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ABSTRACT: In the 1870’s, W.S. Jevons anticipated a key feature of the RSA algorithm
for public key cryptography, namely that multiplication of integers is easy, but finding
the prime factors of the product is hard. He presented a specific ten-digit number whose
prime factorization, he believed, would forever remain unknown except to himself. In
this paper, it is shown that Jevons’ number could have been factored relatively easily,
even in his own time.
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In his book The Principles of Science: A Treatise on Logic and Scientific
Method, written and published in the 1870’s, William S. Jevons [1] observed that
there are many situations where the “direct” operation is relatively easy, but
the “inverse” operation is significantly more difficult. One example mentioned
briefly is that enciphering (encryption) is easy while deciphering (decryption) is
hard. In the same section of Chapter 7: Induction titled “Induction an Inverse
Operation”, much more attention is devoted to the principle that multiplication
of integers is easy, but finding the (prime) factors of the product is much harder.
Thus, Jevons anticipated a key feature of the RSA algorithm for public key
cryptography (2], though he certainly did not invent the concept of public key
cryptography. As an example of the multiplication vs factorization principle,
Jevons wrote

“Can the reader say what two numbers multiplied together will produce
the number 8,616,460,7997 I think it is unlikely that anyone but myself
will ever know.”

With a 10-place hand-held calculator, using only one memory location, and
only the operations of subtraction, square, and square-root, it took me less than
six minutes to factor Jevons’ number J. My procedure was as follows:

Jevons wrote that the only method known (to him) for factoring a number N
is to try dividing N by every prime up to VN. However, since J is odd and we
are told that it has (at least) two factors, we can write J = a2—b? = (a+b)(a—b).

243



Downloaded by [University of Windsor] at 15:53 17 November 2014

CRYPTOLOGIA July 1996 Volume XX  Number 3

We also strongly suspect, from Jevons’ comments, that J is the product of only
two primes, and that these are not too far apart in magnitude.

We set ag = |V/J| = 92824, and let a; = ag + k for k = 1,2,3,.... We look
successively at a? — J, a3—J, a3 —J, ... to see if any of these is a perfect square.
[J is stored in memory, the a)’s are entered successively (using my memory), a; is
squared, J (from computer memory) is subtracted, the square-root button is hit,
and unless we see an integer of only a few digits (which means a? — J = b%, and
we have J = (ai + bx)(ar — b)), we proceed to ar41.] It was easy to do at least
ten values of k per minute, with success at k = 56. Specifically, asg = 92880, and
aZs — J = (3199)% = b%;. Thus J = (ase + bss)(ase — bss). That is, 8,616,460,799
= 96,079 x 89,681.

This success led me to consider how easy or difficult it would have been for
someone in the 1870’s, using only hand calculation, to have succeeded in finding
this factorization. I concluded that at most a few hours, and quite possibly less
than an hour, would have been sufficient!

If we consider the equation a? — J = b mod 100 (that is, we pay attention
to only the last two digits of each number), since J ends in ---0799, —J =
+1(mod100), so a? and bZ must end in consecutive two-digit numbers. The last
two digits of n? are limited to values seen with n on the range of 0 to 25, and the
only pairs of consecutive 2-digit endings are (00,01) and (24,25). Here, n? ends in
00 if and only if n ends in 0, while n? ends in 24 if and only if n = 254 7(mod 50).
Thus, the only values of a; which need be tried (to see if a? — J is a perfect square)
are those ending in 0, in 18, in 32, in 68, or in 82. Above ay = I_\/jj = 92824,
we would need to look at only 92830, 92832, 92840, 92850, 92860, 92868, 92870,
and 92880, with success on the eighth try (92880). However, even this is more
hand computation than is actually necessary. Since —J = 201(mod1000) it is
easily seen that when a; ends in 0, the “tens digit” must be even in order for
a? — J = b(mod1000) to be possible. (This eliminates 92830, 92850, and 92870
as candidates.) Also, when b? ends in 25, the digit preceeding “25” can only be
0, 2, or 6. But 928322 — J = 224 + 201 = 425(mod1000), so 92832 cannot be
a solution for a. The only remaining candidates for a; less than the “winning
number” (92880) are now 92840, 92860, and 92868.

We can eliminate 92868 quite easily mod10* since 928682 — J = 4625(mod
10%), but only numbers of the form 50n %25, n any positive integer, have squares
ending in 625, and these end in either 0625 or 5625.

To test surviving values of a;, such as 92840, 92860 and 92880, it is probably
simplest, at this point, to calculate a? — J by hand, and use the “square root
algorithm” (which was taught in the schools in the 1870’s) to see if this number
is a perfect square. We find that /928402 — J = /2804801 = 1674.75% and
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V928602 — J = /6518801 = 2553.19% are not integers, but /928802 —J =
V10233601 = 3199 is an integer. This method factors Jevons’ number quickly
because he picked the two prime factors of J relatively close together (they are in
the approximate ratio of 15 to 14). There is a lesson in this for users of the RSA
algorithm as well. The two primes p and ¢ being used as factors of m should be
sufficiently far apart that the attack m = a® — b? is as difficult computationally
as other factorization methods which might be attempted. The theorem that
every odd composite number m can be represented as m = a? — b%, and that
this can be used as a factorization technique, goes back to Fermat [3], [4] in
1643, and a refinement of Fermat’s method involving continued fractions was
used by D. N. Lehmer [5] in 1903 to factor Jevons’ number. Lehmer wrote: “I
think that the number has been resolved before, but I do not know by whom.”
The post-RSA rediscovery of Jevons’ challenge and Lehmer’s response appears
to have been by Jézsef Dénes of Budapest, Hungary.
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