENCE. NO.

LFSRs

1. Will eventually be periodic but hope the periodicity is long.

2. For n-degree max periodicity is 2n − 1.

3. Known how to set feedback coefficients so as to achieve
2n − 1.

4. Maximal-length LFSRs have good statistical properties.

5. Are LFSRs secure? Vote YES, NO, UNKNOWN TO
SCIENCE. NO.

LFSRs

1. Will eventually be periodic but hope the periodicity is long.

2. For n-degree max periodicity is 2n − 1.

3. Known how to set feedback coefficients so as to achieve
2n − 1.

4. Maximal-length LFSRs have good statistical properties.

5. Are LFSRs secure? Vote YES, NO, UNKNOWN TO
SCIENCE. NO.

LFSRs

1. Will eventually be periodic but hope the periodicity is long.

2. For n-degree max periodicity is 2n − 1.

3. Known how to set feedback coefficients so as to achieve
2n − 1.

4. Maximal-length LFSRs have good statistical properties.

5. Are LFSRs secure? Vote YES, NO, UNKNOWN TO
SCIENCE.

NO.

LFSRs

1. Will eventually be periodic but hope the periodicity is long.

2. For n-degree max periodicity is 2n − 1.

3. Known how to set feedback coefficients so as to achieve
2n − 1.

4. Maximal-length LFSRs have good statistical properties.

5. Are LFSRs secure? Vote YES, NO, UNKNOWN TO
SCIENCE. NO.

Example of Bad Security

Degree 3. c0, c1, c2 unknown. If y1, y2, y3, y4, y5, y6 become known
then:

y4 = c2y3 + c1y2 + c0y1
y5 = c2y4 + c1y3 + c0y2
y6 = c2y5 + c1y4 + c0y3

3 linear equations in 3 variables. Can find c0, c1, c2. Cracked!

For n-degree LFSR can crack after 2n iterations.
Moral: Linearity is bad cryptography.

Example of Bad Security

Degree 3. c0, c1, c2 unknown. If y1, y2, y3, y4, y5, y6 become known
then:
y4 = c2y3 + c1y2 + c0y1
y5 = c2y4 + c1y3 + c0y2
y6 = c2y5 + c1y4 + c0y3

3 linear equations in 3 variables. Can find c0, c1, c2. Cracked!

For n-degree LFSR can crack after 2n iterations.
Moral: Linearity is bad cryptography.

Example of Bad Security

Degree 3. c0, c1, c2 unknown. If y1, y2, y3, y4, y5, y6 become known
then:
y4 = c2y3 + c1y2 + c0y1
y5 = c2y4 + c1y3 + c0y2
y6 = c2y5 + c1y4 + c0y3

3 linear equations in 3 variables. Can find c0, c1, c2. Cracked!

For n-degree LFSR can crack after 2n iterations.
Moral: Linearity is bad cryptography.

LFSR and Linearity

Linearity makes LFSR’s fast

Linearity makes LFSR’s crackable

Who first said:
Those who lives by linearity, dies by linearity!

It was Irene!

LFSR and Linearity

Linearity makes LFSR’s fast

Linearity makes LFSR’s crackable

Who first said:
Those who lives by linearity, dies by linearity!

It was Irene!

LFSR and Linearity

Linearity makes LFSR’s fast

Linearity makes LFSR’s crackable

Who first said:
Those who lives by linearity, dies by linearity!

It was Irene!

LFSR and Linearity

Linearity makes LFSR’s fast

Linearity makes LFSR’s crackable

Who first said:
Those who lives by linearity, dies by linearity!

It was Irene!

The Essence of Crypto

Recall: The Essence of Crypto is to make computation

1. Easy for Alice and Bob.

2. Hard for Eve.

LFSR makes computation easy for all three!

The Essence of Crypto

Recall: The Essence of Crypto is to make computation

1. Easy for Alice and Bob.

2. Hard for Eve.

LFSR makes computation easy for all three!

The Essence of Crypto

Recall: The Essence of Crypto is to make computation

1. Easy for Alice and Bob.

2. Hard for Eve.

LFSR makes computation easy for all three!

The Essence of Crypto

Recall: The Essence of Crypto is to make computation

1. Easy for Alice and Bob.

2. Hard for Eve.

LFSR makes computation easy for all three!

Nonlinear Feedback Shift Registers (NFSRs)

1. Add nonlinearity to prevent attacks

2. Nonlinear feedback

3. Output is a nonlinear function of the state

4. Multiple (coupled) LFSRs

5. . . . or any combination of the above

6. Still want to preserve statistical properties of the output, and
long cycle length

Nonlinear Feedback Shift Registers (NFSRs)

1. Add nonlinearity to prevent attacks

2. Nonlinear feedback

3. Output is a nonlinear function of the state

4. Multiple (coupled) LFSRs

5. . . . or any combination of the above

6. Still want to preserve statistical properties of the output, and
long cycle length

Nonlinear Feedback Shift Registers (NFSRs)

1. Add nonlinearity to prevent attacks

2. Nonlinear feedback

3. Output is a nonlinear function of the state

4. Multiple (coupled) LFSRs

5. . . . or any combination of the above

6. Still want to preserve statistical properties of the output, and
long cycle length

Nonlinear Feedback Shift Registers (NFSRs)

1. Add nonlinearity to prevent attacks

2. Nonlinear feedback

3. Output is a nonlinear function of the state

4. Multiple (coupled) LFSRs

5. . . . or any combination of the above

6. Still want to preserve statistical properties of the output, and
long cycle length

Nonlinear Feedback Shift Registers (NFSRs)

1. Add nonlinearity to prevent attacks

2. Nonlinear feedback

3. Output is a nonlinear function of the state

4. Multiple (coupled) LFSRs

5. . . . or any combination of the above

6. Still want to preserve statistical properties of the output, and
long cycle length

Nonlinear Feedback Shift Registers (NFSRs)

1. Add nonlinearity to prevent attacks

2. Nonlinear feedback

3. Output is a nonlinear function of the state

4. Multiple (coupled) LFSRs

5. . . . or any combination of the above

6. Still want to preserve statistical properties of the output, and
long cycle length

Nonlinear Feedback Shift Registers (NFSRs)

1. Add nonlinearity to prevent attacks

2. Nonlinear feedback

3. Output is a nonlinear function of the state

4. Multiple (coupled) LFSRs

5. . . . or any combination of the above

6. Still want to preserve statistical properties of the output, and
long cycle length

Nonlinear Feedback Shift Registers

Assume n even. + is mod 2.
Initialize with x1, x2, x3, x4
(∀n ≥ 5)[xn = xn−1xn−2 + xn−2xn−3 + xn−3xn−4].

Is this a good stream cipher? Vote Y (with HA), N, UN

UNKNOWN
I made up this cipher last year for example of nonlinear.
On the HW you will tell me if its a good stream cipher.

Nonlinear Feedback Shift Registers

Assume n even. + is mod 2.
Initialize with x1, x2, x3, x4
(∀n ≥ 5)[xn = xn−1xn−2 + xn−2xn−3 + xn−3xn−4].

Is this a good stream cipher? Vote Y (with HA), N, UN

UNKNOWN
I made up this cipher last year for example of nonlinear.
On the HW you will tell me if its a good stream cipher.

Nonlinear Feedback Shift Registers

Assume n even. + is mod 2.
Initialize with x1, x2, x3, x4
(∀n ≥ 5)[xn = xn−1xn−2 + xn−2xn−3 + xn−3xn−4].

Is this a good stream cipher? Vote Y (with HA), N, UN

UNKNOWN

I made up this cipher last year for example of nonlinear.
On the HW you will tell me if its a good stream cipher.

Nonlinear Feedback Shift Registers

Assume n even. + is mod 2.
Initialize with x1, x2, x3, x4
(∀n ≥ 5)[xn = xn−1xn−2 + xn−2xn−3 + xn−3xn−4].

