Finding Small Dominating Set Via the Prob Method

William Gasarch-U of MD

(ロト (個) (E) (E) (E) (E) のへの

Def Let G = (V, E) be a graph. $D \subseteq V$ is a dominating set if $(\forall v \in V)[v \in D \lor (\exists y \in D)[(x, y) \in E].$

Def Let G = (V, E) be a graph. $D \subseteq V$ is a dominating set if $(\forall v \in V)[v \in D \lor (\exists y \in D)](x, y) \in E].$

Easy Every graph has a dominating set of size n: D = V.

Def Let G = (V, E) be a graph. $D \subseteq V$ is a dominating set if $(\forall v \in V)[v \in D \lor (\exists y \in D)](x, y) \in E].$

Easy Every graph has a dominating set of size n: D = V. **Question** Does every graph have a smaller dominating set?

Def Let G = (V, E) be a graph. $D \subseteq V$ is a dominating set if $(\forall v \in V)[v \in D \lor (\exists y \in D)](x, y) \in E].$

Easy Every graph has a dominating set of size n: D = V. **Question** Does every graph have a **smaller** dominating set? **Answer** No- take the graph with n vertices and no edges.

Def Let G = (V, E) be a graph. $D \subseteq V$ is a dominating set if $(\forall v \in V)[v \in D \lor (\exists y \in D)](x, y) \in E].$

Easy Every graph has a dominating set of size n: D = V. **Question** Does every graph have a **smaller** dominating set? **Answer** No- take the graph with n vertices and no edges. **Modify the Problem** What if we assume the min degree is $\geq d$?

Def Let G = (V, E) be a graph. $D \subseteq V$ is a dominating set if $(\forall v \in V)[v \in D \lor (\exists y \in D)](x, y) \in E].$

Easy Every graph has a dominating set of size n: D = V. **Question** Does every graph have a **smaller** dominating set? **Answer** No- take the graph with n vertices and no edges. **Modify the Problem** What if we assume the min degree is $\geq d$? We sketch a proof that every graph with min degree d has a dominating set of size $\leq f(n, d)$ where f(n, d) < n.

・ロト・西ト・モート ヨー シタク

Thm If G = (V, E) is a graph on *n* vertices with min degree $\geq d$ then *G* has a dominating set of size $\leq f(n, d)$.

Thm If G = (V, E) is a graph on *n* vertices with min degree $\geq d$ then *G* has a dominating set of size $\leq f(n, d)$. **Pf** *p* is prob TBD.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm If G = (V, E) is a graph on *n* vertices with min degree $\geq d$ then *G* has a dominating set of size $\leq f(n, d)$. **Pf** *p* is prob TBD.

Pick $X \subseteq V$ as follows: For every $v \in V$ choose x with prob p.

Thm If G = (V, E) is a graph on *n* vertices with min degree $\geq d$ then *G* has a dominating set of size $\leq f(n, d)$. **Pf** *p* is prob TBD.

Pick $X \subseteq V$ as follows: For every $v \in V$ choose x with prob p.

Each $v \in V$ has prob p of being chosen, so E(|X|) = pn.

Thm If G = (V, E) is a graph on *n* vertices with min degree $\geq d$ then *G* has a dominating set of size $\leq f(n, d)$. **Pf** *p* is prob TBD.

Pick $X \subseteq V$ as follows: For every $v \in V$ choose x with prob p.

Each $v \in V$ has prob p of being chosen, so E(|X|) = pn.

Let $Y \subseteq V - X$ that DO NOT have an edge to an elt of X.

Thm If G = (V, E) is a graph on *n* vertices with min degree $\geq d$ then *G* has a dominating set of size $\leq f(n, d)$. **Pf** *p* is prob TBD.

Pick $X \subseteq V$ as follows: For every $v \in V$ choose x with prob p.

Each $v \in V$ has prob p of being chosen, so E(|X|) = pn.

Let $Y \subseteq V - X$ that DO NOT have an edge to an elt of X.

If $v \in V$ then prob that $v \in Y$ is prod of the following

Thm If G = (V, E) is a graph on *n* vertices with min degree $\geq d$ then *G* has a dominating set of size $\leq f(n, d)$. **Pf** *p* is prob TBD.

