Proof by Morgan Bryant, Issac Mammal, Adam Melrod. Exposition by William Gasarch

April 3, 2022

Def $A \subseteq \mathbb{N}$ is **large** if $|A| > \min(A)$.

Def $A \subseteq \mathbb{N}$ is **large** if $|A| > \min(A)$.

Def PH(k) is the least $n \ge$ such that for all 2-colorings of $\binom{\{k,\dots,n\}}{2}$ there exists a set H such that the following hold.

Def $A \subseteq \mathbb{N}$ is **large** if $|A| > \min(A)$.

Def PH(k) is the least $n \ge$ such that for all 2-colorings of $\binom{\{k,\dots,n\}}{2}$ there exists a set H such that the following hold.

H is homog.

Def $A \subseteq \mathbb{N}$ is **large** if $|A| > \min(A)$.

Def PH(k) is the least $n \ge$ such that for all 2-colorings of $\binom{\{k,\dots,n\}}{2}$ there exists a set H such that the following hold.

- ► *H* is homog.
- $ightharpoonup |H| > \min(H).$

Def $A \subseteq \mathbb{N}$ is **large** if $|A| > \min(A)$.

Def PH(k) is the least $n \ge$ such that for all 2-colorings of $\binom{\{k,\dots,n\}}{2}$ there exists a set H such that the following hold.

- ► *H* is homog.
- $ightharpoonup |H| > \min(H).$
- ▶ $|H| \ge 3$.

Def $A \subseteq \mathbb{N}$ is **large** if $|A| > \min(A)$.

Def PH(k) is the least $n \ge$ such that for all 2-colorings of $\binom{\{k,\dots,n\}}{2}$ there exists a set H such that the following hold.

- ► *H* is homog.
- $ightharpoonup |H| > \min(H).$
- ▶ $|H| \ge 3$.

(PH stands for Paris-Harrington.)

Def $A \subseteq \mathbb{N}$ is **large** if $|A| > \min(A)$.

Def PH(k) is the least $n \ge$ such that for all 2-colorings of $\binom{\{k,\dots,n\}}{2}$ there exists a set H such that the following hold.

- ► *H* is homog.
- ▶ $|H| > \min(H)$.
- ▶ $|H| \ge 3$.

(PH stands for Paris-Harrington.)

Notation We call a set like H a Large Homog Set and abbreviate this by LHS.

Let COL: $\binom{\{1,\dots,7\}}{2} \rightarrow [2]$. We show there is a LHS.

Let COL: $\binom{\{1,\dots,7\}}{2} \rightarrow [2]$. We show there is a LHS.

Note The graph has 7 vertices so every point has degree 6.

Let COL: $\binom{\{1,\dots,7\}}{2} \rightarrow [2]$. We show there is a LHS.

Note The graph has 7 vertices so every point has degree 6.

Assume We can assum COL(1, 2) = R.

The 3 smallest *R*-Nbhs of 1 are $2 = x_1 < x_2 < x_3$.

The 3 smallest *R*-Nbhs of 1 are $2 = x_1 < x_2 < x_3$.

▶ $(\exists 1 \le i < j \le 3)[COL(x_i, x_j) = R]$. LHS: $\{1, x_i, x_j\}$.

The 3 smallest *R*-Nbhs of 1 are $2 = x_1 < x_2 < x_3$.

- ▶ $(\exists 1 \le i < j \le 3)[COL(x_i, x_j) = R]$. LHS: $\{1, x_i, x_j\}$.
- ► $(\forall 1 \le i < j \le 3)[COL(x_i, x_j) = B]$. LHS: $\{2, x_2, x_3\}$

The 4 smallest R-Nbhs are $x_1 < x_2 < x_3 < x_4$.

The 4 smallest *R*-Nbhs are $x_1 < x_2 < x_3 < x_4$.

▶ $(\exists 1 \le i < j \le 4)[COL(x_i, x_j) = B]$. LHS: $\{1, x_i, x_j\}$.

The 4 smallest *R*-Nbhs are $x_1 < x_2 < x_3 < x_4$.

- ▶ $(\exists 1 \le i < j \le 4)[COL(x_i, x_j) = B]$. LHS: $\{1, x_i, x_j\}$.
- $(\forall 1 \le i < j \le 4)[COL(x_i, x_j) = \mathbb{R} \land x_1 = 3.$ $LHS: \{x_1, x_2, x_3, x_4\}.$

The 4 smallest *R*-Nbhs are $x_1 < x_2 < x_3 < x_4$.