Is this a good stream cipher? Vote Y (with HA), N, UN

UNKNOWN
I made up this cipher last year for example of nonlinear.
On the HW you will tell me if its a good stream cipher.

Trivum

Trivium

I Designed by De Cannière and Preneel in 2006 as part of
eSTREAM competition.

I Intended to be simple and efficient (especially in hardware).

I Essentially no attacks better than brute-force search are
known.

Trivium

I Designed by De Cannière and Preneel in 2006 as part of
eSTREAM competition.

I Intended to be simple and efficient (especially in hardware).

I Essentially no attacks better than brute-force search are
known.

Trivium

I Designed by De Cannière and Preneel in 2006 as part of
eSTREAM competition.

I Intended to be simple and efficient (especially in hardware).

I Essentially no attacks better than brute-force search are
known.

Trivium

I Three coupled Feedback Shift Registers (FSR) of degree 93,
84, and 111.

I Initialization:

I 80-bit key in left-most registers of first FSR. This is private.

I 80-bit IV in left-most registers of second FSR. This is public.

I Remaining registers set to 0, except for three right-most
registers of third FSR

I Run for 4 x 288 clock ticks to finish init.

Trivium

I Three coupled Feedback Shift Registers (FSR) of degree 93,
84, and 111.

I Initialization:

I 80-bit key in left-most registers of first FSR. This is private.

I 80-bit IV in left-most registers of second FSR. This is public.

I Remaining registers set to 0, except for three right-most
registers of third FSR

I Run for 4 x 288 clock ticks to finish init.

Trivium

I Three coupled Feedback Shift Registers (FSR) of degree 93,
84, and 111.

I Initialization:

I 80-bit key in left-most registers of first FSR. This is private.

I 80-bit IV in left-most registers of second FSR. This is public.

I Remaining registers set to 0, except for three right-most
registers of third FSR

I Run for 4 x 288 clock ticks to finish init.

Trivium

I Three coupled Feedback Shift Registers (FSR) of degree 93,
84, and 111.

I Initialization:

I 80-bit key in left-most registers of first FSR. This is private.

I 80-bit IV in left-most registers of second FSR. This is public.

I Remaining registers set to 0, except for three right-most
registers of third FSR

I Run for 4 x 288 clock ticks to finish init.

Trivium-Initialization

K1, . . . ,K80 Random
IV1, . . . , IV80 Random
(a1, . . . , a93)← (K1, . . . ,K80, 0, . . . , 0)
(b1, . . . , b84)← (IV1, . . . , IV80, 0, 0, 0, 0)
(c1, . . . , c111)← (0, . . . , 0, 1, 1, 1)
For i = 1 to 4× 288 do

1. t1 ← a86 + a91a92 + b79

2. t2 ← b70 + b83b84 + c1 + c87

3. t3 ← c66 + c100c110 + c111 + a69

4. (a1, . . . , a93)← (t3, a1, . . . , a92)

5. (b1, . . . , b83)← (t1, b1, . . . , b82)

6. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note No random bits output. This is just initialization.

Trivium-Initialization

K1, . . . ,K80 Random

IV1, . . . , IV80 Random
(a1, . . . , a93)← (K1, . . . ,K80, 0, . . . , 0)
(b1, . . . , b84)← (IV1, . . . , IV80, 0, 0, 0, 0)
(c1, . . . , c111)← (0, . . . , 0, 1, 1, 1)
For i = 1 to 4× 288 do

1. t1 ← a86 + a91a92 + b79

2. t2 ← b70 + b83b84 + c1 + c87

3. t3 ← c66 + c100c110 + c111 + a69

4. (a1, . . . , a93)← (t3, a1, . . . , a92)

5. (b1, . . . , b83)← (t1, b1, . . . , b82)

6. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note No random bits output. This is just initialization.

Trivium-Initialization

K1, . . . ,K80 Random
IV1, . . . , IV80 Random

(a1, . . . , a93)← (K1, . . . ,K80, 0, . . . , 0)
(b1, . . . , b84)← (IV1, . . . , IV80, 0, 0, 0, 0)
(c1, . . . , c111)← (0, . . . , 0, 1, 1, 1)
For i = 1 to 4× 288 do

1. t1 ← a86 + a91a92 + b79

2. t2 ← b70 + b83b84 + c1 + c87

3. t3 ← c66 + c100c110 + c111 + a69

4. (a1, . . . , a93)← (t3, a1, . . . , a92)

5. (b1, . . . , b83)← (t1, b1, . . . , b82)

6. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note No random bits output. This is just initialization.

Trivium-Initialization

K1, . . . ,K80 Random
IV1, . . . , IV80 Random
(a1, . . . , a93)← (K1, . . . ,K80, 0, . . . , 0)

(b1, . . . , b84)← (IV1, . . . , IV80, 0, 0, 0, 0)
(c1, . . . , c111)← (0, . . . , 0, 1, 1, 1)
For i = 1 to 4× 288 do

1. t1 ← a86 + a91a92 + b79

2. t2 ← b70 + b83b84 + c1 + c87

3. t3 ← c66 + c100c110 + c111 + a69

4. (a1, . . . , a93)← (t3, a1, . . . , a92)

5. (b1, . . . , b83)← (t1, b1, . . . , b82)

6. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note No random bits output. This is just initialization.

Trivium-Initialization

K1, . . . ,K80 Random
IV1, . . . , IV80 Random
(a1, . . . , a93)← (K1, . . . ,K80, 0, . . . , 0)
(b1, . . . , b84)← (IV1, . . . , IV80, 0, 0, 0, 0)

(c1, . . . , c111)← (0, . . . , 0, 1, 1, 1)
For i = 1 to 4× 288 do

1. t1 ← a86 + a91a92 + b79

2. t2 ← b70 + b83b84 + c1 + c87

3. t3 ← c66 + c100c110 + c111 + a69

4. (a1, . . . , a93)← (t3, a1, . . . , a92)

5. (b1, . . . , b83)← (t1, b1, . . . , b82)

6. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note No random bits output. This is just initialization.

Trivium-Initialization

K1, . . . ,K80 Random
IV1, . . . , IV80 Random
(a1, . . . , a93)← (K1, . . . ,K80, 0, . . . , 0)
(b1, . . . , b84)← (IV1, . . . , IV80, 0, 0, 0, 0)
(c1, . . . , c111)← (0, . . . , 0, 1, 1, 1)

For i = 1 to 4× 288 do

1. t1 ← a86 + a91a92 + b79

2. t2 ← b70 + b83b84 + c1 + c87

3. t3 ← c66 + c100c110 + c111 + a69

4. (a1, . . . , a93)← (t3, a1, . . . , a92)

5. (b1, . . . , b83)← (t1, b1, . . . , b82)

6. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note No random bits output. This is just initialization.

Trivium-Initialization

K1, . . . ,K80 Random
IV1, . . . , IV80 Random
(a1, . . . , a93)← (K1, . . . ,K80, 0, . . . , 0)
(b1, . . . , b84)← (IV1, . . . , IV80, 0, 0, 0, 0)
(c1, . . . , c111)← (0, . . . , 0, 1, 1, 1)
For i = 1 to 4× 288 do

1. t1 ← a86 + a91a92 + b79

2. t2 ← b70 + b83b84 + c1 + c87

3. t3 ← c66 + c100c110 + c111 + a69

4. (a1, . . . , a93)← (t3, a1, . . . , a92)

5. (b1, . . . , b83)← (t1, b1, . . . , b82)

6. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note No random bits output. This is just initialization.

Trivium-Initialization

K1, . . . ,K80 Random
IV1, . . . , IV80 Random
(a1, . . . , a93)← (K1, . . . ,K80, 0, . . . , 0)
(b1, . . . , b84)← (IV1, . . . , IV80, 0, 0, 0, 0)
(c1, . . . , c111)← (0, . . . , 0, 1, 1, 1)
For i = 1 to 4× 288 do

1. t1 ← a86 + a91a92 + b79

2. t2 ← b70 + b83b84 + c1 + c87

3. t3 ← c66 + c100c110 + c111 + a69

4. (a1, . . . , a93)← (t3, a1, . . . , a92)

5. (b1, . . . , b83)← (t1, b1, . . . , b82)

6. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note No random bits output. This is just initialization.