Pick $X \subseteq V$ as follows: For every $v \in V$ choose x with prob p.

Each $v \in V$ has prob p of being chosen, so E(|X|) = pn.

Let $Y \subseteq V - X$ that DO NOT have an edge to an elt of X.

If $v \in V$ then prob that $v \in Y$ is prod of the following

▶ Prob
$$v \notin X$$
. That's $(1 - p)$.

Thm If G = (V, E) is a graph on *n* vertices with min degree $\geq d$ then *G* has a dominating set of size $\leq f(n, d)$. **Pf** *p* is prob TBD.

Pick $X \subseteq V$ as follows: For every $v \in V$ choose x with prob p.

Each $v \in V$ has prob p of being chosen, so E(|X|) = pn.

Let $Y \subseteq V - X$ that DO NOT have an edge to an elt of X.

If $v \in V$ then prob that $v \in Y$ is prod of the following

- ▶ Prob $v \notin X$. That's (1 p).
- Prob that all $\geq d$ neighbors of v are not in X. That's $\leq (1-p)^d$.

Thm If G = (V, E) is a graph on *n* vertices with min degree $\geq d$ then *G* has a dominating set of size $\leq f(n, d)$. **Pf** *p* is prob TBD.

Pick $X \subseteq V$ as follows: For every $v \in V$ choose x with prob p.

Each $v \in V$ has prob p of being chosen, so E(|X|) = pn.

Let $Y \subseteq V - X$ that DO NOT have an edge to an elt of X.

If $v \in V$ then prob that $v \in Y$ is prod of the following

- ▶ Prob $v \notin X$. That's (1 p).
- Prob that all $\geq d$ neighbors of v are not in X. That's $\leq (1-p)^d$.

Hence prob $v \in Y$ is $\leq (1-p)^{d+1}$. Hence $E(|Y|) \leq n(1-p)^{d+1}$.

Thm If G = (V, E) is a graph on *n* vertices with min degree $\geq d$ then *G* has a dominating set of size $\leq f(n, d)$. **Pf** *p* is prob TBD.

Pick $X \subseteq V$ as follows: For every $v \in V$ choose x with prob p.

Each $v \in V$ has prob p of being chosen, so E(|X|) = pn.

Let $Y \subseteq V - X$ that DO NOT have an edge to an elt of X.

If $v \in V$ then prob that $v \in Y$ is prod of the following

- ▶ Prob $v \notin X$. That's (1 p).
- Prob that all $\geq d$ neighbors of v are not in X. That's $\leq (1-p)^d$.

Hence prob $v \in Y$ is $\leq (1-p)^{d+1}$. Hence $E(|Y|) \leq n(1-p)^{d+1}$. Note that (1) $X \cup Y$ is a dominating set, and (2)

Thm If G = (V, E) is a graph on *n* vertices with min degree $\geq d$ then *G* has a dominating set of size $\leq f(n, d)$. **Pf** *p* is prob TBD.

Pick $X \subseteq V$ as follows: For every $v \in V$ choose x with prob p.

Each $v \in V$ has prob p of being chosen, so E(|X|) = pn.

Let $Y \subseteq V - X$ that DO NOT have an edge to an elt of X.

If $v \in V$ then prob that $v \in Y$ is prod of the following

- ▶ Prob $v \notin X$. That's (1 p).
- Prob that all $\geq d$ neighbors of v are not in X. That's $\leq (1-p)^d$.

Hence prob $v \in Y$ is $\leq (1-p)^{d+1}$. Hence $E(|Y|) \leq n(1-p)^{d+1}$. Note that (1) $X \cup Y$ is a dominating set, and (2)

$$E(|X \cup Y|) = E(|X|) + E(|Y|) \le np + n(1-p)^{d+1}$$

$E(|X \cup Y|) = E(|X|) + E(|Y|) \le np + n(1-p)^{d+1}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

$E(|X \cup Y|) = E(|X|) + E(|Y|) \le np + n(1-p)^{d+1}.$

Want to pick p to minimize this, but that's messy. Instead:

$$E(|X \cup Y|) = E(|X|) + E(|Y|) \le np + n(1-p)^{d+1}$$

Want to pick p to minimize this, but that's messy. Instead:

$$np + (1-p)^{d+1} \le np + ne^{-p(d+1)}$$

$$E(|X \cup Y|) = E(|X|) + E(|Y|) \le np + n(1-p)^{d+1}$$

Want to pick p to minimize this, but that's messy. Instead:

$$np + (1-p)^{d+1} \le np + ne^{-p(d+1)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Want to pick p to minimize this. Will do it on next slide.

