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VDW and Extended VDW

Recall VDW's Theorem
VDW'’s Theorem For all k, ¢ there exists W = W(k, c¢) such that

for every c-coloring of [W] there exists a, d such that

a,at+d,a+2d,...,a+ (k—1)d

are all the same color.
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What | presented above is NOT the EVDW. This is:
EVDW Theorem For all k, c, e there exists E = E(k, e, ¢) such
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This is an exercise.