Trivium-Initialization

K1, . . . ,K80 Random
IV1, . . . , IV80 Random
(a1, . . . , a93)← (K1, . . . ,K80, 0, . . . , 0)
(b1, . . . , b84)← (IV1, . . . , IV80, 0, 0, 0, 0)
(c1, . . . , c111)← (0, . . . , 0, 1, 1, 1)
For i = 1 to 4× 288 do

1. t1 ← a86 + a91a92 + b79

2. t2 ← b70 + b83b84 + c1 + c87

3. t3 ← c66 + c100c110 + c111 + a69

4. (a1, . . . , a93)← (t3, a1, . . . , a92)

5. (b1, . . . , b83)← (t1, b1, . . . , b82)

6. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note No random bits output. This is just initialization.

Trivium-Initialization

K1, . . . ,K80 Random
IV1, . . . , IV80 Random
(a1, . . . , a93)← (K1, . . . ,K80, 0, . . . , 0)
(b1, . . . , b84)← (IV1, . . . , IV80, 0, 0, 0, 0)
(c1, . . . , c111)← (0, . . . , 0, 1, 1, 1)
For i = 1 to 4× 288 do

1. t1 ← a86 + a91a92 + b79

2. t2 ← b70 + b83b84 + c1 + c87

3. t3 ← c66 + c100c110 + c111 + a69

4. (a1, . . . , a93)← (t3, a1, . . . , a92)

5. (b1, . . . , b83)← (t1, b1, . . . , b82)

6. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note No random bits output. This is just initialization.

Trivium-Initialization

K1, . . . ,K80 Random
IV1, . . . , IV80 Random
(a1, . . . , a93)← (K1, . . . ,K80, 0, . . . , 0)
(b1, . . . , b84)← (IV1, . . . , IV80, 0, 0, 0, 0)
(c1, . . . , c111)← (0, . . . , 0, 1, 1, 1)
For i = 1 to 4× 288 do

1. t1 ← a86 + a91a92 + b79

2. t2 ← b70 + b83b84 + c1 + c87

3. t3 ← c66 + c100c110 + c111 + a69

4. (a1, . . . , a93)← (t3, a1, . . . , a92)

5. (b1, . . . , b83)← (t1, b1, . . . , b82)

6. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note No random bits output. This is just initialization.

Trivium-Initialization

K1, . . . ,K80 Random
IV1, . . . , IV80 Random
(a1, . . . , a93)← (K1, . . . ,K80, 0, . . . , 0)
(b1, . . . , b84)← (IV1, . . . , IV80, 0, 0, 0, 0)
(c1, . . . , c111)← (0, . . . , 0, 1, 1, 1)
For i = 1 to 4× 288 do

1. t1 ← a86 + a91a92 + b79

2. t2 ← b70 + b83b84 + c1 + c87

3. t3 ← c66 + c100c110 + c111 + a69

4. (a1, . . . , a93)← (t3, a1, . . . , a92)

5. (b1, . . . , b83)← (t1, b1, . . . , b82)

6. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note No random bits output. This is just initialization.

Trivium-Initialization

K1, . . . ,K80 Random
IV1, . . . , IV80 Random
(a1, . . . , a93)← (K1, . . . ,K80, 0, . . . , 0)
(b1, . . . , b84)← (IV1, . . . , IV80, 0, 0, 0, 0)
(c1, . . . , c111)← (0, . . . , 0, 1, 1, 1)
For i = 1 to 4× 288 do

1. t1 ← a86 + a91a92 + b79

2. t2 ← b70 + b83b84 + c1 + c87

3. t3 ← c66 + c100c110 + c111 + a69

4. (a1, . . . , a93)← (t3, a1, . . . , a92)

5. (b1, . . . , b83)← (t1, b1, . . . , b82)

6. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note No random bits output. This is just initialization.

Trivium-Initialization

K1, . . . ,K80 Random
IV1, . . . , IV80 Random
(a1, . . . , a93)← (K1, . . . ,K80, 0, . . . , 0)
(b1, . . . , b84)← (IV1, . . . , IV80, 0, 0, 0, 0)
(c1, . . . , c111)← (0, . . . , 0, 1, 1, 1)
For i = 1 to 4× 288 do

1. t1 ← a86 + a91a92 + b79

2. t2 ← b70 + b83b84 + c1 + c87

3. t3 ← c66 + c100c110 + c111 + a69

4. (a1, . . . , a93)← (t3, a1, . . . , a92)

5. (b1, . . . , b83)← (t1, b1, . . . , b82)

6. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note No random bits output. This is just initialization.

Trivium-Iteration

We omit superscripts for readability.

For i = 1 to ∞ do

1. yi = a66 + a93 + b70 + b75 + c66 + c111 (ith random bit).

2. t1 ← a86 + a91a92 + b79

3. t2 ← b70 + b83b84 + c1 + c87

4. t3 ← c66 + c100c110 + c111 + a69

5. (a1, . . . , a93)← (t3, a1, . . . , a92)

6. (b1, . . . , b83)← (t1, b1, . . . , s83)

7. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note the three diff parts of s are three coupled nonlinear FSR.

Trivium-Iteration

We omit superscripts for readability.
For i = 1 to ∞ do

1. yi = a66 + a93 + b70 + b75 + c66 + c111 (ith random bit).

2. t1 ← a86 + a91a92 + b79

3. t2 ← b70 + b83b84 + c1 + c87

4. t3 ← c66 + c100c110 + c111 + a69

5. (a1, . . . , a93)← (t3, a1, . . . , a92)

6. (b1, . . . , b83)← (t1, b1, . . . , s83)

7. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note the three diff parts of s are three coupled nonlinear FSR.

Trivium-Iteration

We omit superscripts for readability.
For i = 1 to ∞ do

1. yi = a66 + a93 + b70 + b75 + c66 + c111 (ith random bit).

2. t1 ← a86 + a91a92 + b79

3. t2 ← b70 + b83b84 + c1 + c87

4. t3 ← c66 + c100c110 + c111 + a69

5. (a1, . . . , a93)← (t3, a1, . . . , a92)

6. (b1, . . . , b83)← (t1, b1, . . . , s83)

7. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note the three diff parts of s are three coupled nonlinear FSR.

Trivium-Iteration

We omit superscripts for readability.
For i = 1 to ∞ do

1. yi = a66 + a93 + b70 + b75 + c66 + c111 (ith random bit).

2. t1 ← a86 + a91a92 + b79

3. t2 ← b70 + b83b84 + c1 + c87

4. t3 ← c66 + c100c110 + c111 + a69

5. (a1, . . . , a93)← (t3, a1, . . . , a92)

6. (b1, . . . , b83)← (t1, b1, . . . , s83)

7. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note the three diff parts of s are three coupled nonlinear FSR.

Trivium-Iteration

We omit superscripts for readability.
For i = 1 to ∞ do

1. yi = a66 + a93 + b70 + b75 + c66 + c111 (ith random bit).

2. t1 ← a86 + a91a92 + b79

3. t2 ← b70 + b83b84 + c1 + c87

4. t3 ← c66 + c100c110 + c111 + a69

5. (a1, . . . , a93)← (t3, a1, . . . , a92)

6. (b1, . . . , b83)← (t1, b1, . . . , s83)

7. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note the three diff parts of s are three coupled nonlinear FSR.

Trivium-Iteration

We omit superscripts for readability.
For i = 1 to ∞ do

1. yi = a66 + a93 + b70 + b75 + c66 + c111 (ith random bit).

2. t1 ← a86 + a91a92 + b79

3. t2 ← b70 + b83b84 + c1 + c87

4. t3 ← c66 + c100c110 + c111 + a69

5. (a1, . . . , a93)← (t3, a1, . . . , a92)

6. (b1, . . . , b83)← (t1, b1, . . . , s83)

7. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note the three diff parts of s are three coupled nonlinear FSR.