We need to minimize the following function on the interval [0,1].

$$f(p) = np + ne^{-p(d+1)}$$

$$f'(p) = n + n(-(d+1))e^{-p(d+1)}$$
 Set to 0

We need to minimize the following function on the interval [0,1].

$$f(p) = np + ne^{-p(d+1)}$$

$$f'(p) = n + n(-(d+1))e^{-p(d+1)}$$
 Set to 0
 $n - n(d+1)e^{-p(d+1)} = 0$

We need to minimize the following function on the interval [0,1].

$$f(p) = np + ne^{-p(d+1)}$$

$$f'(p) = n + n(-(d+1))e^{-p(d+1)}$$
 Set to 0
 $n - n(d+1)e^{-p(d+1)} = 0$
 $1 - (d+1)e^{-p(d+1)} = 0$

We need to minimize the following function on the interval [0,1].

$$f(p) = np + ne^{-p(d+1)}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$f'(p) = n + n(-(d+1))e^{-p(d+1)}$$
 Set to 0
$$n - n(d+1)e^{-p(d+1)} = 0$$

$$1 - (d+1)e^{-p(d+1)} = 0$$

$$1 = (d+1)e^{-p(d+1)}$$

We need to minimize the following function on the interval [0,1].

$$f(p) = np + ne^{-p(d+1)}$$

$$f'(p) = n + n(-(d+1))e^{-p(d+1)}$$
 Set to 0

$$n - n(d+1)e^{-p(d+1)} = 0$$

$$1 - (d+1)e^{-p(d+1)} = 0$$

$$1 = (d+1)e^{-p(d+1)}$$

$$(d+1)^{-1} = e^{-p(d+1)}$$

We need to minimize the following function on the interval [0,1].

$$f(p) = np + ne^{-p(d+1)}$$

$$f'(p) = n + n(-(d+1))e^{-p(d+1)}$$
 Set to 0

$$n - n(d+1)e^{-p(d+1)} = 0$$

$$1 - (d+1)e^{-p(d+1)} = 0$$

$$1 = (d+1)e^{-p(d+1)}$$

$$(d+1)^{-1} = e^{-p(d+1)}$$

$$-\ln(d+1) = -p(d+1)$$

We need to minimize the following function on the interval [0,1].

$$f(p) = np + ne^{-p(d+1)}$$

$$f'(p) = n + n(-(d+1))e^{-p(d+1)}$$
 Set to 0

$$n - n(d+1)e^{-p(d+1)} = 0$$

$$1 - (d+1)e^{-p(d+1)} = 0$$

$$1 = (d+1)e^{-p(d+1)}$$

$$(d+1)^{-1} = e^{-p(d+1)}$$

$$-\ln(d+1) = -p(d+1)$$

$$\ln(d+1) = p(d+1)$$

We need to minimize the following function on the interval [0,1].

$$f(p) = np + ne^{-p(d+1)}$$

$$f'(p) = n + n(-(d+1))e^{-p(d+1)}$$
 Set to 0

$$n - n(d+1)e^{-p(d+1)} = 0$$

$$1 - (d+1)e^{-p(d+1)} = 0$$

$$1 = (d+1)e^{-p(d+1)}$$

$$(d+1)^{-1} = e^{-p(d+1)}$$

$$-\ln(d+1) = -p(d+1)$$

$$\ln(d+1) = p(d+1)$$

$$p = \frac{\ln(d+1)}{d+1}$$

$$E(|X \cup Y|) \le np + ne^{-p(d+1)} = n(p + e^{-p(d+1)})$$

 $p = \frac{\ln(d+1)}{d+1}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

$$E(|X \cup Y|) \le np + ne^{-p(d+1)} = n(p + e^{-p(d+1)})$$

$$p=rac{\ln(d+1)}{d+1}$$

$$p + e^{-p(d+1)} = p + e^{-\ln(d+1)} = \frac{\ln(d+1)}{d+1} + \frac{1}{d+1} = \frac{\ln(d+1) + 1}{d+1}$$

