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That Does Not Use Hypergraph Ramsey

Exposition by William Gasarch

1 Intuition

We will proof the Infinite Canonical Ramsey theory (for graphs) but not use
any hypergraph Ramsey Theorem.

It will be close in spirit to the proof of the infinite Ramsey Theorem.
We first restate how we used the infinite 1-hypergraph Ramsey Theorem

to prove the 2-hypergraph Ramsey Theorem:
If
(
N
2

)
is 2-colored and there is an infinite sequence of vertices:

X = {x1, x2, x3, . . .}
Then either

• There exists infinite YR ⊆ X such that

(∀x ∈ YR)[COL(x, y) = R].

• There exists infinite YB ⊆ X such that

(∀x ∈ YB)[COL(x, y) = B].

We then replace X with YR or YB.

We now describe the analog of that process which we will be using to
prove 2-hypergraph Can Ramsey from 1-hypergraph Can Ramsey.

If
(
N
2

)
is colored (note no bound on the number of colors) and there is an

infinite sequence of vertices:

x1, x2, x3, . . .

Then either

• There exists color c and infinite Yc ⊆ X such that

(∀x ∈ Y )[COL(x, y) = c].
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• There exists infinite Yω ⊆ X such that,

(∀c)(∃!y ∈ Y )[COL(x, y) = c].

(Notation -(∃!y) means there is ONE y.)

We then replace X with Y1 or Y2 or · · · or Yω.

2 Ramsey Theory on the Complete 1-Hypergraph

on N

The following theorem is to obvious to prove but I want to state it:

Theorem 2.1 For every 2-coloring of N there is an infinite A ⊆ N that is
the same color.

Even though this is an easy theorem here are some questions:

1. Is there a finite version of this theorem?

2. If you are given a program that computes the coloring can you deter-
mine which color (or perhaps both) appears infinitely often?

3. What if you are given a simple computational device (e.g., a DFA with
output). Then can you determine which color? What is the complexity
of the problem?

What if I allow an infinite number of colors?

Theorem 2.2 For every coloring of N there is either (1) an infinite A ⊆ N
that is the same color, or (2) an infinite A ⊆ N that all have different colors
(called a rainbow set).

Proof: Let COL be a coloring of N. We define an infinite sequence of
vertices,

x1, x2, . . . ,

and an infinite sequence of sets of vertices,

V0, V1, V2, . . . ,

that are based on COL.
Here is the intuition: Either
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• There is some color c such that COL(1, x) is c infnitely often. Then
restrict to that set and color 1 with (H, c).

• For every color c the set of x with COL(1, x) = c is finite. Then thin
out the set so that COL(1, x2), COL(1, x3), etc are all different. (When
dealing with x2 or x3 later instead of x1 this will get more complicated.)

We now describe it formally.

V0 = N
x1 = 1

If (∃c)[|{v ∈ V0 | COL(x1, v) = c}| = ω then:

• c1 = (H, c)

• V1 = {v ∈ V0 | COL(x1, v) = c}. (Note that V1 is infinite)

If (∀c)|{v ∈ V0 | COL(x1, v) = c}| < ω then:

• V1 = {v ∈ V0 | (∃c)[COL(x1, v) = c ∧ (∀x1 < u < v)[COL(x1, u) 6= c]}
(so v is the first first with COL(x1, v) = c. Hence there will only be
ONE v with COL(x1, v) = c.) (Note that V1 is infinite)

• c1 = (RB, 1). (The 1 only marks that this is the first rainbow-color
assigned.)