Trivium-Iteration

We omit superscripts for readability.
For i = 1 to ∞ do

1. yi = a66 + a93 + b70 + b75 + c66 + c111 (ith random bit).

2. t1 ← a86 + a91a92 + b79

3. t2 ← b70 + b83b84 + c1 + c87

4. t3 ← c66 + c100c110 + c111 + a69

5. (a1, . . . , a93)← (t3, a1, . . . , a92)

6. (b1, . . . , b83)← (t1, b1, . . . , s83)

7. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note the three diff parts of s are three coupled nonlinear FSR.

Trivium-Iteration

We omit superscripts for readability.
For i = 1 to ∞ do

1. yi = a66 + a93 + b70 + b75 + c66 + c111 (ith random bit).

2. t1 ← a86 + a91a92 + b79

3. t2 ← b70 + b83b84 + c1 + c87

4. t3 ← c66 + c100c110 + c111 + a69

5. (a1, . . . , a93)← (t3, a1, . . . , a92)

6. (b1, . . . , b83)← (t1, b1, . . . , s83)

7. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note the three diff parts of s are three coupled nonlinear FSR.

Trivium-Iteration

We omit superscripts for readability.
For i = 1 to ∞ do

1. yi = a66 + a93 + b70 + b75 + c66 + c111 (ith random bit).

2. t1 ← a86 + a91a92 + b79

3. t2 ← b70 + b83b84 + c1 + c87

4. t3 ← c66 + c100c110 + c111 + a69

5. (a1, . . . , a93)← (t3, a1, . . . , a92)

6. (b1, . . . , b83)← (t1, b1, . . . , s83)

7. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note the three diff parts of s are three coupled nonlinear FSR.

Trivium-Iteration

We omit superscripts for readability.
For i = 1 to ∞ do

1. yi = a66 + a93 + b70 + b75 + c66 + c111 (ith random bit).

2. t1 ← a86 + a91a92 + b79

3. t2 ← b70 + b83b84 + c1 + c87

4. t3 ← c66 + c100c110 + c111 + a69

5. (a1, . . . , a93)← (t3, a1, . . . , a92)

6. (b1, . . . , b83)← (t1, b1, . . . , s83)

7. (c1, . . . , c111)← (t2, c1, . . . , c110)

Note the three diff parts of s are three coupled nonlinear FSR.

Trivium based on LFSR though not LFSR

Note:

1. t1, t2, t3 are nonlinear combos of prior bits.

2. (a1, . . . , a93)← (t3, a1, . . . , a92)

3. (b1, . . . , b83)← (t1, s1 . . . , s82)

4. (c1, . . . , c111)← (t2, c1, . . . , c110)

Since t1, t2, t3 nonlinear, Trivium is NOT LFSR
But is very much like LFSR.

Benefit: Shifting is Fast!

Trivium based on LFSR though not LFSR

Note:

1. t1, t2, t3 are nonlinear combos of prior bits.

2. (a1, . . . , a93)← (t3, a1, . . . , a92)

3. (b1, . . . , b83)← (t1, s1 . . . , s82)

4. (c1, . . . , c111)← (t2, c1, . . . , c110)

Since t1, t2, t3 nonlinear, Trivium is NOT LFSR
But is very much like LFSR.

Benefit: Shifting is Fast!

Trivium based on LFSR though not LFSR

Note:

1. t1, t2, t3 are nonlinear combos of prior bits.

2. (a1, . . . , a93)← (t3, a1, . . . , a92)

3. (b1, . . . , b83)← (t1, s1 . . . , s82)

4. (c1, . . . , c111)← (t2, c1, . . . , c110)

Since t1, t2, t3 nonlinear, Trivium is NOT LFSR
But is very much like LFSR.

Benefit: Shifting is Fast!

Trivium based on LFSR though not LFSR

Note:

1. t1, t2, t3 are nonlinear combos of prior bits.

2. (a1, . . . , a93)← (t3, a1, . . . , a92)

3. (b1, . . . , b83)← (t1, s1 . . . , s82)

4. (c1, . . . , c111)← (t2, c1, . . . , c110)

Since t1, t2, t3 nonlinear, Trivium is NOT LFSR
But is very much like LFSR.

Benefit: Shifting is Fast!

Trivium based on LFSR though not LFSR

Note:

1. t1, t2, t3 are nonlinear combos of prior bits.

2. (a1, . . . , a93)← (t3, a1, . . . , a92)

3. (b1, . . . , b83)← (t1, s1 . . . , s82)

4. (c1, . . . , c111)← (t2, c1, . . . , c110)

Since t1, t2, t3 nonlinear, Trivium is NOT LFSR
But is very much like LFSR.

Benefit: Shifting is Fast!

Trivium based on LFSR though not LFSR

Note:

1. t1, t2, t3 are nonlinear combos of prior bits.

2. (a1, . . . , a93)← (t3, a1, . . . , a92)

3. (b1, . . . , b83)← (t1, s1 . . . , s82)

4. (c1, . . . , c111)← (t2, c1, . . . , c110)

Since t1, t2, t3 nonlinear, Trivium is NOT LFSR
But is very much like LFSR.

Benefit: Shifting is Fast!

Trivium based on LFSR though not LFSR

Note:

1. t1, t2, t3 are nonlinear combos of prior bits.

2. (a1, . . . , a93)← (t3, a1, . . . , a92)

3. (b1, . . . , b83)← (t1, s1 . . . , s82)

4. (c1, . . . , c111)← (t2, c1, . . . , c110)

Since t1, t2, t3 nonlinear, Trivium is NOT LFSR

But is very much like LFSR.

Benefit: Shifting is Fast!

Trivium based on LFSR though not LFSR

Note:

1. t1, t2, t3 are nonlinear combos of prior bits.

2. (a1, . . . , a93)← (t3, a1, . . . , a92)

3. (b1, . . . , b83)← (t1, s1 . . . , s82)

4. (c1, . . . , c111)← (t2, c1, . . . , c110)

Since t1, t2, t3 nonlinear, Trivium is NOT LFSR
But is very much like LFSR.

Benefit: Shifting is Fast!

Trivium based on LFSR though not LFSR

Note:

1. t1, t2, t3 are nonlinear combos of prior bits.

2. (a1, . . . , a93)← (t3, a1, . . . , a92)

3. (b1, . . . , b83)← (t1, s1 . . . , s82)

4. (c1, . . . , c111)← (t2, c1, . . . , c110)

Since t1, t2, t3 nonlinear, Trivium is NOT LFSR
But is very much like LFSR.

Benefit: Shifting is Fast!

Facts About Trivium

1) Has been build in hardware with 3488 logic gates. Small! Fast!

2) So far has not been broken. That we know of!

3) Naive method is 280 steps. Guess all keys.

4) If only do ∼ 700 init steps then Cube Attack is 268 steps.

5) Seems to have long period but hard to know:

1. Nonlin makes it hard to predict. Good for practical A and B.

2. Nonlin makes it hard to analyze. Bad for theorists A and B.

6) Trivium is also the name of a rock band!

7) Two Papers on Trivium on course website

Facts About Trivium

1) Has been build in hardware with 3488 logic gates. Small! Fast!

2) So far has not been broken. That we know of!

3) Naive method is 280 steps. Guess all keys.

4) If only do ∼ 700 init steps then Cube Attack is 268 steps.

5) Seems to have long period but hard to know:

1. Nonlin makes it hard to predict. Good for practical A and B.

2. Nonlin makes it hard to analyze. Bad for theorists A and B.

6) Trivium is also the name of a rock band!

7) Two Papers on Trivium on course website

Facts About Trivium

1) Has been build in hardware with 3488 logic gates. Small! Fast!

2) So far has not been broken. That we know of!

3) Naive method is 280 steps. Guess all keys.