- ▶ $(\exists 1 \le i < j \le 4)[COL(x_i, x_j) = B]$. LHS: $\{1, x_i, x_j\}$.
- $(\forall 1 \le i < j \le 4)[COL(x_i, x_j) = \mathbb{R} \land x_1 = 3.$ $LHS: \{x_1, x_2, x_3, x_4\}.$

Last Case on Next Slide.

The 4 smallest R-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

The 4 smallest R-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

Remaining Case

The 4 smallest R-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

Remaining Case

$$(\forall 1 \leq i < j \leq 4[COL(x_i, x_j) = B \land x_1 \geq 4].$$

1) $x_1 \ge 5$. Then $x_2 \ge 6$, $x_3 \ge 7$, $x_4 \ge 8$. Contradiction.

The 4 smallest R-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

Remaining Case

$$(\forall 1 \leq i < j \leq 4[COL(x_i, x_j) = B \land x_1 \geq 4].$$

- 1) $x_1 \ge 5$. Then $x_2 \ge 6$, $x_3 \ge 7$, $x_4 \ge 8$. Contradiction.
- 2) $x_1 = 4$, $x_2 = 5$, $x_3 = 6$, $x_4 = 7$. So R-nbhs of 1 are $\{2, 3\}$.

The 4 smallest R-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

Remaining Case

- $(\forall 1 \leq i < j \leq 4[COL(x_i, x_j) = B \land x_1 \geq 4].$
- 1) $x_1 \ge 5$. Then $x_2 \ge 6$, $x_3 \ge 7$, $x_4 \ge 8$. Contradiction.
- 2) $x_1 = 4$, $x_2 = 5$, $x_3 = 6$, $x_4 = 7$. So *R*-nbhs of 1 are $\{2,3\}$. Cases

The 4 smallest R-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

Remaining Case

$$(\forall 1 \leq i < j \leq 4[COL(x_i, x_j) = B \land x_1 \geq 4].$$

- 1) $x_1 \ge 5$. Then $x_2 \ge 6$, $x_3 \ge 7$, $x_4 \ge 8$. Contradiction.
- 2) $x_1 = 4$, $x_2 = 5$, $x_3 = 6$, $x_4 = 7$. So *R*-nbhs of 1 are $\{2, 3\}$.

Cases

 $ightharpoonup COL(2,3) = R. LHS: \{1,2,3\}.$

The 4 smallest R-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

Remaining Case

$$(\forall 1 \leq i < j \leq 4[COL(x_i, x_j) = B \land x_1 \geq 4].$$

- 1) $x_1 \ge 5$. Then $x_2 \ge 6$, $x_3 \ge 7$, $x_4 \ge 8$. Contradiction.
- 2) $x_1 = 4$, $x_2 = 5$, $x_3 = 6$, $x_4 = 7$. So R-nbhs of 1 are $\{2,3\}$.

Cases

- $ightharpoonup COL(2,3) = R. LHS: \{1,2,3\}.$
- ► COL(2,3) = B.
 - a) $(\exists 4 \le i \le 7)[COL(i, 2) = COL(i, 3) = B. LHS: \{2, 3, i\}.$

The 4 smallest R-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

Remaining Case

- $(\forall 1 \leq i < j \leq 4[COL(x_i, x_j) = B \land x_1 \geq 4].$
- 1) $x_1 \ge 5$. Then $x_2 \ge 6$, $x_3 \ge 7$, $x_4 \ge 8$. Contradiction.
- 2) $x_1 = 4$, $x_2 = 5$, $x_3 = 6$, $x_4 = 7$. So R-nbhs of 1 are $\{2,3\}$.

Cases

- $ightharpoonup COL(2,3) = R. LHS: \{1,2,3\}.$
- ► COL(2,3) = B.
 - a) $(\exists 4 \le i \le 7)[COL(i, 2) = COL(i, 3) = B. LHS: \{2, 3, i\}.$
 - b) $(\forall 4 \le i \le 7)[COL(i,2) = \mathbb{R} \lor COL(i,3) = \mathbb{R}].$
 - Map $i \in \{4, 5, 6, 7\}$ to $j \in \{2, 3\}$ st $COL(i, j) = \mathbb{R}$.

