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Problem 2

COL: () = w. COL': (§)) — [16] defined in class.
Assume there is a COL/-homog set such that:

(VXl < Xp < X3 < X4 € H)[COL(Xg,X3) = COL(Xl,X4)].

Show that this set, or an infinite subset of it, is COL-homog.
SOL H:{al < axy < }
We take Hx = {ap, a3,--- }. We show Hx is COL-homog.

Let 2 <ip <hpand 2 <j; < jo. Let k = max{ir, jo} + 1.

From COL’(a1, aj,, a,, ak) we know COL(ay, ax) = COL(a;, a,)-
From COL/(a1, aj,, aj,, ax) we know COL(ay, ax) = COL(aj,, aj, ).
Hence COL(a;,, aj,) = COL(aj,, aj,)-
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Problem 2 (misc)

Could we have left a; in?
We have:

(Vx1 < x2 < x3 < x4 € H)[COL(x2, x3) = COL(x1, xa)].

The following coloring has that property but is NOT homog.

COL(al,az) =R
(V) = 3)[COL(a, 3)) = B]
(Vi.j > 2)[COL(a;, 3)) = B]

Can check it satisfies condition.
Easily seen to not be homog.
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Problem 3

|X|=n, COL: ()2<) — [w]. For all x € X and colors c,
deg.(x) < 1. If M is MAXIMAL rainb then |M| > Q(f(n)).
SOL Assume, BWOC, |M| < f(n), so [X — M| > n— f(n).
Map X — M into (%) x M:

x € X — M maps to ({p, g}, r) with COL(x, r) = COL(p, q).
From deg.(x) < 1 get Map is 1-1.

There is a 1-1 map from X — M to M x (/\2/1)
Finish on next slide.
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3 3
M x M <M<f(n).
2/ 2 - 2

Recall that |M| < f(n) so | X — M| > n— f(n).
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Problem 3 (cont)

There is a 1-1- map from X — M to M x (Az/’) So

M M _ f(n)°
- < < —Z .
|X I\/I|_M><<2>‘_ )
Recall that |M| < f(n) so | X — M| > n— f(n).
M M|3  f(n)3
n—f(n)§|X—M|§‘Mx<2>‘§’2’§ (g).

We seek a contradiction. f(n) = n'/3 will work.
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Problem 4

Theorem Let X be an infinite set of points in the plane. Then
(Y C X), |Y| = o0, so that all of the distances between points in
Y are different.

Proof Order the points arbitrarily.

X ={p1,p2,...}

Let COL: (%) — R be defined by COL(i, ) = |p; — pj]-

The number of reals in the image of the colorings is countable so
we can apply Can Ramsey. When we apply it we find that there is
aset HC N, |H| = oo that is either homog, max-homog,
min-homog, or rainb. We show H rainb, so all distances different.

Three cases: homog, min-homog, max-homog.
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Problem 4, H Homog

H is homog.

Then there are an infinite number of points that are all the same
distance apart.

Exercise: cannot have 4 points in the plane with all distances the
same.
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Problem 4, H Min-Homog

(Vi,j = 2)[lpr = pil = |p1 — pjl]-
So po, p3, ... are on a circle centered at ps.

(Vi,j > 3)[lp2 — pil = lp2 — pjll.
So p3, ps4,... are on a circle centered at p».

Combine: ps3, pa, ps are all on both a circle centered at p; and a
circle centered at p».

But two circles with diff centers intersect in at most 2 points.
Contradiction.
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Problem 4, H Max-Homog

(Vi,j < 8)[|pa — pil = lpa — pjl]-
So p1, p2, p3 are on a circle centered at py.

(Vi,j <Mllps — pil = |ps — pjl]-
So p1, p2, p3, p4 are on a circle centered at ps.

So p1, p2, p3 are on a circle centered at ps and ps.
But two circles intersect in at most 2 points. Contradiction

End of Proof of Theorem



