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The following is the first theorem in Ramsey Theory:
If there are 6 people at a party, either 3 know each other
or 3 do not know each other.

We state this in terms of colorings of edges of graphs.
For all 2-coloring of the edges of Kg there is a mono Ks.
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Let degg(v) be the blue degree of v.

Now goto White Board.
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Proof of First Theorem: In Text

Claim For all v either degr(v)
Proof If not then degp(v) <2

But all vertices have degree 5.
Assume v, x,y,z COL(v,x) = COL(v,y) = COL(v,z) = RED.

If COL(x,y) = RED OR COL(x,z) = RED OR COL(y,z) = RED
then we have a RED Kj.

If COL(x,y) = BLUE AND COL(x,z) = BLUE AND
COL(y, z) = BLUE then we have a BLUE Kj3.

> 3 OR degg(v) > 3.
AND degg(v) < 2, so deg(v) < 4.

| either case we get a mono K3's.
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Trivial Theorem, Non Trivial Extension

For all 2-cols of edges of K1, there are 2 mono K3's

Question Find n such that
1. For all 2-coloring of the edges of K, there are 2 mono K3's
2. There exists a 2-coloring of the edges of K,,_; that does not
have 2 mono K3's.
VOTE (1) n=12,(2)9<n<10,(3)6 <n<s.
n=~6.
1. For all 2-coloring of the edges of K¢ there are 2 mono K3's

2. There exists a 2-coloring of the edges of Ks that does not
have 2 mono K3's.



Proof of Ks Two Triangles Theorem

Theorem For all 2-cols of edges of Kg there are 2 mono K3's
Proof Let COL be a 2-coloring of the edges of K.
Let R, B, M, be the SET of RED, BLUE, and MIXED triangles.

6
IR+ |B| + M| = (3> — 20.

We show that |[M| <18, so |R| + |B| > 2.



A Mixed Triangle Has a Vertex Such That

(v)
VAN

» (va,v1) is red, (v, v3) is blue. View this as (va, {v1, v3}).

» (v3,v1) is red, (vs, v2) is blue. View this as (v3, {vi, va}).
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Map ZAN to M

Definition A Zan is an element (v,{u,w}) € V x (\2/) such that
v ¢ {u,w} and COL(v,u) # COL(v,w). ZAN is the set of Zan's.

Map ZAN to M by mapping (v, {u, w}) to triangle {v, u, w}.
Claim This mapping is exactly 2-to-1.
What Zan's map to the triangle:

(V2, {Vl, V3}) and (V3, {Vl, Vg}).
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Upper Bound on M

There is a 2-to-1 map from ZAN to M. Hence

M| < |ZAN] /2

Now we want to bound |ZAN|.

Look at vertex v. How many ZAN's use v as their base point?
Depends on degr(v) and degg(v).

Thought experiment If degr(v) = 3 and degg(v) = 2 then how
many ZAN's are of the form

{v.{x vt}

x: COL(v,x) = RED. There are degr(v) of them.
y: COL(v,y) = BLUE. There are degg(v) of them.
So v contributes degr(v) x degg(v).
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Contributions!

Cases
1. v has degr(v) =5 or degg(v) = 0: v contributes 0.
2. v has degp(v) = 4 or degg(v) = 1: v contributes 4.
3. v has degr(v) = 3 or degg(v) = 2: v contributes 6. Max.

6 vertices, each contribute < 6, so

IM| < |ZAN|/2 < 6 x 6/2 =18, so

[R[ +[B] =20 — [M] =2
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Summary

6
IR+ |B| + M| = <3> =20

Map ZAN to M. Map is 2-to-1, so |M| < |ZAN|/2.

ZAN is max when each vertex: 3 R and 2 B (or 2 R and 3 B).
|ZAN| < 6 x 6 = 36.

IM| < |ZAN|/2 = 18.
IR| +|B| > 20— M| > 2.

So there are at least 2 Mono Triangles.
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Generalization

If we 2-color the edges of K,, how many mono K3's do we have?
VOTE: (1) ~ n€ for some c < 1, (2) ~ n (3) ~ n?, (4) ~ n3.
3
~ n. Actually 2 + ©(n?).
We do one case: n=1 (mod 2).

Let COL be a coloring of the edges of K.
Then degree of each vertex is n—1 =0 (mod 2).

We find an upper bound on |ZAN)|.
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Maximize | ZAN|

To maximize |ZAN| we would, at each vertex, color half of the
edges RED and half BLUE.

Each vertex contributes (251)? (this is in N since n — 1 =0
(mod 2)).

1)2  (n—1)n
o 4

| ZAN| < n(”_4 ©

—1)2
IM| = | ZAN| /2 < (”8)”
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Finishing Up The Proof

Recap

(n—1)%n
8

M| <

Recall

hence

/1 161+ 1w = () = ==

IR +|B| = (g) _ nln = lg(”_z) — |M| hence

—1)(n—-2) (n— 1)%n

n(n
R|+ |B| >
Rl +18 > 1= -

n3 n? 5n

~u 1 m



Can This Be Improved?

The bound is known to be tight.