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

$$E(|X \cup Y|) \le np + ne^{-p(d+1)} = n(p + e^{-p(d+1)})$$

$$p=rac{\ln(d+1)}{d+1}$$

$$p + e^{-p(d+1)} = p + e^{-\ln(d+1)} = \frac{\ln(d+1)}{d+1} + \frac{1}{d+1} = \frac{\ln(d+1) + 1}{d+1}$$

$$E(|X \cup Y|) \le n\left(\frac{\ln(d+1)+1}{d+1}\right)$$

$$E(|X \cup Y|) \le np + ne^{-p(d+1)} = n(p + e^{-p(d+1)})$$

$$p=rac{\ln(d+1)}{d+1}$$

$$p + e^{-p(d+1)} = p + e^{-\ln(d+1)} = \frac{\ln(d+1)}{d+1} + \frac{1}{d+1} = \frac{\ln(d+1) + 1}{d+1}$$

$$E(|X \cup Y|) \le n\left(rac{\ln(d+1)+1}{d+1}
ight)$$

*ロト *昼 * * ミ * ミ * ミ * のへぐ

How good is this? Next Slide.

Table of *d*:10-100

d	$rac{\ln(d+1)+1}{d+1}$
10	0.3089
20	0.192596
30	0.143032
40	0.114965
50	0.0967025
60	0.0837848
70	0.0741223
80	0.0665981
90	0.0605589
100	0.0555953

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

.

Table of *d*100-1000

d	$rac{\ln(d+1)+1}{d+1}$
100	0.0555953
200	0.0313597
300	0.0222828
400	0.0174413
500	0.0144044
600	0.0123105
700	0.0107739
800	0.00959533
900	0.00866094
1000	0.00790085
Table of *d*1000-10000

d	$rac{ln(d+1)+1}{d+1}$
1000	0.00790085
2000	0.00429855
3000	0.00300123
4000	0.00232299
5000	0.0019031
6000	0.00161634
7000	0.00140749
8000	0.00124826
9000	0.00112266
10000	0.00102094

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

<ロト < 課 > < 注 > < 注 > 注 の < で</p>

1. If a graph has min degree ≥ 100 then there is DS size $\leq 0.06n, \, \frac{3n}{50}.$

(ロト (個) (E) (E) (E) (E) のへの

- 1. If a graph has min degree \geq 100 then there is DS size $\leq 0.06n, \frac{3n}{50}$.
- 2. If a graph has min degree \geq 1000 then there is DS size $\leq 0.008n$, $\frac{2n}{250}$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

- 1. If a graph has min degree ≥ 100 then there is DS size $\leq 0.06n, \frac{3n}{50}$.
- 2. If a graph has min degree \geq 1000 then there is DS size $\leq 0.008n$, $\frac{2n}{250}$.
- 3. If a graph has min degree ≥ 10000 then there is DS size $\leq 0.002n$, $\frac{n}{500}$.

The Theorem Restated Completely

Thm If G = (V, E) is a graph on *n* vertices with min degree $\geq d$ then *G* has a dominating set of size

$$\leq n \left(\frac{\ln(d+1)+1}{d+1}
ight).$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

The Theorem Restated Completely

Thm If G = (V, E) is a graph on *n* vertices with min degree $\geq d$ then *G* has a dominating set of size

$$\leq n \bigg(rac{\ln(d+1)+1}{d+1} \bigg).$$

Pf

Since the Expected Value of the experiment produced a set of this size, there must be some set of \geq this size.

ション ふゆ アメリア メリア しょうくしゃ

DS is Dominating Set. OPT means the min size of a DS. Alg means Poly Time Algorithm. We assume $P \neq NP$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

DS is Dominating Set. OPT means the min size of a DS. Alg means Poly Time Algorithm. We assume $P\neq NP.$

1. The above gives a fast rand alg to find a nontrivial Dom Set.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

DS is Dominating Set. OPT means the min size of a DS. Alg means Poly Time Algorithm. We assume $P\neq NP.$

1. The above gives a fast rand alg to find a nontrivial Dom Set.

2. Finding the minimum size Dom Set is not in P.

DS is Dominating Set. OPT means the min size of a DS. Alg means Poly Time Algorithm. We assume $P\neq NP.$

1. The above gives a fast rand alg to find a nontrivial Dom Set.

- 2. Finding the minimum size Dom Set is not in P.
- 3. \exists an approx alg that returns DS of size $\leq \ln(n)$ OPT(G).