4) If only do ∼ 700 init steps then Cube Attack is 268 steps.

5) Seems to have long period but hard to know:

1. Nonlin makes it hard to predict. Good for practical A and B.

2. Nonlin makes it hard to analyze. Bad for theorists A and B.

6) Trivium is also the name of a rock band!

7) Two Papers on Trivium on course website

Facts About Trivium

1) Has been build in hardware with 3488 logic gates. Small! Fast!

2) So far has not been broken. That we know of!

3) Naive method is 280 steps. Guess all keys.

4) If only do ∼ 700 init steps then Cube Attack is 268 steps.

5) Seems to have long period but hard to know:

1. Nonlin makes it hard to predict. Good for practical A and B.

2. Nonlin makes it hard to analyze. Bad for theorists A and B.

6) Trivium is also the name of a rock band!

7) Two Papers on Trivium on course website

Facts About Trivium

1) Has been build in hardware with 3488 logic gates. Small! Fast!

2) So far has not been broken. That we know of!

3) Naive method is 280 steps. Guess all keys.

4) If only do ∼ 700 init steps then Cube Attack is 268 steps.

5) Seems to have long period but hard to know:

1. Nonlin makes it hard to predict. Good for practical A and B.

2. Nonlin makes it hard to analyze. Bad for theorists A and B.

6) Trivium is also the name of a rock band!

7) Two Papers on Trivium on course website

Facts About Trivium

1) Has been build in hardware with 3488 logic gates. Small! Fast!

2) So far has not been broken. That we know of!

3) Naive method is 280 steps. Guess all keys.

4) If only do ∼ 700 init steps then Cube Attack is 268 steps.

5) Seems to have long period but hard to know:

1. Nonlin makes it hard to predict. Good for practical A and B.

2. Nonlin makes it hard to analyze. Bad for theorists A and B.

6) Trivium is also the name of a rock band!

7) Two Papers on Trivium on course website

Facts About Trivium

1) Has been build in hardware with 3488 logic gates. Small! Fast!

2) So far has not been broken. That we know of!

3) Naive method is 280 steps. Guess all keys.

4) If only do ∼ 700 init steps then Cube Attack is 268 steps.

5) Seems to have long period but hard to know:

1. Nonlin makes it hard to predict. Good for practical A and B.

2. Nonlin makes it hard to analyze. Bad for theorists A and B.

6) Trivium is also the name of a rock band!

7) Two Papers on Trivium on course website

Facts About Trivium

1) Has been build in hardware with 3488 logic gates. Small! Fast!

2) So far has not been broken. That we know of!

3) Naive method is 280 steps. Guess all keys.

4) If only do ∼ 700 init steps then Cube Attack is 268 steps.

5) Seems to have long period but hard to know:

1. Nonlin makes it hard to predict. Good for practical A and B.

2. Nonlin makes it hard to analyze. Bad for theorists A and B.

6) Trivium is also the name of a rock band!

7) Two Papers on Trivium on course website

Facts About Trivium

1) Has been build in hardware with 3488 logic gates. Small! Fast!

2) So far has not been broken. That we know of!

3) Naive method is 280 steps. Guess all keys.

4) If only do ∼ 700 init steps then Cube Attack is 268 steps.

5) Seems to have long period but hard to know:

1. Nonlin makes it hard to predict. Good for practical A and B.

2. Nonlin makes it hard to analyze. Bad for theorists A and B.

6) Trivium is also the name of a rock band!

7) Two Papers on Trivium on course website

Facts About Trivium

1) Has been build in hardware with 3488 logic gates. Small! Fast!

2) So far has not been broken. That we know of!

3) Naive method is 280 steps. Guess all keys.

4) If only do ∼ 700 init steps then Cube Attack is 268 steps.

5) Seems to have long period but hard to know:

1. Nonlin makes it hard to predict. Good for practical A and B.

2. Nonlin makes it hard to analyze. Bad for theorists A and B.

6) Trivium is also the name of a rock band!

7) Two Papers on Trivium on course website

Why the Name Trivium?

We quote the paper

The word trivium is Latin for the three-fold way , and
refers to the three-fold symmetry of TRIVIUM. The adjec-
tive trivial which was derived from it, has a connotation
of simplicity, which is also one of the characteristics of
TRIVIUM.

Why the Name Trivium?

We quote the paper
The word trivium is Latin for the three-fold way , and
refers to the three-fold symmetry of TRIVIUM. The adjec-
tive trivial which was derived from it, has a connotation
of simplicity, which is also one of the characteristics of
TRIVIUM.

Why the Name Trivium?

We quote the paper
The word trivium is Latin for the three-fold way , and
refers to the three-fold symmetry of TRIVIUM. The adjec-
tive trivial which was derived from it, has a connotation
of simplicity, which is also one of the characteristics of
TRIVIUM.

My Blog Post Asking if Trivium is used

This Fall I am teaching the senior course in Crypto at UMCP. Its a
nice change of pace for me since REAL people REALLY use this
stuff!

There is one topic that looks really practical but I could not find
on the web if it is or not. A Secure Stream Cipher is (informally) a
way to, given a seed and optionally an Init Vector (IV), generate
bits that look random. Trivium seems to be one such. According
to the Trivium wiki

THEN I HAD STUFF ABOUT TRIVIUM
Is Trivium used?
If so then by whom and for what (for the psuedo 1-time pad?) ?
If not then why not?

My Blog Post Asking if Trivium is used

This Fall I am teaching the senior course in Crypto at UMCP. Its a
nice change of pace for me since REAL people REALLY use this
stuff!

There is one topic that looks really practical but I could not find
on the web if it is or not. A Secure Stream Cipher is (informally) a
way to, given a seed and optionally an Init Vector (IV), generate
bits that look random. Trivium seems to be one such. According
to the Trivium wiki

THEN I HAD STUFF ABOUT TRIVIUM

Is Trivium used?
If so then by whom and for what (for the psuedo 1-time pad?) ?
If not then why not?

My Blog Post Asking if Trivium is used

This Fall I am teaching the senior course in Crypto at UMCP. Its a
nice change of pace for me since REAL people REALLY use this
stuff!

There is one topic that looks really practical but I could not find
on the web if it is or not. A Secure Stream Cipher is (informally) a
way to, given a seed and optionally an Init Vector (IV), generate
bits that look random. Trivium seems to be one such. According
to the Trivium wiki

THEN I HAD STUFF ABOUT TRIVIUM
Is Trivium used?

If so then by whom and for what (for the psuedo 1-time pad?) ?
If not then why not?

My Blog Post Asking if Trivium is used

This Fall I am teaching the senior course in Crypto at UMCP. Its a
nice change of pace for me since REAL people REALLY use this
stuff!

There is one topic that looks really practical but I could not find
on the web if it is or not. A Secure Stream Cipher is (informally) a
way to, given a seed and optionally an Init Vector (IV), generate
bits that look random. Trivium seems to be one such. According
to the Trivium wiki

THEN I HAD STUFF ABOUT TRIVIUM
Is Trivium used?
If so then by whom and for what (for the psuedo 1-time pad?) ?

If not then why not?

My Blog Post Asking if Trivium is used

This Fall I am teaching the senior course in Crypto at UMCP. Its a
nice change of pace for me since REAL people REALLY use this
stuff!

There is one topic that looks really practical but I could not find
on the web if it is or not. A Secure Stream Cipher is (informally) a
way to, given a seed and optionally an Init Vector (IV), generate
bits that look random. Trivium seems to be one such. According
to the Trivium wiki

THEN I HAD STUFF ABOUT TRIVIUM
Is Trivium used?
If so then by whom and for what (for the psuedo 1-time pad?) ?
If not then why not?

First Comment on Blog

Great post on Trivial! Hardware Cube Attack. Click HERE to buy

Trivial Pursuit Deluxe edition!

I blocked the comment as it was clearly spam, and not very good
spam at that.

Too bad. They called my post Great .