The 4 smallest R-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

Remaining Case

- $(\forall 1 \leq i < j \leq 4[COL(x_i, x_j) = B \land x_1 \geq 4].$
- 1) $x_1 \ge 5$. Then $x_2 \ge 6$, $x_3 \ge 7$, $x_4 \ge 8$. Contradiction.
- 2) $x_1 = 4$, $x_2 = 5$, $x_3 = 6$, $x_4 = 7$. So R-nbhs of 1 are $\{2,3\}$.

Cases

- ightharpoonup COL(2,3) = R. LHS: $\{1,2,3\}$.
- ► COL(2,3) = B.
 - a) $(\exists 4 \le i \le 7)[COL(i, 2) = COL(i, 3) = B. LHS: \{2, 3, i\}.$
 - b) $(\forall 4 \leq i \leq 7)[COL(i,2) = R \lor COL(i,3) = R].$
 - Map $i \in \{4, 5, 6, 7\}$ to $j \in \{2, 3\}$ st $COL(i, j) = \mathbb{R}$.
 - $(\exists i, j \in \{4, 5, 6, 7\})$ map to $2 \to \mathsf{LHS}\ \{2, i, j\}$.

The 4 smallest R-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

Remaining Case

- $(\forall 1 \leq i < j \leq 4[COL(x_i, x_j) = B \land x_1 \geq 4].$
- 1) $x_1 \ge 5$. Then $x_2 \ge 6$, $x_3 \ge 7$, $x_4 \ge 8$. Contradiction.
- 2) $x_1 = 4$, $x_2 = 5$, $x_3 = 6$, $x_4 = 7$. So R-nbhs of 1 are $\{2,3\}$.

Cases

- $ightharpoonup COL(2,3) = R. LHS: \{1,2,3\}.$
- ► COL(2,3) = B.
 - a) $(\exists 4 \le i \le 7)[COL(i,2) = COL(i,3) = B$. LHS: $\{2,3,i\}$.
 - b) $(\forall 4 \le i \le 7)[COL(i, 2) = R \lor COL(i, 3) = R].$

Map $i \in \{4, 5, 6, 7\}$ to $j \in \{2, 3\}$ st $COL(i, j) = \mathbb{R}$.

 $(\exists i, j \in \{4, 5, 6, 7\})$ map to $2 \to LHS \{2, i, j\}$.

 $(\exists i, j, k \in \{4, 5, 6, 7\})$ map to $3 \to \text{then LHS } \{3, i, j, k\}.$

The 4 smallest R-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

Remaining Case

- $(\forall 1 \leq i < j \leq 4[COL(x_i, x_j) = B \land x_1 \geq 4].$
- 1) $x_1 \ge 5$. Then $x_2 \ge 6$, $x_3 \ge 7$, $x_4 \ge 8$. Contradiction.
- 2) $x_1 = 4$, $x_2 = 5$, $x_3 = 6$, $x_4 = 7$. So R-nbhs of 1 are $\{2, 3\}$.

Cases

- $ightharpoonup COL(2,3) = R. LHS: \{1,2,3\}.$
- ► COL(2,3) = B.
 - a) $(\exists 4 \le i \le 7)[COL(i, 2) = COL(i, 3) = B. LHS: \{2, 3, i\}.$
 - b) $(\forall 4 \le i \le 7)[COL(i,2) = \mathbb{R} \lor COL(i,3) = \mathbb{R}].$

Map $i \in \{4, 5, 6, 7\}$ to $j \in \{2, 3\}$ st $COL(i, j) = \mathbb{R}$.

 $(\exists i, j \in \{4, 5, 6, 7\})$ map to $2 \to LHS \{2, i, j\}$.

 $(\exists i, j, k \in \{4, 5, 6, 7\})$ map to $3 \to \text{then LHS } \{3, i, j, k\}.$

If neither happens then ≤ 1 element of $\{4,5,6,7\}$ maps to 2 and ≤ 2 elements of $\{4,5,6,7\}$ map to 3. So ≤ 3 elements get mapped, contradiction.

Case 3: NOT Case 1 or 2

If neither Case 1 or Case 2 happens then

Case 3: NOT Case 1 or 2

If neither Case 1 or Case 2 happens then

▶ $\deg_{\mathbf{R}}(1) \leq 2$

Case 3: NOT Case 1 or 2

If neither Case 1 or Case 2 happens then

- ▶ $\deg_{\mathbf{R}}(1) \leq 2$
- ▶ $deg_{\mathbf{B}}(1) \leq 3$

So $deg(1) \le 5$ which is a contradiction.