DS is Dominating Set. OPT means the min size of a DS. Alg means Poly Time Algorithm. We assume $P\neq NP.$

1. The above gives a fast rand alg to find a nontrivial Dom Set.

ション ふゆ アメリア メリア しょうくしゃ

- 2. Finding the minimum size Dom Set is not in P.
- 3. \exists an approx alg that returns DS of size $\leq \ln(n)$ OPT(G).
- 4. $\forall \delta < 1$ there is no approx alg that returns a DS of size $\leq \delta \ln(n) \operatorname{OPT}(G)$.

DS is Dominating Set. OPT means the min size of a DS. Alg means Poly Time Algorithm. We assume $P\neq NP.$

- 1. The above gives a fast rand alg to find a nontrivial Dom Set.
- 2. Finding the minimum size Dom Set is not in P.
- 3. \exists an approx alg that returns DS of size $\leq \ln(n)$ OPT(G).
- 4. $\forall \delta < 1$ there is no approx alg that returns a DS of size $\leq \delta \ln(n) \operatorname{OPT}(G)$.
- 5. If you fix k and ask if there is a Dom Set of size k, can do in $n^{O(k)}$ time but likely not better (W[2]-complete).

ション ふゆ アメリア メリア しょうくしゃ

DS is Dominating Set. OPT means the min size of a DS. Alg means Poly Time Algorithm. We assume $P\neq NP.$

- 1. The above gives a fast rand alg to find a nontrivial Dom Set.
- 2. Finding the minimum size Dom Set is not in P.
- 3. \exists an approx alg that returns DS of size $\leq \ln(n)$ OPT(G).
- 4. $\forall \delta < 1$ there is no approx alg that returns a DS of size $\leq \delta \ln(n) \operatorname{OPT}(G)$.
- 5. If you fix k and ask if there is a Dom Set of size k, can do in $n^{O(k)}$ time but likely not better (W[2]-complete).

ション ふゆ アメリア メリア しょうくしゃ

6. Fix Δ . Restrict to graphs with MAX degree Δ .

DS is Dominating Set. OPT means the min size of a DS. Alg means Poly Time Algorithm. We assume $P \neq NP$.

- 1. The above gives a fast rand alg to find a nontrivial Dom Set.
- 2. Finding the minimum size Dom Set is not in P.
- 3. \exists an approx alg that returns DS of size $\leq \ln(n)$ OPT(G).
- 4. $\forall \delta < 1$ there is no approx alg that returns a DS of size $\leq \delta \ln(n) \operatorname{OPT}(G)$.
- 5. If you fix k and ask if there is a Dom Set of size k, can do in $n^{O(k)}$ time but likely not better (W[2]-complete).
- 6. Fix Δ. Restrict to graphs with MAX degree Δ.
 a) ∃ approx alg that returns a DS of size ≤ O(log Δ)OPT(G).

DS is Dominating Set. OPT means the min size of a DS. Alg means Poly Time Algorithm. We assume $P \neq NP$.

- 1. The above gives a fast rand alg to find a nontrivial Dom Set.
- 2. Finding the minimum size Dom Set is not in P.
- 3. \exists an approx alg that returns DS of size $\leq \ln(n)$ OPT(G).
- 4. $\forall \delta < 1$ there is no approx alg that returns a DS of size $\leq \delta \ln(n) \operatorname{OPT}(G)$.
- 5. If you fix k and ask if there is a Dom Set of size k, can do in $n^{O(k)}$ time but likely not better (W[2]-complete).
- 6. Fix Δ. Restrict to graphs with MAX degree Δ.
 a) ∃ approx alg that returns a DS of size ≤ O(log Δ)OPT(G).
 b) ∃δ st NO approx alg returns DS of size ≤ δOPT(G).