First Comment on Blog

Great post on Trivial! Hardware Cube Attack. Click HERE to buy

Trivial Pursuit Deluxe edition!

I blocked the comment as it was clearly spam, and not very good
spam at that.

Too bad. They called my post Great .

First Comment on Blog

Great post on Trivial! Hardware Cube Attack. Click HERE to buy

Trivial Pursuit Deluxe edition!

I blocked the comment as it was clearly spam, and not very good
spam at that.

Too bad. They called my post Great .

Second Comment on Blog

An 80-bit key/IV is not secure enough for many modern uses (like
encryption on the Internet), though I am not sure what exactly
Trivium and other ”lightweight ciphers” consider a threat. Their
primary intended deployment scenarios are IoT and hardware
tokens like auto door locks. For that purpose it is secure.

Salsa20 Stream Cipher

Notation: ⊕ is the usual bit-wise XOR. + is mod 232 addition.
<<< will mean you circular shift bits to the left.

Basic unit: word which is 32 bits.
Basic Operation: On input four words (a, b, c , d), QR(a, b, c , d)
is

b := (b ⊕ (b + d)) <<< 7

c := (c ⊕ (a + b)) <<< 9

d := (d ⊕ (b + c)) <<< 13

a := (a⊕ (c + d)) <<< 18

Note: ⊕ and + and <<< are fast! So QR(a, b, c , d) is fast! .

Note: Scrambles up a, b, c , d a lot! .

Salsa20 Stream Cipher

Notation: ⊕ is the usual bit-wise XOR. + is mod 232 addition.
<<< will mean you circular shift bits to the left.
Basic unit: word which is 32 bits.

Basic Operation: On input four words (a, b, c , d), QR(a, b, c , d)
is

b := (b ⊕ (b + d)) <<< 7

c := (c ⊕ (a + b)) <<< 9

d := (d ⊕ (b + c)) <<< 13

a := (a⊕ (c + d)) <<< 18

Note: ⊕ and + and <<< are fast! So QR(a, b, c , d) is fast! .

Note: Scrambles up a, b, c , d a lot! .

Salsa20 Stream Cipher

Notation: ⊕ is the usual bit-wise XOR. + is mod 232 addition.
<<< will mean you circular shift bits to the left.
Basic unit: word which is 32 bits.
Basic Operation: On input four words (a, b, c , d), QR(a, b, c , d)
is

b := (b ⊕ (b + d)) <<< 7

c := (c ⊕ (a + b)) <<< 9

d := (d ⊕ (b + c)) <<< 13

a := (a⊕ (c + d)) <<< 18

Note: ⊕ and + and <<< are fast! So QR(a, b, c , d) is fast! .

Note: Scrambles up a, b, c , d a lot! .

Salsa20 Stream Cipher

Notation: ⊕ is the usual bit-wise XOR. + is mod 232 addition.
<<< will mean you circular shift bits to the left.
Basic unit: word which is 32 bits.
Basic Operation: On input four words (a, b, c , d), QR(a, b, c , d)
is

b := (b ⊕ (b + d)) <<< 7

c := (c ⊕ (a + b)) <<< 9

d := (d ⊕ (b + c)) <<< 13

a := (a⊕ (c + d)) <<< 18

Note: ⊕ and + and <<< are fast! So QR(a, b, c , d) is fast! .

Note: Scrambles up a, b, c , d a lot! .

Salsa20 Stream Cipher

Notation: ⊕ is the usual bit-wise XOR. + is mod 232 addition.
<<< will mean you circular shift bits to the left.
Basic unit: word which is 32 bits.
Basic Operation: On input four words (a, b, c , d), QR(a, b, c , d)
is

b := (b ⊕ (b + d)) <<< 7

c := (c ⊕ (a + b)) <<< 9

d := (d ⊕ (b + c)) <<< 13

a := (a⊕ (c + d)) <<< 18

Note: ⊕ and + and <<< are fast! So QR(a, b, c , d) is fast! .

Note: Scrambles up a, b, c , d a lot! .

Salsa20 Stream Cipher

Notation: ⊕ is the usual bit-wise XOR. + is mod 232 addition.
<<< will mean you circular shift bits to the left.
Basic unit: word which is 32 bits.
Basic Operation: On input four words (a, b, c , d), QR(a, b, c , d)
is

b := (b ⊕ (b + d)) <<< 7

c := (c ⊕ (a + b)) <<< 9

d := (d ⊕ (b + c)) <<< 13

a := (a⊕ (c + d)) <<< 18

Note: ⊕ and + and <<< are fast! So QR(a, b, c , d) is fast! .

Note: Scrambles up a, b, c , d a lot! .

Salsa20 Stream Cipher

Notation: ⊕ is the usual bit-wise XOR. + is mod 232 addition.
<<< will mean you circular shift bits to the left.
Basic unit: word which is 32 bits.
Basic Operation: On input four words (a, b, c , d), QR(a, b, c , d)
is

b := (b ⊕ (b + d)) <<< 7

c := (c ⊕ (a + b)) <<< 9

d := (d ⊕ (b + c)) <<< 13

a := (a⊕ (c + d)) <<< 18

Note: ⊕ and + and <<< are fast! So QR(a, b, c , d) is fast! .

Note: Scrambles up a, b, c , d a lot! .

Salsa20 Stream Cipher

Notation: ⊕ is the usual bit-wise XOR. + is mod 232 addition.
<<< will mean you circular shift bits to the left.
Basic unit: word which is 32 bits.
Basic Operation: On input four words (a, b, c , d), QR(a, b, c , d)
is

b := (b ⊕ (b + d)) <<< 7

c := (c ⊕ (a + b)) <<< 9

d := (d ⊕ (b + c)) <<< 13

a := (a⊕ (c + d)) <<< 18

Note: ⊕ and + and <<< are fast! So QR(a, b, c , d) is fast! .

Note: Scrambles up a, b, c , d a lot! .

Salsa20 Stream Cipher

Notation: ⊕ is the usual bit-wise XOR. + is mod 232 addition.
<<< will mean you circular shift bits to the left.
Basic unit: word which is 32 bits.
Basic Operation: On input four words (a, b, c , d), QR(a, b, c , d)
is

b := (b ⊕ (b + d)) <<< 7

c := (c ⊕ (a + b)) <<< 9

d := (d ⊕ (b + c)) <<< 13

a := (a⊕ (c + d)) <<< 18

Note: ⊕ and + and <<< are fast! So QR(a, b, c , d) is fast! .

Note: Scrambles up a, b, c , d a lot! .

Salsa20 Stream Cipher-Init

Initially have a 4× 4 array of bytes (8 bits).

Const Key Key Key

Key Const nonce nonce

Pos Pos Const Key

Key Key Key Const
View as 8 words by reading up-down, left-right

Const: Constants that are standardized. Public

Key: Known only to Alice and Bob, used for long time. Private.

Pos: These will start at 0 and increment every time used. Public.

Salsa20 Stream Cipher-Init

Initially have a 4× 4 array of bytes (8 bits).

Const Key Key Key

Key Const nonce nonce

Pos Pos Const Key

Key Key Key Const

View as 8 words by reading up-down, left-right

Const: Constants that are standardized. Public

Key: Known only to Alice and Bob, used for long time. Private.

Pos: These will start at 0 and increment every time used. Public.

Salsa20 Stream Cipher-Init

Initially have a 4× 4 array of bytes (8 bits).

Const Key Key Key

Key Const nonce nonce

Pos Pos Const Key

Key Key Key Const
View as 8 words by reading up-down, left-right

Const: Constants that are standardized. Public

Key: Known only to Alice and Bob, used for long time. Private.

Pos: These will start at 0 and increment every time used. Public.

Salsa20 Stream Cipher-Init

Initially have a 4× 4 array of bytes (8 bits).

Const Key Key Key

Key Const nonce nonce

Pos Pos Const Key

Key Key Key Const
View as 8 words by reading up-down, left-right

Const: Constants that are standardized. Public

Key: Known only to Alice and Bob, used for long time. Private.

