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Problem 2

COL :
(N
2

)
→ ω. COL′ :

(N
4

)
→ [16] defined in class.

Assume there is a COL′-homog set such that:

(∀x1 < x2 < x3 < x4 ∈ H)[COL(x2, x3) = COL(x1, x4)].

Show that this set, or an infinite subset of it, is COL-homog.
SOL H = {a1 < a2 < · · · }.
We take H∗ = {a2, a3, · · · }. We show H∗ is COL-homog.

Let 2 ≤ i1 < i2 and 2 ≤ j1 < j2. Let k = max{i2, j2}+ 1.

From COL′(a1, ai1 , ai2 , ak) we know COL(a1, ak) = COL(ai1 , ai2).

From COL′(a1, aj1 , aj2 , ak) we know COL(a1, ak) = COL(aj1 , aj2).

Hence COL(ai1 , ai2) = COL(aj1 , aj2).
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Problem 2 (misc)

Could we have left a1 in?
We have:

(∀x1 < x2 < x3 < x4 ∈ H)[COL(x2, x3) = COL(x1, x4)].

The following coloring has that property but is NOT homog.

COL(a1, a2) = R

(∀j ≥ 3)[COL(a1, aj) = B]

(∀i , j ≥ 2)[COL(ai , aj) = B]

Can check it satisfies condition.
Easily seen to not be homog.
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Problem 3

|X | = n, COL :
(X
2

)
→ [ω]. For all x ∈ X and colors c ,

degc(x) ≤ 1. If M is MAXIMAL rainb then |M| ≥ Ω(f (n)).

SOL Assume, BWOC, |M| ≤ f (n), so |X −M| ≥ n − f (n).
Map X −M into

(M
2

)
×M:

x ∈ X −M maps to ({p, q}, r) with COL(x , r) = COL(p, q).

From degc(x) ≤ 1 get Map is 1-1.

There is a 1-1 map from X −M to M ×
(M
2

)
.

Finish on next slide.
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Problem 3 (cont)

There is a 1-1- map from X −M to M ×
(M
2

)
. So

|X −M| ≤
∣∣∣∣M × (

M

2

)∣∣∣∣ ≤ |M|32
≤ f (n)3

2
.

Recall that |M| ≤ f (n) so |X −M| ≥ n − f (n).

n − f (n) ≤ |X −M| ≤
∣∣∣∣M × (

M

2

)∣∣∣∣ ≤ |M|32
≤ f (n)3

2
.

We seek a contradiction. f (n) = n1/3 will work.
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Problem 4

Theorem Let X be an infinite set of points in the plane. Then
(∃Y ⊆ X ), |Y | =∞, so that all of the distances between points in
Y are different.

Proof Order the points arbitrarily.

X = {p1, p2, . . .}

Let COL :
(N
2

)
→ R be defined by COL(i , j) = |pi − pj |.

The number of reals in the image of the colorings is countable so
we can apply Can Ramsey. When we apply it we find that there is
a set H ⊆ N, |H| =∞ that is either homog, max-homog,
min-homog, or rainb. We show H rainb, so all distances different.

Three cases: homog, min-homog, max-homog.
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Problem 4, H Homog

H is homog.

Then there are an infinite number of points that are all the same
distance apart.

Exercise: cannot have 4 points in the plane with all distances the
same.
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Problem 4, H Min-Homog

(∀i , j ≥ 2)[|p1 − pi | = |p1 − pj |].
So p2, p3, . . . are on a circle centered at p1.

(∀i , j ≥ 3)[|p2 − pi | = |p2 − pj |].
So p3, p4, . . . are on a circle centered at p2.

Combine: p3, p4, p5 are all on both a circle centered at p1 and a
circle centered at p2.

But two circles with diff centers intersect in at most 2 points.
Contradiction.
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Problem 4, H Max-Homog

(∀i , j ≤ 4)[|p4 − pi | = |p4 − pj |].
So p1, p2, p3 are on a circle centered at p4.

(∀i , j ≤ 4)[|p5 − pi | = |p5 − pj |].
So p1, p2, p3, p4 are on a circle centered at p5.

So p1, p2, p3 are on a circle centered at p4 and p5.

But two circles intersect in at most 2 points. Contradiction

End of Proof of Theorem
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