Let i ≥ 2, and assume that Vi−1 is defined. We define xi, ci, and Vi:
xi is the least element of Vi−1 bigger than xi−1.
If (∃c)[|{v ∈ Vi−1 | COL(xi, v) = c}| = ω then:

• ci = (H, c)

• Vi = {v ∈ V0 | COL(xi, v) = c}. (Note that Vi is infinite)

If (∀c)|{v ∈ Vi−1 | COL(xi, v) = c}| < ω then:

• Vi = {v ∈ Vi−1 | (∃c)[COL(xi, v) = c ∧ (∀xi < u < v)[COL(xi, u) 6= c]}
(so v is the first first with COL(xi, v) = c. Hence there will only be
ONE v with COL(xi, v) = c.) (Note that Vi is infinite)

• For 1 ≤ j ≤ i − 1 we need to see how Vi interacts with Vj. Hence we
do the following.
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– If

Let i ≥ 2, and assume that Vi−1 is defined. We define xi, ci, and Vi:
How long can this sequence go on for? If ever it stops then we are done

as we have found a color appearing infinitely often. If not then the sequence

x1, x2, . . . ,

is infinite and each number in it is a different color, so we have found a
rainbow set.

1. Is there a finite version of this theorem?

2. If you are given a program that computes the coloring can you deter-
mine which color (if any) appears infinitely often?

3. What if you are given a simple computational device (e.g., a DFA with
output). Then can you determine which color? What is the complexity
of the problem?

3 Can Ramsey’s Theorem for the Infinite Com-

plete Graphs

Theorem 3.1 For every coloring of the edges of KN there is either an an
infinite homog set, an infinite min-homog set, an infinite max-homog set, or
an infinite rainbow set.

Proof: Let COL be a coloring of KN. We define an infinite sequence of
vertices,

x1, x2, . . . ,

and an infinite sequence of sets of vertices,

V0, V1, V2, . . . ,

that are based on COL. We will also color the vertices as we process them.
The colors will be

(H, c) to indicate that we used Yc above.
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(RB, i) to indicate we did Yω. If two vertices have the same (RB, i) it
means that they agree on all vertices past the largest of the two.
CONSTRUCTION
PART ONE

V0 = N

Let i ≥ 1, and assume that Vi−1 is defined. We define xi, ci, and Vi: We
use the Yc, Yω notation above.

xi gets the least element of Vi−1.
If there exists c such that Yc is infinite then

ci = (H, c)
Vi = Yc

If no such c exist then there exists Yω. We initially take
Vi = Yω

But we may thin it out. And we haven’t colored xi yet.
Do the following:
For all 1 ≤ j ≤ i− 1 such that COL(xj) = (RB, k) for some k then:

1. If |{y ∈ Yω : COL(xj, y) = COL(xi, y)}| = ω then let Vi be this set
and let ci = cj. (So COL(xi) will be of the form (RB, k) for some k).
You are done and do not go to the next j.

2. If |{y ∈ Yω : COL(xj, y) = COL(xi, y)}| < ω then let Vi be the Yω

minus those vertices.

If Case 1 ever happens then we are done. If Case 2 always happens then
note that xi disagrees with every xj on every element > xi. We ci with
(RB, k) where k is the least number not used for a rainbow color yet.
END OF PART ONE
PART TWO

Consider the infinite sequence

c1, c2, . . .

There are several cases:

• There is a c such that (H, c) appears infinitely often. Let

H = {xi : ci = (H, c)}.

This set is infinite homog.
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• There is an infinite number of vertices colored H. Let

H ′ = {xi : (∃c)[ci = (H, c)}

By the 1-hypergraph Can Ramsey applied to the coloring COL(xi) = c,
and the premise, we get a set H which we renumber so that

H = {y1 < y2 < y3 < · · · }

and COL(yi) = (H, i). H is infinite min-homog.

• There is an k such that (RB, k) appears infinitely often. Let

H = {xi : ci = (RB, k)}.

This set is infinite max-homog.

• There is an infinite number of vertices colored RB. Let

H ′ = {xi : (∃k)[ci = (RB, k)}

By the 1-hypergraph Can Ramsey applied to the coloring COL(xi) = k,
and the premise, we get a set H which we renumber so that

H = {y1 < y2 < y3 < · · · }

and COL(yi) = (RB, i). H is infinite rainbow.
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