Pos: These will start at 0 and increment every time used. Public.

Salsa20 Stream Cipher-Init

Initially have a 4× 4 array of bytes (8 bits).

Const Key Key Key

Key Const nonce nonce

Pos Pos Const Key

Key Key Key Const
View as 8 words by reading up-down, left-right

Const: Constants that are standardized. Public

Key: Known only to Alice and Bob, used for long time. Private.

Pos: These will start at 0 and increment every time used. Public.

Salsa20 Stream Cipher-Init

Initially have a 4× 4 array of bytes (8 bits).

Const Key Key Key

Key Const nonce nonce

Pos Pos Const Key

Key Key Key Const
View as 8 words by reading up-down, left-right

Const: Constants that are standardized. Public

Key: Known only to Alice and Bob, used for long time. Private.

Pos: These will start at 0 and increment every time used. Public.

Salsa20 Stream Cipher-Init

Initially have a 4× 4 array of bytes (8 bits).

Const Key Key Key

Key Const nonce nonce

Pos Pos Const Key

Key Key Key Const
View as 8 words by reading up-down, left-right

Const: Constants that are standardized. Public

Key: Known only to Alice and Bob, used for long time. Private.

Pos: These will start at 0 and increment every time used. Public.

Salsa20 Stream Cipher-Init and other Issues

Initialize for R Rounds:
Even round do QR(a, b, c , d) on the rows,

Every odd round do QR(a, b, c , d) on the columns.

How Many Rounds: Salsa20 sets it to 20. Duh.

Salsa20 Stream Cipher-Init and other Issues

Initialize for R Rounds:
Even round do QR(a, b, c , d) on the rows,
Every odd round do QR(a, b, c , d) on the columns.

How Many Rounds: Salsa20 sets it to 20. Duh.

Salsa20 Stream Cipher-Init and other Issues

Initialize for R Rounds:
Even round do QR(a, b, c , d) on the rows,
Every odd round do QR(a, b, c , d) on the columns.

How Many Rounds: Salsa20 sets it to 20. Duh.

Salsa20 Stream Cipher-Init and other Issues

Initialize for R Rounds:
Even round do QR(a, b, c , d) on the rows,
Every odd round do QR(a, b, c , d) on the columns.

How Many Rounds: Salsa20 sets it to 20. Duh.

Salsa20 Stream Cipher-GetBits

We now have a well mixed 4× 4 array of bytes (8 bits).

Could that just be our random bits? Discuss

No! All steps are reversible. From that array one can work
backwards and find the Key!
Just one more step:

Let the 4× 4 array be x [0], . . . , x [15].

Let the 4× 4 initial array be in[0], . . . , in[15].

For i = 0 to 15 output x [i] + in[i].

Security: Salsa20 was introduced in 2005 and has not been
broken. See Wikipedia page for partial attacks (e.g., Salsa8).

Salsa20 Stream Cipher-GetBits

We now have a well mixed 4× 4 array of bytes (8 bits).
Could that just be our random bits? Discuss

No! All steps are reversible. From that array one can work
backwards and find the Key!
Just one more step:

Let the 4× 4 array be x [0], . . . , x [15].

Let the 4× 4 initial array be in[0], . . . , in[15].

For i = 0 to 15 output x [i] + in[i].

Security: Salsa20 was introduced in 2005 and has not been
broken. See Wikipedia page for partial attacks (e.g., Salsa8).

Salsa20 Stream Cipher-GetBits

We now have a well mixed 4× 4 array of bytes (8 bits).
Could that just be our random bits? Discuss

No! All steps are reversible. From that array one can work
backwards and find the Key!

Just one more step:

Let the 4× 4 array be x [0], . . . , x [15].

Let the 4× 4 initial array be in[0], . . . , in[15].

For i = 0 to 15 output x [i] + in[i].

Security: Salsa20 was introduced in 2005 and has not been
broken. See Wikipedia page for partial attacks (e.g., Salsa8).

Salsa20 Stream Cipher-GetBits

We now have a well mixed 4× 4 array of bytes (8 bits).
Could that just be our random bits? Discuss

No! All steps are reversible. From that array one can work
backwards and find the Key!
Just one more step:

Let the 4× 4 array be x [0], . . . , x [15].

Let the 4× 4 initial array be in[0], . . . , in[15].

For i = 0 to 15 output x [i] + in[i].

Security: Salsa20 was introduced in 2005 and has not been
broken. See Wikipedia page for partial attacks (e.g., Salsa8).

Salsa20 Stream Cipher-GetBits

We now have a well mixed 4× 4 array of bytes (8 bits).
Could that just be our random bits? Discuss

No! All steps are reversible. From that array one can work
backwards and find the Key!
Just one more step:

Let the 4× 4 array be x [0], . . . , x [15].

Let the 4× 4 initial array be in[0], . . . , in[15].

For i = 0 to 15 output x [i] + in[i].

Security: Salsa20 was introduced in 2005 and has not been
broken. See Wikipedia page for partial attacks (e.g., Salsa8).

Salsa20 Stream Cipher-GetBits

We now have a well mixed 4× 4 array of bytes (8 bits).
Could that just be our random bits? Discuss

No! All steps are reversible. From that array one can work
backwards and find the Key!
Just one more step:

Let the 4× 4 array be x [0], . . . , x [15].

Let the 4× 4 initial array be in[0], . . . , in[15].

For i = 0 to 15 output x [i] + in[i].

Security: Salsa20 was introduced in 2005 and has not been
broken. See Wikipedia page for partial attacks (e.g., Salsa8).

Salsa20 Stream Cipher-GetBits

We now have a well mixed 4× 4 array of bytes (8 bits).
Could that just be our random bits? Discuss

No! All steps are reversible. From that array one can work
backwards and find the Key!
Just one more step:

Let the 4× 4 array be x [0], . . . , x [15].

Let the 4× 4 initial array be in[0], . . . , in[15].

For i = 0 to 15 output x [i] + in[i].

Security: Salsa20 was introduced in 2005 and has not been
broken. See Wikipedia page for partial attacks (e.g., Salsa8).

Salsa20 Stream Cipher-GetBits

We now have a well mixed 4× 4 array of bytes (8 bits).
Could that just be our random bits? Discuss

No! All steps are reversible. From that array one can work
backwards and find the Key!
Just one more step:

Let the 4× 4 array be x [0], . . . , x [15].

Let the 4× 4 initial array be in[0], . . . , in[15].

For i = 0 to 15 output x [i] + in[i].

Security: Salsa20 was introduced in 2005 and has not been
broken. See Wikipedia page for partial attacks (e.g., Salsa8).

How to Design a Good Stream Cipher?

SC’s are designed, used, and not broken

until they are.

Frustrating: Can prove a Stream Cipher is BAD but not GOOD.

Jon Katz:
Absent proofs, the only ways to claim that a stream cipher
is good are to (1) follow known design principles and (2)
make sure known attacks do not work. It helps lend cred-
ibility if they are designed by people who know what they
are doing, not just throwing random stuff together, but I
realize that’s not very scientific.
Trivium, in particular, always struck me as so simple that
it cannot possibly be secure. And yet, there are no attacks.
But I don’t think it has been subject to the same scrutiny
as AES, or even RC4. ChaCha is actually used, so people
care about its security. Hence its security seems solid. For
now.

How to Design a Good Stream Cipher?

SC’s are designed, used, and not broken until they are.

Frustrating: Can prove a Stream Cipher is BAD but not GOOD.

Jon Katz:
Absent proofs, the only ways to claim that a stream cipher
is good are to (1) follow known design principles and (2)
make sure known attacks do not work. It helps lend cred-
ibility if they are designed by people who know what they
are doing, not just throwing random stuff together, but I
realize that’s not very scientific.
Trivium, in particular, always struck me as so simple that
it cannot possibly be secure. And yet, there are no attacks.
But I don’t think it has been subject to the same scrutiny
as AES, or even RC4. ChaCha is actually used, so people
care about its security. Hence its security seems solid. For
now.

