
The Convex Polygon Problem

1 Introduction

These notes are helpful if you both watched the recording and attended class
(by zoom). Otherwise I doubt they are helpful.

Convention 1.1 Every time we mention a set of points in R2 they have no
three colinear

2 Happy Ending Theorem

Def 2.1 Let A ⊆ R2 of size k. The points in A form a convex k-gon if for
every x, y, z ∈ A, there is no point of A in the triangle formed by x, y, z.
Henceforth we just say k-gon.

Theorem 2.2 (Esther Klein) For every 5 points in R2 there exists a 4-gon.

Theorem 2.3 (Erdös and Szekeres) For all k ≥ 3 there exists n such that
for every set of n points in R2 there exists k of them that form a k-gon.

Sketch:
k = 3: Take n = 3.
k = 4: Take n = 5 and use Klein’s Theorem.
We assume k ≥ 5.
We went over three proofs that used the following three colorings.
The points are p1, . . . , pn. The ordering on the points is arbitrary; how-

ever, for the third proof we need the ordering.
Proof 1: n = R4(k). We have any n points in R2

COL(w, x, y, z) is RED if the for points form a 4-gon, and BLUE if they
do not.

The homog set can’t be BLUE since if was then there would be k ≥ 5
points such that NO 4-subset was a 4-gon, which contradicts Klein’s Theo-
rem.

Hence there are k points so that every set of 4 of them forms a 4-gon.
One can show that the entire set is a k-gon.
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Proof 1’: We can use n = R4(k, 5) which is the smallest n such that any
2-coloring of

(
[n]
4

)
has either a RED Homog set of size k or a BLUE homog

set of size 5.

Proof 2: n = R3(k). We have any n points in R2

COL(w, x, y) is RED if their is an EVEN number of points inside the
x, y, z triangle, BLUE otherwise.

Both cases are possible. One can show that in either case the set is a
k-gon using a parity argument.

Proof 3: n = R3(k). We have any n points in R2

COL(pi, pj, pk) where i < j < k is RED if pi, pj, pk is clockwise, and
BLUE if counterclockwise.

Some cases, finishing the proof will be on a HW.

These bounds are quite large. The following upper and lower bounds are
known.

Theorem 2.4

1. (Erdös and Szekeres) For all k ≥ 3 there exists n ≤
(
2n−4
n−2

)
+1 = 4n+o(n)

such that for every set of n points in R2 there exists k of them that form
a k-gon.

2. (Andrew Suk) For all k ≥ 3 there exists n ≤ 2n+o(n) such that for every
set of n points in R2 there exists k of them that form a k-gon.

3. (a) For all sets of 3 points in R2 there exists a subset of 3 that form
a 3-gon (this is trivial). This is tight.

(b) For all sets of 5 points in R2 there exists a subset of 4 that form
a 4-gon. This is tight.

(c) For all sets of 9 points in R2 there exists a subset of 5 that form
a 5-gon. This is tight.

(d) For all sets of 17 points in R2 there exists a subset of 6 that form
a 6-gon. This is tight.

4. For all k ≥ 3 there exists a set of 2k−2 points such that there is NO
subset of size k that form a k-gon.
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The lower bound in the last part of the last theorem is the conjecture.

Conjecture 2.5 For all k ≥ 3 for every set of 2k−2 + 1 points in R2 there
exists k of them that form a k-gon.
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