How to Design a Good Stream Cipher?

SC’s are designed, used, and not broken until they are.

Frustrating: Can prove a Stream Cipher is BAD but not GOOD.

Jon Katz:
Absent proofs, the only ways to claim that a stream cipher
is good are to (1) follow known design principles and (2)
make sure known attacks do not work. It helps lend cred-
ibility if they are designed by people who know what they
are doing, not just throwing random stuff together, but I
realize that’s not very scientific.
Trivium, in particular, always struck me as so simple that
it cannot possibly be secure. And yet, there are no attacks.
But I don’t think it has been subject to the same scrutiny
as AES, or even RC4. ChaCha is actually used, so people
care about its security. Hence its security seems solid. For
now.

How to Design a Good Stream Cipher?

SC’s are designed, used, and not broken until they are.

Frustrating: Can prove a Stream Cipher is BAD but not GOOD.

Jon Katz:
Absent proofs, the only ways to claim that a stream cipher
is good are to (1) follow known design principles and (2)
make sure known attacks do not work. It helps lend cred-
ibility if they are designed by people who know what they
are doing, not just throwing random stuff together, but I
realize that’s not very scientific.

Trivium, in particular, always struck me as so simple that
it cannot possibly be secure. And yet, there are no attacks.
But I don’t think it has been subject to the same scrutiny
as AES, or even RC4. ChaCha is actually used, so people
care about its security. Hence its security seems solid. For
now.

How to Design a Good Stream Cipher?

SC’s are designed, used, and not broken until they are.

Frustrating: Can prove a Stream Cipher is BAD but not GOOD.

Jon Katz:
Absent proofs, the only ways to claim that a stream cipher
is good are to (1) follow known design principles and (2)
make sure known attacks do not work. It helps lend cred-
ibility if they are designed by people who know what they
are doing, not just throwing random stuff together, but I
realize that’s not very scientific.
Trivium, in particular, always struck me as so simple that
it cannot possibly be secure. And yet, there are no attacks.
But I don’t think it has been subject to the same scrutiny
as AES, or even RC4. ChaCha is actually used, so people
care about its security. Hence its security seems solid. For
now.

Good Science and Bad Science

Karl Popper (1930’s): A Scientific Theory should be falsifiable
. Propose experiments that could show it is not true. The longer
the theory survives scrutiny the more likely it is to be true.

1) Classical Mechanics: Good Science. Many experiments
proposed and carried out. Confirmed it until had problems with
fast speeds and small particles.

2) Quantum Mechanics: Good Science. Many experiments
proposed and carried out. So far has not been falsified. Yet.

3) Libertarianism Theory: Bad Science:
Everything bad is the governments fault w/o looking at data.
Global warming require government action, hence its false.

4) Communism: Bad Science:
Wages go down – Capitalists exploiting the worker.
Wages to up – Capitalists placating the worker to avoid revolution.

Good Science and Bad Science

Karl Popper (1930’s): A Scientific Theory should be falsifiable
. Propose experiments that could show it is not true. The longer
the theory survives scrutiny the more likely it is to be true.
1) Classical Mechanics: Good Science. Many experiments
proposed and carried out. Confirmed it until had problems with
fast speeds and small particles.

2) Quantum Mechanics: Good Science. Many experiments
proposed and carried out. So far has not been falsified. Yet.

3) Libertarianism Theory: Bad Science:
Everything bad is the governments fault w/o looking at data.
Global warming require government action, hence its false.

4) Communism: Bad Science:
Wages go down – Capitalists exploiting the worker.
Wages to up – Capitalists placating the worker to avoid revolution.

Good Science and Bad Science

Karl Popper (1930’s): A Scientific Theory should be falsifiable
. Propose experiments that could show it is not true. The longer
the theory survives scrutiny the more likely it is to be true.
1) Classical Mechanics: Good Science. Many experiments
proposed and carried out. Confirmed it until had problems with
fast speeds and small particles.

2) Quantum Mechanics: Good Science. Many experiments
proposed and carried out. So far has not been falsified. Yet.

3) Libertarianism Theory: Bad Science:
Everything bad is the governments fault w/o looking at data.
Global warming require government action, hence its false.

4) Communism: Bad Science:
Wages go down – Capitalists exploiting the worker.
Wages to up – Capitalists placating the worker to avoid revolution.

Good Science and Bad Science

Karl Popper (1930’s): A Scientific Theory should be falsifiable
. Propose experiments that could show it is not true. The longer
the theory survives scrutiny the more likely it is to be true.
1) Classical Mechanics: Good Science. Many experiments
proposed and carried out. Confirmed it until had problems with
fast speeds and small particles.

2) Quantum Mechanics: Good Science. Many experiments
proposed and carried out. So far has not been falsified. Yet.

3) Libertarianism Theory: Bad Science:
Everything bad is the governments fault w/o looking at data.
Global warming require government action, hence its false.

4) Communism: Bad Science:
Wages go down – Capitalists exploiting the worker.
Wages to up – Capitalists placating the worker to avoid revolution.

Good Science and Bad Science

Karl Popper (1930’s): A Scientific Theory should be falsifiable
. Propose experiments that could show it is not true. The longer
the theory survives scrutiny the more likely it is to be true.
1) Classical Mechanics: Good Science. Many experiments
proposed and carried out. Confirmed it until had problems with
fast speeds and small particles.

2) Quantum Mechanics: Good Science. Many experiments
proposed and carried out. So far has not been falsified. Yet.

3) Libertarianism Theory: Bad Science:
Everything bad is the governments fault w/o looking at data.
Global warming require government action, hence its false.

4) Communism: Bad Science:
Wages go down – Capitalists exploiting the worker.
Wages to up – Capitalists placating the worker to avoid revolution.

Good Crypto and Bad Crypto

A Scientific Theory should be falsifiable . Propose experiments
that could show it is not true. The longer the theory survives
scrutiny the more likely it is to be true. For now.

An encryption system should be falsifiable . Propose ways to
break it. The longer it stays unbroken the more likely it is to be
unbreakable. For now. Caveat: let many people try! Kerchoffs’s
law very useful here!

Speculation: Does the NSA let outsiders try to break their
systems? If not then might not be Good Crypto. I really do not
know.
I tried asking them but they wouldn’t tell me!

Good Crypto and Bad Crypto

A Scientific Theory should be falsifiable . Propose experiments
that could show it is not true. The longer the theory survives
scrutiny the more likely it is to be true. For now.

An encryption system should be falsifiable . Propose ways to
break it. The longer it stays unbroken the more likely it is to be
unbreakable. For now. Caveat: let many people try! Kerchoffs’s
law very useful here!

Speculation: Does the NSA let outsiders try to break their
systems? If not then might not be Good Crypto. I really do not
know.
I tried asking them but they wouldn’t tell me!

Good Crypto and Bad Crypto

A Scientific Theory should be falsifiable . Propose experiments
that could show it is not true. The longer the theory survives
scrutiny the more likely it is to be true. For now.

An encryption system should be falsifiable . Propose ways to
break it. The longer it stays unbroken the more likely it is to be
unbreakable. For now. Caveat: let many people try! Kerchoffs’s
law very useful here!

Speculation: Does the NSA let outsiders try to break their
systems? If not then might not be Good Crypto. I really do not
know.

I tried asking them but they wouldn’t tell me!

Good Crypto and Bad Crypto

A Scientific Theory should be falsifiable . Propose experiments
that could show it is not true. The longer the theory survives
scrutiny the more likely it is to be true. For now.

An encryption system should be falsifiable . Propose ways to
break it. The longer it stays unbroken the more likely it is to be
unbreakable. For now. Caveat: let many people try! Kerchoffs’s
law very useful here!

Speculation: Does the NSA let outsiders try to break their
systems? If not then might not be Good Crypto. I really do not
know.
I tried asking them but they wouldn’t tell me!

